
International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.4, August 2015

9

Fault Severity based Multi Up-gradation Modeling

considering Testing and Operational Profile

Adarsh Anand
Department of Operational

Research
University of Delhi, Delhi

110007

Ompal Singh
Department of Operational

Research
University of Delhi, Delhi

110007

Subhrata Das
Department of Operational

Research
University of Delhi, Delhi

110007

ABSTRACT

For sustaining in the era of globalization, frequent up-gradation

in the software is demanded. In order to maintain the

competitive edge firms come up with highly reliable versions.

For providing high reliability firms have to test software

rigorously that requires debugging the software in the testing as

well as in the operational phase. Upgrading the software leads

to the enlarged complexity in the system which often results in

the increase number of faults content. In this paper, a

framework for successive releases is modeled which

incorporates the fault of the present release and faults from the

just previous release informed by the users. The approach

provides a more realistic perspective of fault evaluation by

taking into consideration both; the faults from the testing of

new releases and the reported faults from the operational phase

of the preceding releases. We have examined the case when

there exists two types of faults in the software; simple and hard

faults during testing and operational phase. Further we have

compared our proposition with the previous developed models

in the field of multi up-gradation.

Keywords

Fault Severity, Multi Release, Operational Phase, Testing

Phase.

1. INTRODUCTION
Today, Software is used across the world. It’s in everything we

do and use. It’s in all the sectors like: accounting, banking,

education, health care, pharmaceuticals, telecommunication

etc. We as consumers interact and buy software more than

ever, often without even knowing it. For example, Amazon,

Flip kart and many other changed the book selling – and

everything selling industry – with software. Airbnb is another

example, it is a trusted community marketplace for people to

list, discover, and book unique accommodations around the

world. Established industries are also evolving to adapt

software to improve performance. The automotive market, for

example, used more or less no software around 2001. Now we

have software working all over our vehicles, from sensors and

cameras to navigation. In the financial industry, it’s becoming

less and less important for consumers to have face to face

interactions at their bank because of mobile banking, deposits

using your phone, applications that allow you to budget and

transfer money.

In the 21st century we seldom see any industry or service

organization working without the help of an embedded

software system. Such a dependence of mankind on software

system has made it necessary to produce the highly reliable

software [10]. There are many real life examples when failures

in computer systems of safety critical systems have caused

spectacular failure resulting in calamitous loss to life and

economy. For example, News reports of Asia in July of 2011

reported that software bugs in a national computerized testing

and grading system resulted in incorrect test results for tens of

thousands of high school students [2, 6]. Due to this very

reason the software firms keep on up-grading the software. A

better up-gradation can enhance the reliability and

characteristics of the system; but at the same time a risky up-

gradation can cause errors in the system. For example: In

March 2014, automotive manufacturer Tesla addressed a

known fire risk in its car by providing a software update to

existing vehicles. This helped reduce the risk without owners

needing to visit dealerships or service centers. Also, in October

of 2013 the U.S. federal government opened a new health

insurance exchange web site that, during its first few months of

operation, generated major national and worldwide press

coverage of its many reported problems. The problems were

attributed to, among other things, inadequate time allowed for

system testing [2, 6].

In present times, firms are developing software’s in multiple

releases by improving the existing functionality and revisions,

increasing the functionality, or a combination of both. One

such example is versions of Android like: Alpha (1.0), Beta

(1.1), Cupcake (1.5), Donut (1.6), Eclair (2.0–2.1), Froyo (2.2–

2.2.3), Ginger bread (2.3–2.3.7), Honey comb (3.0–3.2.6), Ice

Cream Sandwich (4.0–4.0.4), Jelly Bean (4.1–4.3.1), Kit Kat

(4.4–4.4.4) and Lollipop (5.0–5.0.1). Thus, up-gradation is a

process of adding new features, defects fixes and patches to an

application in the form of installer or additions or patch.

Additional functionalities may cause fault generation in the

system. It is essential to know the content of faults in the

software before debugging them. Many researchers have

worked on modeling the concept of multi up-gradation

including different scenarios that may occur in the system.

