
International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.17, August 2015

45

A Cognitive Approach to solve Water Jugs Problem

Divya Saxena

Hindu College of Engineering
Sonipat, India

Naveen Kumar Malik
Hindu College of Engineering

Sonipat, India

V.R. Singh
PDM Educational Institutions

Bahadurgarh, India

ABSTRACT

Water-jug problem is a famous problem in the field of

artificial intelligence, computer programming, recreational

mathematics and psychology. Classical methods used to solve

this problem are Depth first search, Breadth first search,

Diophantine approach, etc. These methods are memory and

time consuming. This paper implemented a cognitive

approach with two new methods to solve water jug problem

using the problem space computational model (PSCM)

processing strategy of soar software. Result analyzed in term

of time.

General Terms

Artificial intelligence, cognitive architecture, soar cognitive

architecture

Keywords

Water jug problem, soar software, simple water jug agent

1. INTRODUCTION
Artificial Intelligence (AI) is the study to make computers

intelligent as a human. The AI is interdisciplinary subject of

fields like Electronics engineering, Computer engineering,

Mathematics and philosophy etc [5]. Cognitive approaches are

new area of research in AI. They provide infrastructure and

framework for human like intelligent agents for various

applications [11]. Some popular cognitive approaches

available in literature are noted with name of architecture,

founder, websites maintained with resources and basic

features in table 1.The mentioned websites contain detailed

information about the corresponding architecture.

1.1 Soar
Soar, cognitive approach, is described by John E. Laird, Allen

Newell and Paul Rosenbloom at Carnegie Mellon University,

Pitsburgh, Pennysylavania. Soar is a theory as about what

cognition is, as well as, a computer programming software

that implemented in Artificial Intelligent machines to achieve

different aspects of human behavior [12].

Soar is different from other approaches in a way that it takes

dynamic combination of wide variety of knowledge for

solving problems. Knowledge can be programmed into the

system or was learned through experience called chunking.

Some applications of Soar are in reasoning tasks, medical

diagnosis, natural language processing, robotic control,

simulating pilots for military training, and controlling the non-

player characters in mobile and computer games, etc [4].

Table 1. Popular Cognitive Approaches

Cognitive

approaches
Founder and year Defining links Features

ACT-R Anderson, 1976 http://act-r.psy.cmu.edu/ Human semantic memory

4CAPS Thibadeau et al., 1982 http://ccbi.cmu.edu/4CAPS/
Combination of symbolic and activation

based processing

SOAR
Laird, Rosenbloom &

Newell, 1983
http://soar.eecs.umich.edu/

Multi-method problem solving, production

systems, and problem spaces

Prodigy Minton & Carbonell, 1986
http://cogarch.org/index.php/Prodigy/Pr

operties
Means–end analysis, planning

MAX Kuokka, 1991
http://cogarch.org/index.php/MAX/Arch

itecture

Meta-level reasoning for planning and

learning

ICARAUS Langley & Shapiro, 2003
http://cll.stanford.edu/research/ongoing/

icarus/
Concept learning and planning

EPIC Kieras & Meyer, 1997
http://web.eecs.umich.edu/~kieras/epic.

html

Models of human perception, action, and

reasoning

4D/RCS Albus http://cogarch.org/index.php/4D-RCS
Hierarchical sensory processing,

hierarchical real-time execution

Polyscheme Cassimatis, 2004
http://dspace.mit.edu/handle/1721.1/832

5

Integration of multiple methods of

representation and reasoning

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.17, August 2015

46

Fig 1: Soar 9 architecture [10]

1.1.1 Soar Architecture
The perception module receives the perceptions from the

environment and transfers it to the global short term memory.

Working memory controls the retrieval of knowledge from the

long term memory and also responsible for initiating actions.

The three long term memories namely procedural, semantic,

episodic are independent from each other and have their

separate learning mechanisms. Procedural long term memory

contains the knowledge about how to do things (processing),

the semantic memory stores the general facts and episodic

memory stores the knowledge about snapshot of working

memory. The procedural productions can change the status of

the working memory. Short term working memory is

connected with other memories and processes so change in it

can initiate retrieval from semantic or episodic memory or can

initiate action in the environment. Chunking means to learn

new production rules whereas reinforcement learning means

tuning the action of rules by changing numeric preferences in

operator evaluation cycle. Figure 1 shows latest available soar

cognitive architecture.

