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ABSTRACT 

Since the input image in computer vision and graphics 

containing various texture/structure patterns provides rich 

visual information, how to properly decompose them is a 

challenging problem. Recent developments in high-contrast 

detail smoothing show that how they define edges and how 

this prior information guides smoothing are two key points. In 

this paper, we present a novel Log-transform weighted total 

variation (LWTV) method, which employs the signed gradient 

summation of Log-transform pixels at neighbor window as 

data-fidelity weight. Specifically, LWTV substantially 

improves the decomposition for the regions with faint pixel-

boundary and alleviates the drawback of slightly blurry. 

Experimental results demonstrate that the proposed method 

has appearance performance on image with abundant uniform 

textural details.   

Keywords 
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1. INTRODUCTION 
Many problems in computer vision and computer graphics 

involve estimating some spatially varying image-content from 

original noisy image. One important requirement of such 

estimation is feature-preserving filtering, which became a 

fundamental tool in many applications. Unfortunately, 

feature-preserving filtering is inherently challenging, because 

it is difficult to distinguish features from noise, especially 

where high-contrast trivial details needed to be smoothed. 

Structure-preserving smoothing with jointly texture-

eliminating greatly improves the image editing and rendering 

[1, 2]. There are some existing feature-preserving filtering 

methods to deal with this problem, due to the Xu’s pioneer 

work of extracting major structures from texture images. 

These approaches can be roughly classified into two 

categories, i.e. spatial filter [2, 3, 4, 5] and variational model 

[1, 6, 7, 8].  

The first category of high-contrast detail smoothing methods 

exploits the spatial filtering directly. Bilateral filtering (BF) [3] 

is a widely used model for removing noise from images while 

simultaneously performing detail flattening and edge 

preservation. It averages the nearby pixels by calculating 

weights from spatial and range domain, and smoothes low-

contrast regions while preserving high-contrast edges. 

Recognizing that BF works poorly to smooth out high-

contrast textures, Su et al. developed an edge-preserving 

texture suppression filter based on joint BF filtering scheme 

[4]. Inspired by the fact that extending the concept of 

neighborhood in a non-local way to potentially include more 

pixels such that may in favor of smoothing, the 

Regcovsmooth developed by Karacan et al. used the second 

order statistic descriptor region covariance as a similar weight 

to average the pixels in a squared neighborhood [5]. 

Regcovsmooth may smooth the edge when works on image 

containing number of cartoon patterns. 

Variational models follow the energy minimization 

framework with a data term and a smooth term [1, 6, 7, 8]. 

The data term measures the disagreement between the filtered 

signal s  and the original signal f , while the smooth term 

measures the extent to which the filtered signal is not 

piecewise smooth. i.e.  

arg min{ ( , ) ( )} 
s

s G f s J s                    (1) 

where   is a non-negative parameter controlling the weight 

of the smooth term. The design of the data term ( , )G f s  is 

usually straightforward. For instance, the squared L2 distance 

between the filtered signal and the original signal 
2

2
f s   is 

often used. The choice of the smooth term ( )J s  is a critical 

issue. A representative work is the total variation (TV) [6], 

which uses L1-norm based regularization constraints to 

penalize large gradient magnitudes. In its original formulation, 

TV model provides fairly good separations for structure from 

texture. Some studies extended the standard TV formulation 

with different norms for both regularization and data fidelity 

terms, and demonstrated that more robust norms could 

improve the performance of image decomposition [1, 7, 8]. In 

[7], Farbman et al. proposed a robust method with the 

weighted least square (WLS) measure. The L0smoothing 

presented by Xu et al. [8] used 0l  term instead of 1l  term to 

directly measure the gradient sparsity in the context of image 

smoothing. Unfortunately, like BF filter, WLS and 

L0smoothing also work poorly for tackling the image with 

non-uniform texture details, since they are merely based on 

image contrasts or gradients. Later, Xu et al. proposed method 

relative total variation (RTV) to smooth mosaic images with 

highly texture patterns [1]. The efficiency of RTV depends on 

the defined windowed total variation (WTV) and windowed 

inherent variation (WIV) involving spatial information. 

Despite of achieving impressive results, RTV may still 

mistakenly identify image structures as textures and 

meanwhile blur the edges.  