Researchers like: Kapur et al. [7] developed a multi up-

gradation software reliability model, considering that

cumulative faults removed in a particular release depend on all

previous releases. Singh et al. [15] assumed that the overall

fault removal of the new release depends on the reported faults

from the just previous release of the software and on the faults

generated due to adding some new functionality to the existing

software system. They developed two SRGM’s using Logistic

distribution and Normal distribution. Kapur et al. [9] proposed

a multi release software reliability growth model in which they

identified the faults left in the software when it is in operational

phase during the testing of the new code incorporating that the

software includes different types of faults. Anand et al. [2]

incorporated the generalised framework for faults in new

release due to up-gradation of the features and undetected

faults from operational phase of preceding releases and

different distributions have used for fault removal

phenomenon.

http://en.wikipedia.org/wiki/Android_4.0
http://en.wikipedia.org/wiki/Android_4.0
http://en.wikipedia.org/wiki/Android_Jelly_Bean
http://en.wikipedia.org/wiki/Android_Lollipop

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.4, August 2015

10

In the proposed model, we have modeled successive release of

software which incorporates the fault of the present release and

faults from the just previous release informed by the users.

Here we have accentuated on the fact that the software has two

types of faults i.e. simple and hard faults. Simple faults are

those which require less effort to remove from the system.

Whereas, hard faults require more time to remove from the

system.The simple faults interact with new portion of simple

detected faults in both testing and operational phase. The hard

faults too interact with the new portion of the hard detected

faults in both testing and operational phase. It has been

observed that a large number of simple faults are easily

detected at the beginning of testing; on the other hand fault

removal becomes a tedious task in the later stages.

Therefore in this article, we consider two different fault

detection rates, we assume that the simple faults are removed

exponentially [5] and hard faults are removed using a two stage

fault removal phenomenon i.e. using Yamada function [16].

Further we compare our proposed model with work done by

other researchers in the field of multi up-gradation such as:

Singh et al. [15], Kapur et al. [9]. Outline of the paper is

organized as follows: Section 2 indicates notations and Section

3 presents an overview of software development life cycle.

Section 4 shows the modeling framework. Finally data

analysis, comparison of models and conclusions are

supplemented in Section 5 and Section 6 respectively.

2. NOTATIONS
 m t Number of faults removed by time ' 't

 F t Probability distributions function for fault removal

phenomena.

a Total number of faults in the software.

na Initial fault content for nth release (n=1 to 4).

ib Fault detection rate function (i=1 to 4).

k Shape parameter.

 Proportion of simple faults in the software.

1  Proportion of hard faults in the software.

 Proportion of undetected faults removed in testing

phase.

1  Proportion of undetected faults removed in

operational phase.

3. IMPORTANCE OF OPERATIONAL

PHASE IN SOFTWARE DEVELOPMENT

LIFE CYCLE (SDLC)
Software development life cycle (SDLC) is an important factor

in the development of software. It is a ruminate, structured and

methodological way to pursue the enhancement of software

system, considering each stage of the life cycle from beginning

of the idea to release of the final system. SDLC has five

following phases: analysis, design, coding, testing and

operational phase. Analysis phase includes the investigation of

the requirements of user and scope of the product which is

generally done by the software developers and management

team through market research. The next step is to create a high

level design document containing time frame to create project,

required number of resources, and technology and language

details, by the technical team. Coding phase reviews the

analyzed document and designed document is done by the

software developers. After the review, coding is done on the

decided technologies to obtain the project structure. Then the

solution is submitted to the testing team for further analysis.

Testing phase is a noteworthy phase of a software development

life cycle. The main purpose of this phase is to remove faults

with minimum cost in order to achieve certain desired level of

reliability. As mentioned in the article [2], Software testing is

an exploration conducted to provide developers with

information about the quality of the product. Testing of

software starts, when the code has been generated by the

programmers. Testing is generally focused on validation and

verification of the system. Validation confirms that the product

actually meets the user’s needs. Verification confirms that

whether the product has been built according to design

specification and requirements. Once the product is tested then

it is ready to release in the market. Operational phase provides

continuous support for the system in the form of

troubleshooting, creating performance reviews and

assessments, and ensuring that the solution’s security remains

intact [2]. The operational phase starts after verification and

acceptance of the system by the client. In this phase, any

change made to software, either to correct a deficiency in its

performance to compensate for environmental change, or to

enhance its operation [11]. If any fault has been identified from

developer side, it get removed immediately without requiring

any extra resources but if it has been found from customer’s

side it took extra cost, efforts and time. Sometime it also

affects the goodwill of the software companies. Software is

called to be in operational phase when it is delivered to the

customer for their usage. When the software is at the user end,

it does not means that it is not being tested rather the firms are

adding new functionalities to existing code and rigorously

testing it.