1.1.2 Soar Operation Cycle
The operation cycle of soar is shown in figure 2. Soar takes

input from the environment in the form of visual perceptions

or from sensors like pressure sensors, weight sensors (may be

senses the weight of water in jug), and then elaborate (creates

state) the current situation. Based on states created, proposes

the operators or evaluate the operators (changes the operator

preference) by means of rules matching for the current state.

All these are done by the productions rules saved in long term

memory of soar. Then the decisions module selects the

operator among different proposed operators.

The most eligible operator can be chosen from the proposed

operators by defining rules. Then the operator is applied

(means action are taken) also by rules matching which causes

changes in the environment state. The action can be like

starting a motor of robot leg so that it can move to a desired

place, or moving robots hand to fill a jug.

Fig 2: Operation Cycle of soar [4]

INPUT

OUTPUT

APPLY

OPERATORS

(RULES)

DECISION

MODULE

SELECTS

OPERATOR

ELABORATE

STATE

PROPOSE

OPERATORS

EVALUATE

OPERATORS

(RULES)

ENVIRONMENT

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.17, August 2015

47

1.1.3 Water jug problem statement
Water-jug problem is most general planning problem of

Artificial Intelligence [8]. The problem can be stated as

below:

Sitting beside a river, two empty jugs of volume say x liters

and y liters are provided. The aim is to calculate the number

of moves to complete the task of getting z liters of water in jug

x or jug y or as in combined quantity of both.

As a human, it is very easy to solve this problem by just

thinking for few seconds. But with the machines there should

be a designed program that calculates all the possible actions

that moves an agent from initial state to goal state and then

chooses the best optimal action among them that will achieve

goal faster.

This paper implemented water jug problem with soar software

which is used to design intelligent agents [1]. These intelligent

agents perform the human able task based on their

computational processing. Thus, processing is done by the

soar program that is saved in machine or robot.

2. LITERATURE REVIEW
There are various methods applied to solve water jug problem.

The techniques to proceed from start to goal can be classified

into two groups namely informed search (heuristic) and

uninformed search (blind) also shown in figure 3.

Fig 3: Classification of strategies used to solve the Water-

jug Problem

2.1 Informed Search

2.1.1 Heuristic
The Heuristic technique improves the efficiency of a search

process, possibly by sacrificing claims of completeness or

optimality [7].

2.1.2 Diophantine Approach
The Diophantine approach is a manually or computationally

solving arithmetic method by modeling problem as a

Diophantine equation, namely mx+ny=d is solvable only if

gcd(m,n) divides d. Then comparing two algorithms designed

to fill jug m first or n first to get optimal result [6].

2.2 Uninformed Search

2.2.1 Forward Reasoning
The billiards/forward reasoning approach as understood by its

name is a throw starting from initial state to goal [7]. Forward

chaining approach is a popular implementation strategy for

expert systems, business and production rule systems [13].

2.2.2 Backward Reasoning
The working backwards approach, starts from goal state and

then assuming the previous states. This method uses less

memory as compared to others [7]. Backward reasoning is

implemented in logic programming systems usually employ a

depth-first search strategy [14].

2.2.3 Breadth Fist Search
The Breadth First Search (BFS) expands all the nodes of one

level first. The time and space is bd for BFS where b and d are

branching factor and solution depth respectively.

Experimentally BFS is complete and optimal [9].

2.2.4 Depth First Search
The Depth First Search approach expands one of the nodes at

the deepest level. The time and space are bm and bm where b

is the branching factor and m is the maximum depth. DFS is

not complete and optimal [9].

