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ABSTRACT

In this paper, we introduce the numerical solution of the
system of SEIR nonlinear ordinary differential equations,
which are studied the effect of vaccine on the HIV (Human
Immunology virus). We obtained the numerical solutions on
stable manifolds by Runge-Kutta fourth order method.
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1. INTRODUCTION

The SEIR (Susceptible-Exposed-Infected- Removed) ordinary
differential equations, developed by Ronald Ross, William
Hamer, and others in the early twentieth century [2], Goufo,
etal.[3] have presented a fractional SEIR meta population
system modeling to the dynamics between four distinct cities
(patches) by using Jacobin matrix.

There are many authors solved nonlinear ordinary differential
equations by using Runge-Kutta method, see [4, 5].

The objective of this paper is to solving the fractional SEIR
Meta population system by using Runge-Kutta fourth order
method. The rest of this paper arranged as the following, in
Sec. 2, the description of the Runge-Kutta fourth order
method. In Sec. 3, application of Runge-Kutta fourth order
method for SEIR model. In Sec.4, conclusion

2. DESCRIBTION OF THE RUNGE-
KUTTA FOURTH ORDER METHOD
[4].

Suppose we have a system of ordinary differential equations as
the form.

i =F.00Y 0 Y Y0,
yé =f2(X,yl,y2,...,yn),

(2.1)
Yo =Fa (Y0 Y a0 ¥y,
With the initial conditions
y,(0)=y,,i=01..n. 2.2)
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Putting them as the vector form:
/
Y. =F(x,y).Y (Xo)=Y,.
where
Yi fy
Y. fy
Y (x)=|." [ F(x,y)=|.
Y fo
And the Runge-Kutta fourth order as:
Yl(m+l

Y _Yz(m)"'kzo'

2(m+1) T

) =Y i(m) T Kao,

h
klO = E(kn +2(k12 + kls)+ k14)'

h
kzo :E(k21+2(k22 +k23)+k24)v

h
knO :E(knl+2(kn2 +kn3)+kn4)'

And
Ky =F (Y 0¥ oY o),

ky, =f (t0+%,Y10+k—;,__.,Yn0+%),
Ky, =f (to+%,Y10+%2,...,Yno+%),
Kig =T (tg+24, YigtKgyoor, Yoot Kyg).



And
Ko =F (to,Y 10 s0re-Y o)

k,, =f (t0+h Yo +2,. Yn0+k§1)

Ky, =T (t0+h Y +iz,, .,Yn0+%>,
Koo =F (to+5, Yig+Kpgrons Yoo+ Kog ).

knl:f (to’YloYzol Y o)’

knzzf(to %Y Tl Y Tl)’
Koo =F (to+5, Yot 552, Yoot 42),
kn4:f (to+%’Y1o+kn3 Yn0+kn3)'

3. APPLICATION OF RUNGE-KUTTA
FOURTH ORDER METHOD FOR
SEIR MODEL

In this section, we will apply the numerical solution for a
system of differential equations [4,5], that mentioned of this
method can be obtained from [4,5], SEIR model [3]. We
formulate here the system modeling the fractional temporal
spread of measles in a human population. In this model, a
population supposed constant is divided into different classes,
disjoint and based on their disease status. At time t, S=S(t) is
the fraction of population representing individual susceptible
to measles, E=E(t) is the fraction of population representing
individuals exposed to measles, I=I(t) is the fraction of
population representing individuals infectious with measles,
and R=R(t) is the fraction of population representing
individuals that recovered from measles. We assume that all
recruitment is done by birth into the class of susceptible and
occurs at constant birth rate b. The rate constant for no disease

related death is £/ ; thus %l is the average lifetime. We use

the standard mas balance incidence expressions S| to

indicate successful transmission of measles due to effective
contacts dynamics in the population by infectious individuals.
Once infected, a fraction of exposed people becomes

infectious with a constant rate O, so that % is the average

incubation period. Some infectious individuals will recover
after a treatment or a certain period of time at a rate constant

, making the average infectious period.
¢ ¢
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o (s,

?j—f:ﬂSI —(O'+,u)E,

dl ey
G —(&+u)l,

?j—R—fl —uR.