4. MODELING FRAMEWORK
In order to survive in the market with globalized competition,

software companies assure to come up with innovative

functionalities/features in its each new release of their

merchandise. The addition of new functionalities often leads to

increase in the content of bugs. These bugs are reported by the

users in the current release of the operational phase and this is

how information is transferred to the companies and they get to

know about it. Based on the information received, firms

introduce new functions and fix the defects in order to increase

the effectiveness of the product. There may be chances that

some of the bugs in the previous release are removed directly

by the testing team of existing release and some are removed in

the operational phase. On the basis of severity, faults are

distinguished into two types: simple and hard faults. In this

article, we use exponential distribution for simple faults [5] and

two stage yamada distributions for hard faults in testing phase

[16]. Here, we discuss a mathematical expression for

successive releases of software reliability growth model. Let us

assume that the software’s first release is done at 1t  .

Due to complexity, all faults cannot be removed in the first

release of the software and therefore, some faults remain in

code [9]. It is important to know that how many faults exist in

the software at any time, so that different testing strategy and

testing effort can be applied to remove those faults [4]. The

mathematical expression of total faults in first release of

software is given as:

         1 1. 1 11 1 1 12 1 2. 1 . . ; 0m t a F t a F t t         (1)

In competitive scenario the major concern of the firm is to find

out the new functionalities that are to be added to increase their

popularity among the customers. The firms add new

functionalities on the basis of customer’s feedback and the left

over faults which are not removed before the release but are

reported from the users in the operational phase. Now the

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.4, August 2015

11

simple faults interact with new portion of simple detected

faults in both testing and operational phase. And also the hard

faults interact with the new portion of the hard detected faults

in both testing and operational phase. When the firms are ready

to launch the second version of software, they have to keep in

consideration some aspects. In the existing release, firm has to

remove some leftover faults and new generated faults due to

improvement of the software.

Modeling for second release is given as:

       

    

      

      

        

2 2 2 21 2 2 2 22 2

1 1 1 11 2 21 2

1 1 1 11 2 11 2

2 1 1 12 2 22 2

2 1 1 12 2 12 2 2 3

. . 1 . .

. . 1 .

1 . . 1 . (2)

. 1 . 1 .

1 . 1 . 1 . ;

T T

T

O

T

O

m t a F t a F t

a F F t

a F F t

a F F t

a F F t t

   

   

   

   

     

    

  

   

   

      

where  1

21 1 b tTF e 

  2

22 21 1 b tTF b t e  

   1 2
3 4

11 121 , 1
k kb t b tO OF e F e

    

Now for both simple and hard faults in operational phase, we

use weibull distribution. Here   1 1 1 11 2. . . 1a F   and

    2 1 1 12 2. 1 . . 1a F    represent the undetected simple and

hard faults of first release during testing phase which interacts

with new portion of code of second release. Leftover faults are

removed by new detection rate of second release, which are

 21 2

TF t  and  22 2 .TF t      1 1 1 11 21 . . 1a F    and

      2 1 1 12 21 . 1 . 1a F     demonstrate fault content of

simple and hard faults during operational phase of first release,

which interact with new detection rate i.e.  11 2

OF t  and

 12 2

OF t  .

Similarly for thn release, we can write:

       

    

      

      

      

1 2 2

1 1 1,1 1 1

1 1 1,1 1 1,1

1 1 1 1,2 1 ,2

1 1 1 1,2 1

1,2

. . 1 . .

. . 1 .

1 . . 1 .

. 1 . 1 .

1 . 1 . 1 .