2.2.5 Problem Solving Computational Model
In Problem Solving Computational Model (PSCM), a problem

is viewed as a space of all the states and then, selecting the

best connection between the starting and ending state [4]. The

PSCM theory of soar is based on goals (aim of the problem),

problem spaces (space of states), states (agent is in a state)

and operator (alternative action). The agent is in a state and its

alternative actions are decided by operators. Once the operator

is applied, a new state is created. Soar chooses the optimal

solution for a problem by applying the most preferable

operator among the candidate operators available.

The drawbacks of previous methods are time consumption

and memory requirement as compared to soar’s faster

approach PSCM. This paper introduces two methods to fasten

the PSCM process of soar’s water–jug problem solving. First

method proposed creates the preference rules for fill and pour

operates and the second, blocks some states of problem-space

making it more goal–oriented.

3. THE PROBLEM
The problem work created by soar can be downloaded from

http://soar.eecs.umich.edu/articles/downloads/agents/153-

water-jug-simple link. The soar’s specific-water jug problem

can be stated as below:

You are given two empty jugs. One holds five liters of water

and the other holds three liters. There is a well that has

SEARCHING
TECHNIQUES

INFORMED SEARCH

HEURISTIC
APPROACH

DIOPHANTINE
APPROACH

UNINFORMED
SEARCH

PROBLEM SOLVING
COMPUTATIONAL

MODEL (PSCM)

BREADTH FIRST
SEARCH (BFS)

DEPTH FIRST
SEARCH (DFS)

FORWARD
REASONING

BACKWARD
REASONING

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.17, August 2015

48

unlimited water that you can use to completely fill the jugs.

You can also empty a jug or pour water from one jug to

another. There are no marks for intermediate levels on the

jugs. The goal is to fill the three-liter jug with one liter of

water [3].

The human brain know that the optimum solution is in five

steps, by just first filling 3-liter jug, then pouring this amount

into 5-litre jug, and then again filling 3-liter jug pouring it into

5-litre jug. The desired solution can be obtained.

Soar will solve it in number of steps. The problem space

designed is shown in figure 4. Soar can take any path at

random to reach from [0,0] to […,1] state.

Fig 4: PSCM of Soar’s simple water-jug-agent [3]

3.1 Operators
The operators of water – jug problem are filling a jug from the

well, empty a jug into the well and pour from a jug to a jug.

3.2 Soar syntax
The table 2 shows some terms related to water jug problem in

soar syntax. The soar’s syntax is an example of AI language.

Table 2. Name and State representation in Soar syntax

Terms In English words In Soar syntax

Name water jug (<s>^name water-

jug)

States

jug

<j1>

Volume 5 (<s>^jug <j1>)

(<s>^jug <j2>)

(<j1>^volume 5)

(<j1>^content 0)

(<j1>^ empty 5)

(<j2>^volume 3)

(<j2>^content 0)

(<j2>^empty 3)

Content 0

Empty 5

jug

<j2>

Volume 3

Content 0

Empty 3

3.3 Default short term memory
The default short term memory structure is given in figure 5.

This is the starting graph structure of working memory.

Computational processing is done by adding and removing of

branches over this initial graph.

Fig 5: Default Soar’s STM structure [3]

3.4 Initial state structure
The initial state structure of water – jug problem in short term

memory is shown in figure 6. The new attributes are created

after initialization of water-jug problem.

Fig 6: Initial STM structure of Soar’s water-jug agent

3.5 Rules for Soar’s water jug agent
The Table 3 shows rules saved in Soar’s long term memory

for simple water jug agent.

Table 3. Production rules in Soar’s LTM for simple water-

jug agent [2]

Rule no. Simple English Soar syntax

P1 If no task is

selected, then

propose the

initialize-water-jug

operator.

sp {propose*initialize-

water-jug-new

(state <s> ^type state)

-(<s> ^name)

-->

(<s> ^operator <o> +)

(<o> ^name initialize-

water-jug-new) }

P2 If the initialize-

water-jug operator

is selected, then

sp {apply*initialize-

water-jug-new

(state <s>

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.17, August 2015

49

create an empty 5

gallon and empty 3

gallon jug

^operator.name

initialize-water-jug-

new)

-->

(<s> ^name water-jug-

new

^jug <j1>

^jug <j2>)