In summary, the differences among these approaches lie in 

how they define edges and how this prior information is used 

to guide smoothing. How to design an appropriate 
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weight/kernel feature to effectively distinguish high-contrast 

and fine-scale details from major structures is a critical 

task. In this paper, a novel Log-transform weighted total 

variation (LWTV) method is proposed, which employs Log-

transform in the weight construction. Unlike the recent RTV 

proposed on the basis of statistical verification, our motivation 

is derived from the interpretation of weighted total variation 

and the impressive nonlinear property of Log-transform. Our 

idea aims to incorporate the Log-transform into an adaptive 

data-fidelity weight term. By integrating the local region Log-

transform based gradient weight information into the 

smoothing process, LWTV satisfactorily distinguishes texture 

from the main structures. The rest of this paper is organized as 

follows. Section 2 presents The LWTV algorithm. 

Experimental results are presented in Section 3, and Section 4 

concludes the paper.  

2. ALGORITHM LWTV 
In this section, after reviewing the applications of Log-

transform in image processing and computer vision, we 

developed a Log-transform weighted total variation (LWTV) 

model for smoothing out high-contrast texture details. The 

superiority of the designed weight to that of RTV was 

explained in detail. Finally, an effective algorithm solver with 

iterative mechanism was provided.  

2.1 Review of Log-Transform in Image 

Processing 

Logarithmic transformation (Log-transform) is a basic and 

popularly used transformation in image processing 

community. The mathematical formulation of traditional Log-

transform is log(1 ), 0  s c r r , where c  is a constant. The 

transformation curve depicted in Fig. 1(a) maps a narrow 

range of low-level grey scale intensities into a wider range of 

output values and similarly maps the wide range of high-level 

grey scale intensities into a narrow range of high level output 

values, which prefers to compress the dynamic range of 

images with large variations in pixel values or Fourier 

spectrum image [9]. Usually, applying log-transform to an 

image will expand its low valued pixels to a higher level and 

have little effect on higher valued pixels, hence it enhances 

minor image detail (or contrast) with lower intensity 

values. In this paper, we use the mathematical form 

log( ),1 0  s r r  displayed in Fig. 1(b), where the image is 

normalized to [0, 1] in advance.  

Log-transform has been used in diverse image tasks. In [10], 

Fattal et al. presented a gradient domain high dynamic range 

(HDR) compression, which applied gradient attenuation in the 

logarithm of the luminances.  The well-known edge-ware 

filter WLS [7] uses the gradient of the logarithm value as a 

weighting term of the least squares problem. Obviously, the 

role of the weight in the regularization term is to force the 

filtered results at regions where gradient is large to be as close 

as possible to the input image, meanwhile that at other regions 

to be smoothed. As discussed in the introduction, since WLS 

only uses pixel intensity contrasts (the gradient of Log-

transform of its intensity) as guidance to smooth image, it 

fails to suppress the high-contrast texture details. Recently, Li 

et al. [11] proposed Local Log-Euclidean covariance matrix 

for image representation. Their defined covariance matrices 

form a Lie group equipped with Euclidean space structure, 

which enables common Euclidean operations in the logarithm 

domain. Experiment results showed its promising 

performances in the applications of texture classification and 

object tracking. 
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Fig 1: Illustration of Log-transform. (a) 

0.5log(1 ), 0  s r r , (b) log( ),1 0  s r r .  

 

2.2 Algorithm Outline 

Recently, based on the statistical verification that the defined 

RTV measure of texture and main structure exhibit different 

properties that make them decomposable. Xu et al. presented 

an optimization framework, in which meaningful content and 

textural edges are penalized differently. i.e. 

2

2

( )( )
arg min{ [ ]}

( ) ( )


 
   

 


yx

s
i x y

D s iD s i
s f s

L s i L s i
              (2) 

where ,

( )

( ) ( )


 x i j x i

j R i

D s i g s . 
,

( )

( ) ( )


 x i j x i

j R i

L s i g s  

are the weights. ,i jg  is a Gaussian weighting function with 

standard deviation   [1]. i  and j  are pixel indexes, x  and 

y  are pixel coordinates. In essence, its success lies on the 

guidance of weight L in the regularization term. i.e, the 

resulting L  in a window that only contains texture is 

generally smaller than that in a window also including 

structural edges. An intuitive explanation is that a major edge 

in a local window contributes more similar-direction gradients 

than textures with complex patterns. Hence, the high-contrast 

details, whose smaller L  values implying more total variation 

penalty will be forced, will be smoothed more heavily. 