T T

n n n n n n n n

T

n n n n n n n n

O

n n n n n n n n

T

n n n n n n n n

n n n n n n

O

n

m t a F t a F t

a F F t

a F F t

a F F t

a F

F t

   

    

    

    

   

   

    

    

    



    

   

    

    

    

   3n

In earlier time the analysis for multi up-gradation in software

reliability was concerned in determining the faults based on the

impact of all previous releases of the software [7]. In later

hours, researchers have extended the concept of multi up-

gradation to account for the number of faults from just previous

release [15]. This methodology of modeling was based on the

concept that the faults of first release which were not removed

in second release would not cause any system failure in the

later releases and also they will be quite less in number. There

are certain conditions in which the testing team was not able to

fix the bugs perfectly. To account for this kind of situations,

Kapur et al [8] have extended the concept of fault removal

process under the just previous release criteria to consider the

case of imperfect debugging. The various factors that influence

the testing progress are testing effort expenditure, testing

efficiency and skills, which may not be deterministic in nature

[10, 13]. In order to capture the uncertainty of the testing

process, Singh et al. [13] proposed a multi up-gradation

software reliability model incorporating stochastic differential

equations. Further the classification of faults was incorporated

in which faults were categorized into simple and hard faults

based on the time they require to be removed. Kapur et al. [9]

has also proposed a concept of fault severity into multi up-

gradation software reliability model under the just previous

release criteria. Few researchers have incorporated the concept

of imperfect debugging and stochastic differential equation into

fault severity; to model more realistic scenarios occurring in

the field [1, 14]. Recently Garmabaki et al. [4] developed a

successive software release model in which they focus on bugs

reported from operational phase. The consideration of fault

severity into the modeling of faults reported from operational

profile has not been given importance in determining the fault

content. To capture this process we have developed a modeling

framework for incorporating the fault severity in testing as well

as in operational phase of SDLC.

There are different scenarios for determining the count of faults

that were removed in each successive release. For this very

reason we compare the proposed approach with few established

approaches and to have a deeper insight about the proposed

methodology which considers both the faults from testing and

operational phase. Table 1 shows how our analysis is

significant over the research done earlier in the same field.

Table 1: Comparison between proposed approach and prior research

Proposed

approach

Singh et al

[15]

Kapur et

al [9]

Garmabaki et

al. [4]

Kapur et

al[8]

Singh et al

[13]

Current release depending upon

just previous release
Yes Yes Yes Yes Yes Yes

Impact of operational phase Yes No No Yes No No

Impact of fault severity

Yes No Yes No No No

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.4, August 2015

12

5. DATA ANALYSIS AND COMPARISON

CRITERIA

The performance of the model has been analyzed by using real

software failure data. The data set presented the failure data for

four major releases of software product on Tandem computers

[17]. Table 2 illustrates the estimated values of parameters of

each of the four releases. Table 3 interprets the comparison

criteria of the four software releases. Figure 1 to 4 shows the

estimated and actual values of the number of faults removed in

different releases. For the applicability of the methodology we

have compared proposed model with Singh et al. [15] as

SRGM-I and, Kapur et al. [9] as SRGM-II.

Singh et al. [15] developed a model in which there is confusion

in the performance of release 3 and release 4, which is given in

Table 4. If we see the value of MSE for release 3 and release 4

are 1.8529 and 1.0077, which shows that release 4 gives better

value. On the other side BIAS value of release 3 is -0.1011 and

release 4 is -0.11854, here release 3 gives better value. The

approach of Kapur et al. [9] shows that release 3 performs

better, which is given in Table 5. Then question arises why

there is a need to upgrade to next version. As the name

suggests multi up-gradation means to upgrade the software to

capture the user’s requirement, add new functionalities,

improve the already existing version. It is also important that

upgraded version is able to fulfill the expectations that are

arising at the customers end. The earlier models in this pasture

were not able to provide a clear picture about the concept of

up-gradation. There are different methodologies such as

distance based approach [12], weighted criteria approach [3]

etc. available to the software developing firms; on the basis of

which they can optimally select the best version. Without using

any specific criteria, the approach presented in this article is

indeed able to predict the upgraded version performs better.

This approach is able to satisfy the clear meaning of multi up-

gradation. Table 2 demonstrates the comparison criteria of the

proposed model, in which it can be clearly seen that release 4

gives the lower value of MSE, BIAS, VARIATION, and

RMSPE as compared to other releases. It means that up-

gradation results into better version of the software.