(<j1> ^volume 5

^content 0)

(<j2> ^volume 3

^content 0) }

P3 If a jug has volume

v and contents c,

then it has empty v –

c.

sp {water-jug-

new*elaborate*state

(state <s> ^name water-

jug-new

^jug <j>)

(<j> ^volume <v>

^content <c>)

-->

(<j> ^empty (- <v>

<c>)) }

P4 If there is a jug that

is not full, then

propose the fill

operator.

sp {water-jug-

new*propose*fill

(state <s> ^name water-

jug-new ^jug <j>)

(<j> ^empty > 0)

-->

(<s> ^operator <op> +

=)

(<op> ^name fill ^fill-

jug <j>) }

P5 If the fill operator is

selected for a jug,

then change the

contents of that jug

to its volume.

sp {apply*fill

(state <s> ^name water-

jug-new ^operator <op>

^jug <j>)

(<op> ^name fill ^fill-

jug <j>)

(<j> ^content <c>

^volume <v>)

-->

(<j> ^content <v>)

(<j> ^content <c> -) }

P6 If there is a jug that

is not empty, then

propose the empty

operator.

sp {water-jug-

new*propose*empty-jug

(state <s> ^name water-

jug-new ^jug <j>)

(<j> ^content > 0)

-->

(<s> ^operator <op> +

=)

(<op> ^name empty

^empty-jug <j>) }

P7 If the empty

operator is selected

for a jug, then

change the contents

of that jug to 0.

sp {apply*empty

(state <s> ^name water-

jug-new ^jug <j>

^operator <op>)

(<op> ^name empty

^empty-jug <j>)

(<j> ^volume <v>

^content <c>)

-->

(<j> ^content 0)

(<j> ^content <c> -) }

P8 If there are two jugs

and first jug is not

full and second jug

is not empty, then

propose pouring

water from the

second jug into the

first jug.

sp {water-jug-

new*propose*pour-jug

(state <s> ^name water-

jug-new ^jug <i> ^jug

{<j> <> <i>})

(<i> ^content > 0)

(<j> ^empty > 0)

-->

(<s> ^operator <op> +

=)

(<op> ^name pour

^empty-jug <i> ^fill-jug

<j>) }

P9 If pour operator is

selected for two

jugs and the

contents of the jug

being emptied <=

the empty amount

of the jug being

filled, then set the

contents of the jug

being emptied to 0

and set the contents

of the jug being

filled to the sum of

the two jugs.

sp {apply*pour*empty-

empty

(state <s> ^name water-

jug-new ^operator

<op>)

(<op> ^name pour

^empty-jug <i> ^fill-jug

<j>)

(<j> ^volume <jv>

^empty <je> ^content

<jc>)

(<i> ^volume <iv>

^content { <ic> <= <je>

})

-->

(<i> ^content 0 <ic> -)

(<j> ^content (+ <ic>

<jc>) <jc> -) }

P10 If pour operator is

selected for two

jugs and the

contents of the jug

being emptied > the

empty amount of

the jug being filled,

then set the contents

of the jug being

emptied to its

contents minus the

empty of the jug

being filled and set

the contents of the

jug filled to its

volume.

sp {apply*pour*not-

empty-empty

(state <s> ^name water-

jug-new ^operator

<op>)

(<op> ^name pour

^empty-jug <i> ^fill-jug

<j>)

(<j> ^volume <jv>

^empty <je> ^content

<jc>)

(<i> ^volume <iv>

^content { <ic> > <je>

})

-->

(<i> ^content (- <ic>

<je>) <ic> -)

(<j> ^content <jv> <jc>

-) }

P11 If five volume jug’s

content is c1 and

three volume jug’s

content is c2, then

print 5 has c1 and 3

has c2.

sp {monitor-state

(state <s> ^name water-

jug-new ^jug <j1> <j2>)

(<j1> ^volume 5

^content <c1>)

(<j2> ^volume 3

^content <c2>)

-->

(write (crlf) |5 has |

<c1> | : 3 has | <c2>) }

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.17, August 2015

50

P12 If fill operator is

selected to fill jug of

volume v, then print

fill v.