However, one major drawback of RTV is that it could mistake 

part of structures as texture, if they are visually similar in 

scales or interweave in the same region. One example is 

shown in Fig. 2, where two structures regions of RTV result 

in Fig. 2(c) are not well preserved. It is because that the scale 

and shape of these edges are overly close to those of the 

underlying texture. 
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Motivated by the fact that the Log-transform may expand its 

valued pixels distribution and thus in favor of the separation 

of edges and textures, we propose a Log-transform weighted 

total variation (LWTV) model. Mathematically, by employing 

Log-transform in the weight total variation, the objective 

function can be written as: 

2

2
in{ [ ( ) ( ) ( ) ( ) ]}     x x i y y i

s
i

M f s LW s i s LW s i s   (3) 

where 

1

, ,

( ) ( )

( ) ( log( ))



 

 
  
 
 x i j x i i j

j R i j R i

LW s i g s g  is 

the weight. The penalty in the y -directional dimension is the 

same as that in x -directional dimension. 

 

 

   
                                  (a)                                                          (b)                                                              (c) 

   
                           (d)                                                             (e)                                                             (f)  

Fig 2: Demonstration of difference between RTV and LWTV. (a) The input image, (b) the inversion of normalized xL , (c) RTV 

result, (d) Log-transform of (a), (e) xLW value, (f) LWTV result. 

 

The advantage of the proposed model LWTV can be observed 

in the second line of Fig. 2. Firstly, the image depicted in Fig. 

2(d) seems to be more distinct due to the Log-transform. 

Concretely, for the pixels cross the edge boundary, their 

difference will be more amplified by Log-transform than these 

pixels cross the texture regions. Consequently, the resulting 

xLW  in Fig. 2(e) is more in accordance with our visual 

recognition of edge and texture. Finally, the LWTV result in 

Fig. 2(f) produces better separation effect.   

2.3 Algorithm Solver 

For the minimization problem Eq. (3), we adopt a relaxation 

reweighted strategy: 

( ) ( ) ( ) ( )  x x i y y iLW s i s LW s i s   

2 21 1
( ) ( ) ( ) ( )

( ) ( ) 
   

   
x x i y y i

x i y i

LW s i s LW s i s
s s

        (4) 

2 2

, , , ,( ) ( )   x i x i x i y i y i y iu w s u w s  

where 
, ( )x i xu LW s i  and , 1 ( ( ) )  x i x iw s . 

The second line in Eq. (4) is approximated by the Iteratively 

Reweighted Norm (IRN) approach proposed by Rodriguez 

et.al [12] . Eq. (3) can be written in a matrix form as follow: 

   arg min{( ) ( ) ( )    
s

T T T T T

s f s f s s x x x x s s y y y y s
v

v v v v v v C U W C v v C U W C v   (5) 

where sv  and fv  are the vector representation of s  and f  

respectively. xC  and yC  are the Toeplitz matrices from the 

http://www.sciencedirect.com/science/article/pii/S1047320312000636#b0130
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discrete gradient operators with forward difference. 
xU , 

xW , 

yU  and 
yW  are diagonal matrices whose elements are 

defined in Eq. (4). Similar to RTV, Eq. (5) is solved by a 

reweighted strategy, i.e. updates the block variables  
xU , 

xW , 

yU  and 
yW  as a function of sv  calculated from the previous 

iteration and then updates sv  by minimizing Eq. (5) with the 

last values of  xU , xW , 
yU  and 

yW . Denoting 

 k T k k T k k

x x x x y y y yL C U W C C U W C , thus the minimization of Eq. 

(5) is given by  

1(1 )  k k

s fL v v                              (6) 

Since (1 ) kL  is a symmetric positive definite Laplacian 

matrix, efficient solvers are available for it. The whole 

optimization process is summarized as follows:  

 

Algorithm LWTV 

1: For 0k   to 1K  do  

2:       update the weights  xU , xW , 
yU  and 

yW  

3:       update 
1k

sv  according to Eq. (6) 

4: End (For) 

 

3. EXPERIMENTAL RESULTS 
The performance of LWTV was evaluated on several 

experiments under different scenario, which aims to 

investigate the effect of imposing Log-transform signed 

gradient weight1. In the experiment, the proposed method was 

compared with some other techniques addressing high-

contrast detail smoothing. The parameter settings are 

corresponding to each operator’s own formulation and tuned 

with our best efforts for smoothing out high-contrast details 

while preserving major structures. All the test images are 

normalized to have a maximum magnitude of 1.  

