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ABSTRACT 
In this paper, we introduce the numerical solution of the 

system of SEIR nonlinear ordinary differential equations, 

which are studied the effect of vaccine on the HIV (Human 

Immunology virus). We obtained the numerical solutions on 

stable manifolds by Runge-Kutta fourth order method. 
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1. INTRODUCTION 
The SEIR (Susceptible-Exposed-Infected- Removed) ordinary 

differential equations, developed by Ronald Ross, William 

Hamer, and others in the early twentieth century [2], Goufo, 

etal.[3] have presented a fractional SEIR meta population 

system modeling to the dynamics between four distinct cities 

(patches) by using Jacobin matrix. 

There are many authors solved nonlinear ordinary differential 

equations by using Runge-Kutta method, see [4, 5]. 

The objective of this paper is to solving the fractional SEIR 

Meta population system by using Runge-Kutta fourth order 

method. The rest of this paper arranged as the following, in 

Sec. 2, the description of the Runge-Kutta fourth order 

method. In Sec. 3, application of Runge-Kutta fourth order 

method for SEIR model. In Sec.4, conclusion     

2. DESCRIBTION OF THE RUNGE-

KUTTA FOURTH ORDER METHOD 

[4].  
Suppose we have a system of ordinary differential equations as 

the form. 
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With the initial conditions 
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Putting them as the vector form: 
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And the Runge-Kutta fourth order as: 
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And 
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3. APPLICATION OF RUNGE-KUTTA 

FOURTH ORDER METHOD FOR 

SEIR MODEL 
In this section, we will apply the numerical solution for a 

system of differential equations [4,5], that mentioned of this 

method can be obtained from [4,5], SEIR model [3]. We 

formulate here the system modeling the fractional temporal 

spread of measles in a human population. In this model, a 

population supposed constant is divided into different classes, 

disjoint and based on their disease status. At time t, S=S(t) is 

the fraction of population representing individual susceptible 

to measles, E=E(t) is the fraction of population representing 

individuals exposed to measles, I=I(t) is the fraction of 

population representing individuals infectious with measles, 

and R=R(t) is the fraction of population representing 

individuals that recovered from measles. We assume that all 

recruitment is done by birth into the class of susceptible and 

occurs at constant birth rate b. The rate constant for no disease 

related death is  ; thus 1


 is the average lifetime. We use 

the standard mas balance incidence expressions SI  to 

indicate successful transmission of measles due to effective 

contacts dynamics in the population by infectious individuals. 

Once infected, a fraction of exposed people becomes 

infectious with a constant rate , so that 1


 is the average 

incubation period. Some infectious individuals will recover 

after a treatment or a certain period of time at a rate constant

 , making 1


 the average infectious period. 
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                         (3.1) 

With the initial conditions  

     0 1, 0 0, 0 1S E I   And  0 0.R    

                                                         (2.3) 

And the numerical solution of SEIR (ODEs) can be 

determined by Runge-Kutta fourth order method. 

Put  

0, 0.5, 0.75, 0.25, 0.75 .b          

Equation (3.1) can take the form  

 0.5 0.25 ,

0.5 E,

0.75E I,

0.75 0.25 .

dS
I S
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                         (3.3) 

 

The solution can be obtained by the following relations  

0 10 0 20 0 30, ,S S k E E k I I k      and 

0 30R R k   

where  
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and  
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Step 1: 

We start with the initial conditions t=0.25, 

0 0 01, 0, , 1S E I    and 0 0R  . 

By substituting in equations (3.3) we can get  
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 Step 2: 
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At t=0.5, h=0.25, 1 0.8898633333,S 

1 10.03089791667, , 0.8665920833E I   and 

1 0.1020509167.R   

By substituting in equations (3.3) we can get  
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Step 3: 

At t=0.75, h=0.25, 2 0.7935183333,S 
2

2 25.200538337 10 , 0.7516766666,E I    

and 2 0.1918355R  . 

Substituting in equations (3.3) we can get the following: 
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Also, we have  
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Step 4: 

At t=1, h=0.25, 3 0.7155425,S 

3 30.0636584667, 0.6509690833,E I   

and 3 0.2599365417R  . 

Substituting in equations (3.3) we can get the following: 
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4. CONCLUSION 
In this article, we presented the Runge-Kutta fourth order 

method for SEIR nonlinear ODEs. We tested the method for 

t = 0, 0.25, 0.5, 0.75 and 1, we find that the results are more 

accurate and efficiency. 
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