sp {monitor-fill

(state <s> ^name water-

jug-new ^operator <o>)

(<o> ^name fill ^fill-jug

<j>)

(<j> ^volume <v>)

-->

(write (crlf) |fill (|<v>|)|

) }

P13 If empty operator is

selected to empty

jug of volume v,

then print empty v.

sp {monitor-empty

(state <s> ^name water-

jug-new ^operator <o>)

(<o> ^name empty

^empty-jug <j>)

(<j> ^volume <v>)

-->

(write (crlf) |empty (

|<v>|)|) }

P14 If pour operator is

selected to fill j2

from j1, then print

pour j1’s volume v1

: content c1 and j2’s

volume v2 : content

c1.

sp {monitor-pour

(state <s> ^name water-

jug-new ^operator <o>)

(<o> ^name pour ^fill-

jug <j2> ^empty-jug

<j1>)

(<j1> ^volume <v1>

^content <c1>)

(<j2> ^volume <v2>

^content <c2>)

-->

(write (crlf) |pour(| <v1>

|:| <c1> |,| <v2> |:| <c2>

|)|) }

P15 If there is a jug with

volume five and

contents three, then

write that the

desired goal

achieved and halt.

sp {detect*goal

(state <s> ^name water-

jug-new ^jug <j>)

(<j> ^volume 5 ^content

3)

-->

(write (crlf) | goal

achieved|)

(halt) }

4. PROGRAM WORKING
The solution of water jug problem taken in the following

description is the shortest path taken from initial state to

desired state for simplicity of explanation.

Fig 7: First phase of operation cycle

In the first cycle of operation displayed in figure 7, soar first

elaborates the current state and then proposes operators based

on situation, so rule P1 fires. The rule is if no tasks (means

doing nothing) then start water jug problem. In this paper,

water – jug problem is visualized as an internal problem

solving in soar. Consider a robot provided with two empty

jugs in his hand then the state initialization will be done

through input from sensors (may be weight sensor or visual

perceptions). As only one operator is candidate for selection,

it is selected and applied.

The application rule matches rule P2 so it fires. The Rule P2

creates the initial state of two empty jugs by adding attributes

to the default short term memory as shown in figure 5 and

figure 6. The created status in soar syntax is written as:

<j1> ^volume 5 ^content 0

<j2> ^volume 3 ^content 0

Fig 8: First phase creates two empty jugs <j1> and <j2>

The empty attribute is not originated till now, because a

separate rule is needed for calculation of empty space as its

value changes in each phase. Just to show diagrammatically,

two jugs are created like in figure 8.

The first rule P1 is retracted as there is a task now and states

created (two empty jugs) persist. Now, in the next cycle in

figure 9, again it will elaborate the current situation and fires

rule P3 as the conditions of P3 now matches the current short

term memory structure.

Fig 9: Second phase of operation cycle

It creates an additional attribute on both jugs named empty

which calculates the empty amount left in the jug. Now

according to current empty situation, the P4 rule fires,

proposing operators to fill jugs may be <j1> or <j2>. The

comparison is done because of the preferences associated with

operators. As given random preference, so it can choose any

one, or say <j2>, and selects operator to fill <j2>. Now the

rule P5 matches and changes the status of short term memory

by changing content value of <j2> to 3.

Fig 10: Second phase fill three-volume jug <j2>

It is essential to remove the attribute so there is an action of

removing the last value in rule. The current status of STM in

soar language can be shown as below and with diagram in

figure 10.