Table 2: Parameter Estimation

Parameters a 1b 2b 3b 4b  1 2 1k 2k

Release 1 120.022 0.101 0.187 - - 0.785 - - - -

Release 2 136.096 0.068 0.225 0.0192 0.023 0.621 0.45 0.512 1.996 1.913

Release 3 65 0.043 0.3 0.002 0.002 0.424 0.52 0.53 3.516 3.516

Release 4 45.454 0.025 0.207 0.001 0.031 0.552 0.542 0.681 3.389 1.162

Table 3: Comparison criteria for proposed approach

Comparisons Release 1 Release 2 Release 3 Release 4

2R 0.988 0.992 0.990 0.996

MSE 10.15732 10.45623 4.366086 0.832707

BIAS 0.256244 0.099926 0.057641 0.002596

VARIATION 3.259263 3.320632 2.182431 0.937529

RMSPE 3.269321 3.322135 2.183192 0.937532913

Table 4: Comparison criteria for just preceding release SRGM-I

Comparisons Release 1 Release 2 Release 3 Release 4

2R 0.989 0.995 0.993 0.995

MSE 3.0471 2.4925 1.8529 1.0077

BIAS 0.435 0.340 -0.1011 -0.11854

VARIATION 8.979 6.001 3.1547 0.9774

RMSPE 3.0727 2.5156 1.85569 1.0146

Table 5: Comparison criteria for just preceding release SRGM-II

Comparisons Release 1 Release 2 Release 3 Release 4

2R 0.996 0.997 0.999 0.995

MSE 2.658 3.209 0.532 0.992

BIAS 0.190 0.129 0.158 -0.059

VARIATION 1.666 1.835 0.744 0.984

RMSPE 1.677 1.840 0.760 0.986

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.4, August 2015

13

Fig 1: Goodness of Fit curve for Release 1

Fig 2: Goodness of Fit curve for Release 2

Fig 3: Goodness of Fit curve for Release 3

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
u

m
u

la
ti

v
e

n
u

m
b

er
 o

f
fa

u
lt

s

Time

Release 1

Actual

Proposed Approach

Singh et al [15]

Kapur et al [9]

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
u

m
u

la
ti

v
e

n
u

m
b

er
 o

f
fa

u
lt

s

Time

Release 2

Actual

Proposed Approach

Singh et al [15]

Kapur et al [9]

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12

C
u

m
u

la
ti

v
e

n
u

m
b

er
 o

f
fa

u
lt

s

Time

Release 3

Actual

Proposed Approach

Singh et al [15]

Kapur et al [9]

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.4, August 2015

14

Fig 4: Goodness of Fit curve for Release 4

Figure 1 to 4 represent the goodness of fit curve between the

proposed approach; and the approach given by Singh et al

[15] and Kapur et al [9]. It shows that the deviation between

the actual and predicted values have a decreasing trend from

release 1 to 4; and the methodology presented here is able to

capture the fault removal phenomenon in a more appropriate

manner compared to the framework of Singh et [15] and

Kapur et al [9]. Hence we can also interpret with the help of

these representations that Figure 4 (release 4) has more

significant goodness of fit curve for the proposed

methodology.

6. CONCLUSION
In the present time, the firms are competing with each other

and like any other product; software products too face a tough

competition. Quality of the software is an important attribute

to survive in this cut-throat competition. In this process of

deciding about the quality, reliability is the pivotal factor.

Providing high quality leads to successive releases of the

previous version of the software. The proposed model is based

on the fact that total fault elimination in the software of the

new release is judged on the basis of the reported bugs of the

previous release and it also takes into consideration the faults

generated due to additional features. Also, we have discussed

a multi up-gradation software model which incorporates

severity of faults, in which the simple faults interact with new

portion of detected simple faults in both testing and

operational phase, whereas, the hard faults interact with the

new portion of the detected hard faults in both testing and

operational phase. Further, we have compared our proposed

model with the previous work done by researchers and it

conclude that the successive version provides better quality as

can be seen from the results supplemented in Table-3. Also

further the incorporation of testing effort, imperfect

debugging and error generation can be studied.

7. ACKNOWLEDGMENTS
The research work presented in this paper is supported by

grants to the first and second author from Department of

Science and Technology (DST) via DST PURSE phase II

grant, India.

