
International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.17, August 2015

55

Aspects Oriented Approach towards the Goal Driven

Software Lifecycle

G. SuryaTeja
B.Tech Student,

RVR&JC College of Engineering,
Dist: Guntur, AP, India

ABSTRACT
Technology and its development need to be improved ion the

aspect of the Information Technology which follows some

methodology or process. In the current context we usually

talking about the XP, Agile and test driven Approach needs to

also change in its aspect oriented. Development of the

software needs to be smart unique and proportionally

domination if we want to explore in the Digitalized

information World. If we see the data analysis of the

requirement which having many draw flaws leads us to the

next level of the journey of life cycle of SDLC. Aspect

Oriented requirement needs to be early discussed and should

follow a rapid model of changing with each and every version

to base cycle which we represented in this paper making to

inspiration next level of the classical technology may not be

adoptable . IT industry moves on two major task one is

deliverable in time which is based on the requirements is the

base Pillar.

Keywords
Early aspects, goals, goals interaction, fuzzy logic, use cases,

goal cluster.

1. INTRODUCTION
OOP and the reasons to consider AOP as an extension Object

oriented techniques decompose software into modules, in this

case classes, because the unit of modularity in OOP languages

is the class. Some desired behavior might be common to

different classes and therefore ends up spread among several

classes. Systemic concerns or concerns that relate to a group

of classes, such as security concerns, cannot be encapsulated

in a single unit and therefore surface disperses across several

classes. The role of programming languages in shaping the

abstractions by which software designers and programmers

apprehend and organize software cannot be underestimated.

This applies for requirements engineering as well. The

abstractions that ultimately shape software are heavily

influenced by the underlying implementation paradigm, like

the prevalence class/object concept. In this evolutionary trend

we find more and more conceptual tools, just like objects in

OOP provide an abstraction for elements in the real world.

Evolving together with the programming languages we find

software development methodologies.

Fig.1.1. Illustration of the Goal Driven Cycle

Nevertheless, the object abstraction along with the

composition mechanisms provided in the OOP entail

limitations. These limitations have already been discussed in

and more in depth by S. Clarke in. S. Clarke clearly

demonstrates that the units of modularization in the OOP are

structurally different from the units of modularization of

requirements specification.

2. RELATED WORK
A number of difficulties for aspect identification, either at

requirements or at other stages of software development stem

from a definition of aspect that needs to be made more

complete and precise. Let us for instance consider the

proposal on early aspect identification as in. Their approach

towards aspect identification relies on use cases, when a use

case extends more than one use case or when a use case is

included by one or more viewpoints then it is considered an

aspectual use case. There are a number of difficulties

associated with aspect identification by doing so, for instance,

prioritization of conflicts that stem from different viewpoints

is done by hand, and by hand is made also the decision of

what is an aspect and what is not an aspect once they identify

candidate aspects. It is nevertheless a valuable approach that

gives an important insight towards aspect identification.

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.17, August 2015

56

Fig.2.1. Model Driven Approach to View the Quality

It is important to emphasize the works of Rick on the analysis

of software architecture properties, the SAAM and ATAM

methods. The SAAM method introduces three perspectives to

analyze software architecture specifications: functionality,

structure, and allocation. Functionality is the activity that the

system performs; structure refers to the components and

connections; and allocation describes how the functionality is

reflected on the structure.

3. PROPOSED METHODOLOGY
A number of difficulties for aspect identification, either at

requirements or at other stages of software development stem

from a definition of aspect that needs to be made more

complete and precise. Let us for instance consider the

proposal on early aspect identification as in. Their approach

towards aspect identification relies on use cases, when a use

case extends more than one use case or when a use case is

included by one or more viewpoints then it is considered an

aspectual use case. There are a number of difficulties

associated with aspect identification by doing so, for instance,

prioritization of conflicts that stem from different viewpoints

is done by hand, and by hand is made also the decision of

what is an aspect and what is not an aspect once they identify

candidate aspects. It is nevertheless a valuable approach that

gives an important insight towards aspect identification.

Moreover, the problem of aspect identification relates to the

fact that we need to have an integral view of the problem of

concern cross-cutting and consider its context as well. As

authors like have already outlined, the problem AOSD solves

is one of complexity in today’s software applications.

Fig.3.1.1 Architectural Design Model of the AOSD Model

This method is divided into five steps: the canonical

functional partition, the mapping of the functional partition on

structure, the selection of quality attributes, the selection of

testing tasks, and the evaluation of results. The ATAM

method is based on the analysis of scenarios, which are

obtained as a refinement of software architecture descriptions.

The result of this analysis is a set of risks, non-risks,

sensitivity points, and trade-off points in the architecture. In

addition, the ARID method emerges to complete the proposal

of ATAM with a technique for insuring quality detailed

designs in software.

Another work that offers an interesting perspective on the

properties that should be analyzed in a software architecture

specification is the method. In all these rewrite rules; the

target expression is evaluated first to give an address. The

type of this address is obtained using function type. This gives

the target object’s dynamic class Ct. Due to polymorphism;

this might be a subclass of the class in which the member

defined. Caj def (P,Ct, id) is used to give the defining class

Cd. The defining class, together with the member name, is

used to look up the member definition and obtain the

signature. This information is used to form a join point

designator to use as the argument of advices which gives the

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.17, August 2015

57

set of all valid sequences of applicable advice to execute the

join point. Any member of this set, i.e. any valid sequence of

applicable advice may be executed.