<j1> ^volume 5 ^content 0 ^empty 5

<j2>^volume 3 ^content 3 ^empty 3

ELABO

-RATE

STATE

(P3)

PROPO

-SE

OPERA

-TORS

(P4)

SELECT

OPERA

-TOR

APPLY

OPERA

-TOR

(P5)

COMPARE

OPEARTO-

RS

BASED ON

PREFREN

-CES

ELABO

-RATE

STATE

PROPO

-SE

OPERA

-TORS

(P1)

SELECT

OPERA

-TOR

APPLY

OPERA

-TOR

(P2)

COMPARE

OPEARTO-

RS

BASED ON

PREFREN

-CES

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.17, August 2015

51

In the third cycle of figure 11, it will again elaborate the state

and update the empty attribute value. Then based on current

condition matching, it will fire the rules P4, P6, P8 and

propose operators fill, empty and pour the jug. Again, by

comparing randomly it chooses any one, say pour rule P8 and

applies the rule P9. The application rules for pour operator has

two conditions, one is when it will empty the source jug fully

and the second is when it will not empty the source jug means

some amount of water left. Soar choose P9 that will empty the

jug <j2> fully and changes the content of <j1> and <j2> to 3

and 0 respectively. The current status of short term memory

and jugs are shown below in equation and in figure 12.

<j1> ^volume 5 ^content 3 ^empty 5

<j2> ^volume 3 ^content 0 ^empty 0

Fig 11: Third phase of operation cycle

Fig 12: Third phase pour water from <j2> to <j1>

The fourth operating cycle as in figure 13 will continue from

elaboration phase updating the empty attribute of

<j1> and <j2> equal to 2 and 3. The short term memory state

proposes three operators namely fill, empty and pour (P4, P6,

and P8) and then randomly chooses fill and hence applies P5

to fill jug <j2>.

Fig 13: Fourth phase of operation cycle

The content value of <j2> goes to 3 again. The graph of STM

and diagrams of jugs are shown below and in figure 14.

Fig 14: Fourth phase again fills jug <j2>

<j1> ^volume 5 ^content 3 ^empty 2

<j2> ^volume 3 ^content 3 ^empty 3

In the fifth phase of figure 15, after following the same steps

of operation (first elaborating empty attribute’s value to 2 and

0, then proposing operators fill, empty and pour). Let soar

randomly chooses to pour jug <j2> to jug <j1> by application

of rule P10. The change in values is written in soar syntax

below and by virtual diagram jugs in figure 16.

<j1> ^volume 5 ^content 5 ^empty 2

<j2> ^volume 3 ^content 1 ^empty 3

Fig 15: Fifth phase of operation cycle

Fig 16: Fifth phase pour from jug <j2> to <j1>

In the next elaboration phase, the rule P15 fires as the

condition of the rule now matches the current status of short

term memory which is the desired result also and hence it will

print that goal is achieved. If this program is used with an

intelligent agent or a robot, a speaker can be used saying the

task completed.

5. PROPOSED METHOD I
Soar`s idea for a search procedure is the discovery of a

unknown path in the problem space that links the initial state

with the goal state.

Table 4. New rules of Method I added in referenced

method

Rule no. Simple English Soar syntax

P16 If operators

proposed are empty

and pour

Then prefer pour

over empty.

sp {prefer*pour

(state <s> ^operator

<o1> + ^operator <o2>

+)

(<o1> ^name empty)

(<o2> ^name pour)

-->

(<s> ^operator <o2> >

<o1>) }

P17 If operators

proposed are empty

and fill

Then prefer fill over

empty.

sp {prefer*fill

(state <s> ^operator

<o1> + ^operator <o2>

+)

(<o1> ^name empty)

(<o2> ^name fill)

-->

(<s> ^operator <o2> >

<o1>) }

ELABO

-RATE

STATE

(P3)

PROPOS

-E

OPERAT

-ORS

(P4, P6,

P8)

SELECT

OPERA

-TOR

APPLY

OPERA

-TOR

(P10)

COMPARE

OPEARTO-

RS

BASED ON

PREFREN

-CES

ELABO

-RATE

STATE

(P3)

PROPOS

-E

OPERAT

-ORS

(P4, P6,

P8)

SELECT

OPERA

-TOR

APPLY

OPERA

-TOR

(P5

COMPARE

OPEARTO-

RS

BASED ON

PREFREN

-CES

ELABO

-RATE

STATE

(P3)

PROPOS

-E

OPERAT

-ORS

(P4, P6,

P8)

SELECT

OPERA

-TOR

APPLY

OPERA

-TOR

(P9)

COMPARE

OPEARTO-

RS

BASED ON

PREFREN

-CES

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.17, August 2015

52

 Fig 17: PSCM of Method I

Two new rules P16 and P17, shown in table 4, are added to

the referenced method’s fifteen rules to give the empty

operation as worst preference compared to fill and pour. The

new problem space design can be seen in figure 17.If thinking

logically, the empty operator is extending the steps only

without requirement because optimal solution can be possible

in five steps without emptying the jug.