With the initial conditions
S (0)=LE (0)=0,1 (0)=1And R (0)=0.
(2.3)

And the numerical solution of SEIR (ODEs) can be
determined by Runge-Kutta fourth order method.

Put
b=0, =050=0.75x=0.25¢&=0.75.

Equation (3.1) can take the form

B _ (051 +0.25)s,

at

%—EZO.5SI -E

d (3.3)
—=0.75E-1,

dt

d—R=O.75| -0.25R.

dt

The solution can be obtained by the following relations

S =S,+Kk,,E=E;+Kky, I =1,+Kkzand
R =R, +ky
where
h
E(kn+2 k12+k13)+k14)
h
20 E(k21+2 k22+k23) |(24)’
h
30 E(k31+2 2+k33)+k34)’
h
E(k41+2 k42+k43) I(44)'



and

K =F (t,S0.E0. 15 Ry ),

k, = f(t0+ Sy +2 Ej+<2 R +k“)
k

k

" f(t0 hS,+% E +% R +k12)

w=F (to+5.S+kys Eg+kig, Ry +kys),

= (5,50, Egi 10,Ry),

f(t +hS,+52 E +%2 R +k21)

f(t0+%8 +ie E oy t2 R +k22)
(

=f (t,+ 5,5 +Kp Eg+Kpp Ry K55 ),

and

w=f (t+2.S)+K Egt Ky Ry +Kyg).

Step 1:

We  start with  the initial conditions  t=0.25,

S,=LE,=0,1,,=1adR,=0.
By substituting in equations (3.3) we can get

~0.75
k, =f (0.251,0,1,0)= 0'15 ,

0.75
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k, =f (0.25,0.625,0.25,0.5,0.375)
~0.3125
—0.09375
" 03125
0.28125

ki, =f (0.25,0.843,-0.046,0.843,0.140)
—0.56689
0.40283
-0.87891 |
0.59766

=~
[
i

I

f (0.25,00.433,0.402,0.121,0.597 )
—0.1345
—0.37661
0.18103
—0.058598

i)

Then

0.25
-

Kyo = ~0.75-2(0.3125-0.566) - 0.314)

=-0.1101366667,
S, =1-0.1101366667 = 0.8898633333,

0.25
5

Ky = 0.5+2(— 0.09375+0.40283)—0.37661)

=0.03089791667,
E, =0+0.03089791667 = 0.03089791667,

K 025(

1-2(0.3125+0.87891) +0.18103)

30

=-0.1334079167,
I, =1-0.1334079167 = 0.8665920833,

and

0.25
Kap ==

=0.1020509167,

R, =0+0.1020509167 = 0.1020509167.
Step 2:

0.75+2(0.28125+0.59766) — 0.058598)



At t=05, h=0.25, S, =0.8898633333,

E, =0.03089791667, I,,=0.8665920833  and
R, =0.1020509167.

By substituting in equations (3.3) we can get

k,, =f (0.5,0.889,3.089x10%,0.866,0.102)
~0.60804
0.35467
-0.84342 |
0.62443

k,, =f (0.5,0.75148,0.208,0.444,0.414)
-0.27677
~7.7916x10°2
-0.28871
0.30815

ki, =f (0.5,0.843,-8.06x10°°,0.722,0.256)

—0.51563

0.31276

—0.72829 |

0.47765

Also,

kp,=f (0.5,0.37423,0.34366,0.1383,0.5797)

—0.11944

—0.31778

0.11945

—0.0412
we have

0.25
Ky = _(

~0.608-2(0.276+0.515) - 0.11)

=-9.6345x107,
S, =0.8898633333-9.6345x10° = 0.79351833,

0.25
9%

K, 0.354+2(0.312-0.077)-0.317)

=2.110741667 x1072,
E, 0.03089791667 + 2.110741667 x10™
=5.200538337 x1072,

Ky, = 225(-0.843-2(0.288+0.728)+0.119)
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=-0.1149154167,

I, =0.8665920833—-0.1149154167
=0.7516766666,

Step 3:

At t=0.75, h=0.25, S, =0.7935183333,

E, =5.200538337x107%,1, = 0.7516766666,

and R, =0.1918355.