4. EVOLUATION AND ANALYSIS
It allows the designer to capture the essential interactions

between objects that are present in the system without

requiring him to make unnecessary decisions about which

objects will be involved in those interactions. Since the focus

is on the interactions and not on the objects themselves, the

main unit of modularity is the role model. Since interactions

take place between objects all interesting role models include

more than one role. Thus the modularity cuts across class

based decomposition. Roles describe the interaction behavior

of objects and not their identity so many roles in a role model

might serve to specify complex interactions between one

object and itself.

5. CONCLUSION AND FUTURE WORK
It suggests three properties or dimensions to analyze software

architecture descriptions: abstraction level, dynamism, and the

aggregation level. The abstraction level dimension determines

if the software architecture description is more conceptual

(analysis) or realization. The dynamism dimension determines

whether the architecture is static or dynamic. Finally, the

aggregation dimension establishes to what extent a structure is

made from other structures. These three dimensions are

represented as a matrix, and the result of the evaluation

method is the position of a specific architecture inside the

matrix.

6. REFERENCES
[1] E. Baniassad, P. C. Clements, J. Ara_ujo, A. Moreira, A.

Rashid, and B. Tekinerdo_gan, “Discovering early

aspects,” IEEE Softw., vol. 23, no. 1, pp. 61–70, Jan.-

Feb. 2006.

[2] A. Rashid, A. Moreira, and J. Ara_ujo, “Modularisation

and composition of aspectual requirements,” in Proc. 2nd

Aspect-Oriented Softw. Develop. Conf., 2003, pp. 11–

21.

[3] M. Mortensen, S. Ghosh, and J. M. Bieman, “Aspect-

oriented refactoring of legacy applications: An

evaluation,” IEEE Trans. Softw. Eng., vol. 38, no. 1, pp.

118–140, Jan./Feb. 2012.

[4] S. Miller, “Aspect-oriented programming takes aim at

software complexity,” Comput., vol. 34, no. 4, pp. 18–

21, Apr. 2001.

[5] N. Noda and T. Kishi, “On aspect-oriented design-an

approach to designing quality attributes,” in Proc. 6th

Asia Pac. Softw. Eng. Conf., 1999, pp. 230–237.

[6] M. Shomrat and A. Yehudai, “Obvious or not? regulating

architectural decisions using aspect-oriented

programming,” in Proc. 1st Int. Conf. Aspect-Oriented

Softw. Develop., Apr. 2002, pp. 3–9.

[7] J. Viega and J. Voas, “Can aspect-oriented programming

lead to more reliable software?” IEEE Softw., vol. 17,

no. 6, pp. 19–21, Nov./Dec. 2000.

[8] A. Rashid, A. Moreira, and B. Tekinerdogan, “Early

aspects— Aspect-oriented requirements engineering and

architecture design,” IEEE Proc. Softw., vol. 151, no. 4,

pp. 153–155, Aug. 2004.

[9] S. M. Sutton Jr. and I. Rouvellou, “Modeling of software

concerns in cosmos,” in Proc. 1st Int. Conf. Aspect-

Oriented Softw. Develop., 2002, pp. 127–133.

[10] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-

directed requirements acquisition,” Sci. Comput.

Programm., vol. 20, no. 1–2, pp. 3–50, 1993.

[11] J. Mylopoulos, L. Chung, and B. Nixon, “Representing

and using nonfunctional requirements: A process-

oriented approach,” IEEE Trans. Softw. Eng., vol. 18,

no. 6, pp. 483–497, Jun. 1992.

[12] A. van Lamsweerde, R. Darimont, and E. Leitier,

“Managing conflicts in goal-driven requirements

engineering,” IEEE Trans. Softw. Eng., vol. 24, no. 11,

pp. 908–926, Nov. 1998.

[13] J. Lee and Y. Fanjiang, “Modeling imprecise

requirements with xml,” Inform. Softw. Technol., vol.

45, no. 7, pp. 445–460, May 2003. [14] W. Lee, W.

Deng, J. Lee, and S. Lee, “Change impact analysis with a

goal-driven traceability-based approach,” Int. J. Intell.

Syst., vol. 25, pp. 878–908, Aug. 2010.

[14] F. Steimann, “Domain models are aspect free,” in Model

Driven Engineering Languages and Systems, New York,

NY, USA: Springer-Verlag, 2005, pp. 171–185.

[15] A. Moreira, A. Rashid, and J. Ara_ujo, “Multi-

dimensional separation of concerns in requirements

engineering,” in Proc. 13th IEEE Int. Conf.

Requirements Eng., 2005, pp. 285–296.

[16] Rashid and A. Moreira, “Domain models are not aspect

free,” in Proc. 9th Int. Conf. Model Driven Eng. Lang.

Syst., Springer, 2006, pp. 155–169.

[17] L. Constantine and L. Lockwood, Software for Use.

Reading, MA, USA: Addison-Wesley, 1999.

IJCATM : www.ijcaonline.org