8. REFERENCES
[1] Aggarwal, A.G., Kapur, P.K., and Garmabaki, A.S.

2011. Imperfect Debugging Software Reliability Growth

Model for Multiple Releases, Proceedings of the 5th

National Conference on Computing for Nation

Development-INDIACOM, New Delhi.

[2] Anand, A., Singh, A., Kapur, P. K., and Das, S. 2014.

Modeling Conjoint Effect of Faults Testified from

Operational Phase for Successive Software Releases,

Proceedings of the 5th International Conference on Life

Cycle Engineering and Management (ICDQM), PP 83-

94.

[3] Cuong, N. H., Thang, H. Q., and Trieu, L. H. 2014.

Different Ranking of NHPP Software Reliability Growth

Models with Generalised Measure and Predictability,

International Journal of Applied Information Systems,

7(11).

[4] Garmabaki A. H. S., Aggarwal A.G., Kapur P. K., and

Yadavali V. S. S., “The Impact of Bugs Reported from

Operational Phase on Successive Software Releases”,

International Journal of Productivity and Quality

Management, 2014, volume 14, number 4, pp 423-440.

[5] Goel, A.L., and Okumoto, K. 1979. Time-dependent

Error Detection Rate Model for Software Reliability and

other Performance Measures, IEEE Trans. on Reliability,

vol. 28, no. 3, pp. 206–211.

[6] Hower, R. What are some recent major computer system

failures caused by software bugs?

http://www.softwareqatest.com/qatfaq1.html, (February

2015).

[7] Kapur, P.K, Tandon, A., and Kaur, G. 2010. Multi Up-

gradations Software Reliability Model, ICRESH, 468-

474.

[8] Kapur P. K., Singh O., Garmabaki A. and Singh J.,

“Multi up-gradation software reliability growth model

with imperfect debugging”, International Journal of

systems Assurance Engineering and Management, 2010,

1(4), 299-306.

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
u

m
u

la
ti

v
e

n
u

m
b

er
 o

f
fa

u
lt

s

Time

Release 4

Actual

Proposed Approach

Singh et al [15]

Kapur et al [9]

http://www.softwareqatest.com/qatfaq1.html

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.4, August 2015

15

[9] Kapur, P. K., Anand, A., and Singh, O. 2011. Modeling

Successive Software Up-Gradations with Faults of

Different Severity, Proceedings of the 5th National

Conference on Computing For Nation Development,

ISSN 0973-7529 ISBN 978-93-80544-00-7.

[10] Kapur, P.K., Pham, H., Gupta, A., and Jha, P.C. 2011.

Software reliability Assessment with OR application,

Springer London.

[11] Pham, H. 2006. System Software Reliability, Springer-

Verlag.

[12] Sharma, K., Garg, R., Nagpal, C. K. and Garg, R. K.

2010. Selection of Optimal Software Reliability Growth

Models Using a Distance Based Approach, IEEE

Transactions on Reliability, vol. 59(2).

[13] Singh, O., Kapur, P.K., Anand, A. and Singh, J. 2009.

Stochastic Differential Equation based Modeling for

Multiple Generations of Software, Proceedings of Fourth

International Conference on Quality, Reliability and

Infocom Technology (ICQRIT), Trends and Future

Directions, Narosa Publications, pp. 122-131.

[14] Singh, O., Kapur, P.K., and Anand, A. 2011. A

Stochastic Formulation of Successive Software Releases

with Fault Severity. Industrial Engineering and

Engineering Management, 136-140.

[15] Singh, O., Kapur, P.K., Khatri, S.K., and Singh, J.N.P.

2012. Software Reliability Growth Modeling for

Successive Releases. proceeding of 4th International

Conference on Quality, Reliability and Infocom

Technology (ICQRIT), PP 77-87.

[16] Yamada, S., Ohba, M., and Osaki, S. 1984. S-shaped

Software Reliability Growth Models and their

Applications. IEEE Trans. on Reliability, vol. 33, no. 4,

pp. 289–292.

[17] Wood, A. 1996. Predicting Software Reliability. IEEE

Computer (11) 69-77.

IJCATM : www.ijcaonline.org

