
International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.4, August 2015

Computational Chemotaxis in Micro Bacterial Foraging
Optimization for High Dimensional Problems: A
Comparative Study on Numerical Benchmark

Yunus Emre Yildiz
Epoka University
Tirana, Albania

Oguz Altun
Yldz Tech. University

Istanbul, Turkey

Ali Osman Topal
Epoka University
Tirana, Albania

ABSTRACT
Nature and bio-inspired algorithms have been recently used for
solving high dimensional search and optimization problems. In
this context, bacterial foraging optimization algorithm (BFOA) has
been widely employed as a global optimization technique inspired
from social foraging behavior of Escheria coli bacteria. In this pa-
per, a novel hybrid technique called micro Chemotaxis Differential
Evolution Optimization Algorithm (CDEOA) that uses a small pop-
ulation is proposed. In this technique, we incorporate the principles
of DE (Differential Evolution) into BFOA. The best bacterium re-
tains its position whereas the rest of the population are reinitialized
on the search space. CDEOA was compared with classical BFOA
with two different population sizes and micro BFOA (BFOA) over
a suite of 16 numerical optimization problems taken from P.N. Sug-
anthan. Statistics of the computer simulations indicate that CDEOA
outperforms, or is comparable to, its competitors in terms of its
convergence rates and quality of final solution for complex high
dimensional problems.

General Terms
Evolutionary Algorithms (EAs), Neural Networks

Keywords
Micro Bacterial Algorithms, Differential Evolution, Nature-
Inspired Algorithms, Hybrid BFOA, Metaheuristics

1. INTRODUCTION
In the past few decades, the micro algorithms have been studied
by several researchers in order to solve high dimensional optimiza-
tion problems. High dimensionality makes the problems hard and
computational time consuming due to the fact that it increases the
number of parameters to be optimized. In this context, in case that
the population size remains large as in its original algorithm, it
would not be that easy for the parameters to converge to the opti-
mal values. As a remedy to this challenge, Krishnakumar et al. [5]
proposed to use micro-genetic algorithm which is based on a very
small population size. It is clear that although small population size
algorithm is good at exploiting the promising areas of the search
space, it is not able to preserve the diversity of population. How-

ever, when the diversity of population fails, the population can be
reinitialized and the best individuals are kept on the search space.
This not only leads to prevent the premature convergence but also
makes the individuals explorative [8].
Micro algorithms are the techniques with a small population size
(e.g. 2, 3, 5, or 6). Recently, several studies have been conducted
regarding the micro bio and nature inspired algorithms to solve the
high dimensional optimization problems. Caraffino et al. [2] pro-
posed micro Differential Evolution (DE) that incorporates an extra
search move into DE to improve the best solution. Chu et al.[3] pro-
posed Fast Bacterial Swarming Algorithm that hybridizes BFOA
and PSO. Parsopoulos [11] proposed a cooperative micro tech-
nique, Cooperative Micro Differential Evolution (CDE), to solve
high dimensional problems. Parsopoulos et al. [12] also introduced
a parallel master-slave model for CPSO. Olorunda [10] presented
cooperative differential evolution that divides the high dimensional
problem space into smaller parts and have each part optimized by
a separate population. Sotelo-Figueroa [16] proposes a novel ap-
proach called Micro Differential Algorithm that evolves an indirect
representation of bin packing problem. Fuentes et al.[1] presents a
particle swarm optimizer that solves constrained optimization prob-
lems. Also, Rahnamayan et al. [15] proposed micro Opposition
based DE (-ODE) that deals with minimization of dissimilarity be-
tween the input grey-level image and the bi-level (thresholded) im-
age in image processing field. Olguin-Carbajal et al. [9] proposed
the micro DE Local Search (-DELS) that incorporates local search
technique into micro DE.
Micro algorithms have proved to be an efficient tool in solving op-
timization problems for high dimensional (e.g. 500, 750, and 1000)
problems that standard nature-inspired and bio-inspired techniques
fail. Here we propose a micro algorithm which hybridizes BFOA
and DE.
We were inspired by the ideas of micro Bacterial Foraging Op-
timization Algorithm (BFOA) [4] which is successfully used to
solve high-dimensional optimization problems. BFOA does not use
the reproduction operator to avoid premature convergence whereas
the chemotaxis operator is employed for updating the position of
a bacterium. In BFOA, which uses three bacteria, the best bac-
terium retains its position in the swarm; the second best bacterium
is re-positioned in the vicinity of the best bacterium; and the third
bacterium is dispersed to a random location. This approach aims
to avoid premature convergence and helps to maintain the search
diversity. In our study, in order to increase the convergence per-