Fig. 3 displays some decomposition examples with 

comparison to RTV, where the high-contrast details at the 

background have different shapes and patterns. Generally, 

RTV method usually produces false results when undesired 

details are near a similar large homogeneous region, in terms 

of introducing more flattened result. LWTV largely 

overcomes this shortcoming by adding Log-transform. 

Particularly, in the first line of Fig. 3, we can observe that 

RTV cannot discard the white curves near the eyes in the 

cartoon image. In the second line, the result of RTV destroys 

the vertical shade shapes on the lower middle of the image. In 

the third line, RTV severely removes the eyes and nose 

features on the upper middle of the image. As indicates by 

black blocks, all of these faults have been largely remedied by 

our LWTV. Fig. 4 presents the guidance weights of RTV and 

LWTV, whose intensity values exhibits their differences in 

describing edges and textures. Specifically, as can be seen in 

the third column of Fig. 4, the weight values of the 

background region containing abundant irregular details 

                                                           
1For the convenience of reproducible research, matlab code of  the 

LWTV method is available at: https://drive.google.com/drive/my-

drive?ltmpl=drive. 

obtained by RTV is much smaller than those of our method. 

On the other hand, our method endows smaller values for the 

low contrast edge border. Our adaptive weighting scheme 

guides the total variation penalty to produce better visual 

pleasure images.  

In Fig. 5, the smoothing results on the Gypsy girl mosaic 

image are presented. As can be observed, BF and the model of 

Buades et al. [13]  cannot suppress the texture well, on the 

other hand, RTV captures the fine details and texture 

components relatively well, while it overly smooth the slender 

texture-hair on the left region and faint information on the 

cheek. The nonlocal scheme Regcovsmooth and our LWTV 

alleviate these drawbacks. Typically, LWTV exhibits little 

blurs than those of Regcovsmooth.   

   

   

   

                (a)                           (b)                             (c)     

Fig 3: Image smoothing examples. (a) input, (b) RTV and 

(c) LWTV. (We suggest readers to take a close look at the 

results in a high resolution display.) 
 

    

    

Fig 4: Weight demonstration. Upper: the inversion of 

normalized xL  in RTV, Bottom: xLW value in LWTV.  
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In Fig. 6, we provide the smoothing results of the mosaic 

introduced in Fig. 2. Besides of using different penalty term, 

both WLS and LWTV use Log-transform as an ingredient of 

the data-fidelity weight. Their main difference is that one is 

related to the absolute gradient value of Log-transform at each 

pixel, and the other is related to the weighted-average signed 

gradient value of Log-transform in a local window. Their 

difference can be obviously observed in Fig. 6(a)(c), where 

LWTV poses better structure extraction from texture 

simultaneously with edge-preserving capabilities than that of 

WLS. The result of recent Tree filtering (TF) method with 

iterative mechanism shown in Fig. 6(b) also indicates that it 

works inferior to preserve edge than our LWTV filter. 

 

   
               (a) Input image                              (b) BF ( s  = 3,  r = 0.3)                            (c) [13] ( =3.5)           

   
                       (d) RTV (   = 0.02,  =3)                     (e) [5] ( = 0.2, k = 9)                      (f) LWTV (   = 0.1,  =3) 

Fig 5: Smoothing results on the Gypsy girl mosaic image. 
 

   
                          (a) WLS                                      (b) Iterative TF                                       (c) LWTV 

Fig 6: Smoothing results on the marble mosaic. 

4. CONCLUSIONS 
This work has presented a new Log-transform signed gradient 

weighted total variation for smoothing high-contrast details. 

The decomposition results were substantially improved by 

forcing larger total variation penalty to the pixel with smaller 

Log-transform signed gradient weight-average value around 

its local window. The experimental results demonstrate the 

effectiveness and robustness of the proposed algorithm, in 

terms of visual concepts. Further study will investigate this 

Log-transform based weight in other regularization terms. 
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