Substituting in equations (3.3) we can get the following:
ky, =f (0.75,0.793,5.2x10%,0.751,0.191)

-0.49661
0.4623
-0.71267 |
0.51580

k,, =f (0.75,0.545,0.175,0.395,0.449)
—0.24407
—6.7348x107*
—0.264
0.18407

ky;=f (0.75,0.671,1.8x10%,0.619,0.283)

-0.37592
0.18972
-0.60593 |’
0.39379

k,, =f (0.75,0.417,0.241,0.145,0.585)

—0.13483
—0.21130

| 3.5548x10™
—3.7095x10°



Also, we have

0.25
-9

Kio -0.496—2(0.244+0.375) - 0.314)

= -7.797583333x1072,

S, =0.793518333-7.797583333x10°*
=0.7155425,

Koo = %(0.2462:% 2(—0.0673+0.189)-0.211)

=1.165308333x107?,
E, =5.200538337x107 +1.165308333x 10
=6.36584667x107,

Ky = %(—0.712— 2(0.264+0.605)+0.0355)

=-0.1007075833,
I, =0.7516766666 —0.1007075833
=0.65096908333,

and

Ko = %(0.515+ 2(0.184+0.393)-0.037)

=6.810104167x1072,

R, =0.1918355+6.810104167 x10

=0.2599365417
Step 4:

At t=1, h=0.25, S, =0.7155425,

E, =0.0636584667, |, =0.6509690833,
and R, = 0.2599365417 .

Obvious table 3.1.1:
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Substituting in equations (3.3) we can get the following:

k,, =f (1,0.7155,0.0636,0.6509,0.2599)

~0.41178

| 0.16924

| -0.60323 |’
0.42324

k,, =f (1,0.5096,0.1482,0.3493,0.4715)
—0.21644

| -5.9257x10°
-0.23814
0.14412

ks =f (1,0.6073,0.034,0.531,0.332)

0.31335
0.12749

| —0.50638 |’
0.31593

k,, =f (1,0.4021,0.1911,0.1445,0.5758)

—0.12962
-0.16207

—-1.2275x1072 |
—3.5525x1072

Also, we have

N Numerical Solution | NumericalSolution | NumericalSolution | NumericalSolution
of 5, groups of E,, groups of I, groups of R, groups
0 | 0 1 0
0.25 01.8808633333 003089791667 .8665020833 0.102 0509167
0.5 0.793 5183333 (.05 200538337 0.751 GTG66GR 0.191 8355
0.75 0.7155425 (.06 365 84667 01.650 9600833 0.250 9365417
1 0.648 835 0.06964330003 (.5637400208 0.3144288334




0.25
-2

Ky ~0.411-2(0.216+0.313)-0.129)

=-6.67.75x107,
S, =0.7155425-6.67075x10
=0.648835,

0.25
-2

Kz 0.169 +2(~0.059 +0.127)-0.162)

=5.5984833333x10°°,
E, =6.6584667 x107 +598483333x10™°
=0.06964330003,

0.25
9%,

Ks -0.632-2(0.2381+0.5063) - 0.0012)

=-8.72290625x107?,

I, =0.650960833-8.72290625x 10
=0.5637400208,

and

0.25
Kyo = _(

0.4232+2(0.1441+0.3159) - 0.0355)

= 5449229167 x10°?,
R, = 0.2599365417 + 5.449229167 x 102
— 03144288334,
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CONCLUSION

In this article, we presented the Runge-Kutta fourth order
method for SEIR nonlinear ODEs. We tested the method for

Ot =0, 0.25, 0.5, 0.75 and 1, we find that the results are more
accurate and efficiency.
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