In the new soar’s operation cycle, if proposed operators are

filling and empty it will choose fill. If operators proposed are

pouring and empty it will choose pour and if all three of them

proposed than it will choose between fill and pour randomly.

6. PROPOSED METHOD II
The second method proposed has been developed by focusing

on the idea of technique used. In this approach reduction of

the problem space of water–jug simple agent is done by

restricting it from pouring filled five–gallon jug to three-

gallon jug and then emptying the filled three-gallon jug as

their actions only lengthening the steps. This condition is

applicable in any water-jug problem but only when the

focused jug (task to get some amount of water in smaller jug)

is the smaller one.

Fig 18: PSCM of Method II

The rule added with other 15 rules of referenced method, is

P18 shown in table 5 with minor changes of pouring operators

in bolds. Whenever the problem space’s states reaches

{5;(0,1,2,3)} state it will reject the pour operator. The

problem space can be seen in figure 18.

Table 5. New rules of Method II added in referenced

method

Rule no. Simple English Soar syntax

P8 If there are two jugs

and first jug is not

full and second jug

is not empty, then

propose pouring

water from the

second jug into the

first jug.

sp {water-jug-

new*propose*pour-jug

(state <s> ^name water-

jug-new ^jug <i> ^jug

{<j> <> <i>})

(<i> ^content > 0)

(<j> ^empty > 0)

-->

(<s> ^operator <op> +

=)

(<op> ^name pour

^empty-jug <i> ^fill-jug

<j>)

(<op> ^done <d>) }

P9 If pour operator is

selected for two

jugs and the

contents of the jug

being emptied <=

the empty amount

of the jug being

filled, then set the

contents of the jug

being emptied to 0

and set the contents

of the jg being filled

to the sum of the

two jugs.

sp {apply*pour*empty-

empty

(state <s> ^name water-

jug-new ^operator <op>)

(<op> ^name pour

^empty-jug <i> ^fill-jug

<j>)

(<op> ^done <> true)

(<j> ^volume <jv>

^empty <je> ^content

<jc>)

(<i> ^volume <iv>

^content { <ic> <= <je>

})

-->

(<i> ^content 0 <ic> -)

(<j> ^content (+ <ic>

<jc>) <jc> -) }

P10 If pour operator is

selected for two

jugs and the

contents of the jug

being emptied > the

empty amount of

the jug being filled,

then set the contents

of the jug being

emptied to its

contents minus the

empty of the jug

being filled and set

the contents of the

jug filled to its

volume.

sp {apply*pour*not-

empty-empty

(state <s> ^name water-

jug-new ^operator <op>)

(<op> ^name pour

^empty-jug <i> ^fill-jug

<j>)

(<op> ^done <> true)

(<j> ^volume <jv>

^empty <je> ^content

<jc>)

(<i> ^volume <iv>

^content { <ic> > <je>

})

-->

(<i> ^content (- <ic>

<je>) <ic> -)

(<j> ^content <jv> <jc>

-) }

P18 If the five volume

jug with content

more than one is

sp {reject*pour

(state <s> ^name water-

jug-new ^operator <o>)

(<o> ^name pour

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.17, August 2015

53

being poured, then

reject the pour

operator.

^empty-jug <i> ^fill-jug

<j>)

(<i> ^volume 5 ^content

{<c> > 1} ^empty <e>)

-->

(<s> ^operator <o> + -)

(<i> ^content 0 <c> -)

(<i> ^empty 5 <e> -)

(<s> ^done true) }

7. RESULT AND DISCUSSIONS
From the result table 6, it is observe that the soar’s water jug

simple agent program’s efficiency has been increased by

19.717% by Method I and 72.32% by Method II. It should

also be noted that the results shown in table 5 are not fixed.

They are generated at random but the reduction of efficiency

is sure. The implemented work for 11th run of experiment in

soar debugger window is shown in figures 19, 20 and 21.

Table 6. Comparison of number of steps obtained by

Referenced method and Proposed Method I and Method

II

Experiment

Steps in

Referenced

Method

Steps in

Proposed

Method I

Steps in

Proposed

Method II

1st RUN 345 39 50

2nd RUN 51 385 35

3rd RUN 156 254 66

4th RUN 200 72 5

5th RUN 57 46 11

6th RUN 569 39 134

7th RUN 44 636 32

8th RUN 97 142 21

9th RUN 24 67 9

10th RUN 69 175 86

11th RUN 227 184 102

12th RUN 351 80 15

13th RUN 22 5 44

14th RUN 379 34 72

15th RUN 223 111 102

16th RUN 321 104 12

17th RUN 122 158 42

18th RUN 487 56 30

19th RUN 47 202 75

20th RUN 104 138 88

Total 3895 3127 1078

Average 194.75 156.35 53.9

Efficiency
19.717%

Increased

72.32%

Increased

Fig 19: Soar debugger window for 11th run of Referenced

Method

Fig 20: Soar debugger window for 11th run of Method I

Fig 21: Soar debugger window for 11th run of Method II

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.17, August 2015

54

8. CONCLUSION AND FUTURE SCOPE
Cognitive architectures provide new approach to develop

intelligent agents for various real time applications. The

simple water jug problem is implemented in soar version 9.5.0

software. It has advantage of reduction in average time to

solve the water jug problem as compared to other available

methods for same. Water jug soar agent with seventeen rules

in method I and sixteen rules in method II have increased the

efficiency in the time domain by 19.717% and 72.32%

respectively.

Further soar software features, namely chunking,

reinforcement learning can be used to solve water jug problem

for better results.

9. REFERENCES
[1] SOAR: A Cognitive Architecture

http://soar.eecs.umich.edu/articles/downloads/soar-

suite/103-soar-suite-9-4-0

[2] Laird, J. E. 2014 Soar Cognitive Architecture.

Water_Jug_Simple_Agent.zip

http://soar.eecs.umich.edu/articles/downloads/agents/153

-water-jug-simple

[3] Laird, J. E. 2014 Soar9 Tutorial Part 1. University of

Michigan, 1-44

[4] Laird, J. E. 2012 The Soar Cognitive Architecture. MIT

Press.

[5] Saxena, D. and Malik, N. K. 2015. Understanding Soar:

An outside’s perspective. In Proceedings of the Second

National Conference on Machine Intelligence and

Research Advancement, 43-51.

[6] Man, Y. K. 2013. An Arithmetic approach to the General

Two Water Jugs Problem. International Association of

Engineers, 145-147.

[7] Leon, F., Horia, Z. and Galea, D. 2005. A Heuristic for

Solving the Generalized Water Jugs Problem. Bulletin.

Polytechnic Institute of Iaşi, tome LI (LV), 1-4.

[8] Carder, H. P., Handley S. J., Perfect, T. J. 2008. Counter

Intuitive and alternative moves choice in the Water Jug

Task. Brain and Cognition. Science Direct, 11-20.

[9] Aggrawal and Anderson, R. J. 1988. A Random

Algorithm for Depth First Search. Combination, 1-12.

[10] Laird, J. E., 2008. Extending the Soar Cognitive

Architecture. Frontiers in Artificial Intelligence and

applications. IOS Press, 224-235.

[11] Cognitive architecture

http://en.wikipedia.org/wiki/Cognitive_architecture

[12] Soar (cognitive architecture)

http://en.wikipedia.org/wiki/Soar_(cognitive_architecture

)

[13] Forward chaining

https://en.wikipedia.org/wiki/Forward_chaining

[14] Backward chaining

https://en.wikipedia.org/wiki/Backward_chaining

IJCATM : www.ijcaonline.org