1

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.4, August 2015

formance and quality of the final solution, after re-initializing the
population, the bacteria are ranked according to their cost function
values. The best bacterium’s position is preserved in the population.
The second best bacterium is reinitialized in the neighborhood of
the best bacterium based on the ideas of DE technique, whereas the
rest of the bacteria (four bacteria) are dispersed at random on the
search space.
The remaining parts of this paper is organized as follows: Section 2
introduces the related processes of classical BFOA. Section 3 out-
lines the operators of the DE algorithm. Section 4 provides the de-
tails of the proposed algorithms. Section 5 includes a short sum-
mary of simulation results and performance comparison. Section 6
presents the source codes of the framework and the methods that
were employed. Section 7 concludes the paper.

2. CLASSICAL BACTERIAL FORAGING
OPTIMIZATION ALGORITHM

The bacterial foraging system consists of three principal mecha-
nisms, namely chemotaxis, reproduction, and elimination-dispersal
([13]). Below we briefly describe each of these operators.

2.1 Chemotaxis
A E.coli tends to accumulate the food in the nutrient-rich areas by a
process called chemotaxis. This process is performed with consec-
utive tumble and swim (run) steps via flagella.1 A unit walk in the
same direction with the previous unit walk is called a run (or swim),
whereas a unit walk in a different direction than the previous unit
walk is called a tumble. E.coli alternates between these two modes
of operation throughout its entire life-time. Suppose θ(i, j, k, l)
represents the position of the i-th bacterium at j-th chemotactic,
k-th reproductive and l-th elimination-dispersal step. The position
of the bacterium in the next step may be represented by Eq. eq:t
vector and Eq. eq:step of bac.,

t(j) =
∆(i)√

∆T (i) ∗∆ (i)
(1)

θ (i, j + 1, k, l) = θ (i, j, k, l) + C (i) ∗ t(j) (2)

where C (i) is the predefined constant length of the unit walk, t(j)
(Eq. 1) is the direction angle of the step, and ∆ (i) is a random
vector whose elements lie in [−1, 1]. In a run step, t(j) remains the
same as t(j−1); in a tumble step, t(j) is generated randomly from
uniform distribution in the range [0, 2pi].

2.2 Reproduction
The total cost of each bacterium is computed as the sum of the cost
function values calculated during its life-time after all chemotaxis
steps. Then, all bacteria are sorted according to their cost in as-
cending order. Only the first half of the swarm (the healthiest ones)
survive and the healthiest bacteria split into two. Hence there are
two bacteria in each position in this step. Since the remaining 50%
with poor health is discarded, the population size is kept fixed.

1 Note that swim and run can be used interchangeably in the literature of
BFOA.

2.3 Elimination and dispersal
In addition to chemotaxis for local search and reproduction for
accelerating the convergence rate, there is a need of an operator
for global searching to make the algorithm explorative. Elimina-
tion and dispersal will help the bacterium avoid getting stuck and
getting trapped in local optima. In order to imitate these events in
BFOA, some bacteria are liquidated randomly with a constant prob-
ability (Ped) while the new replacements are initialized randomly
in the search space.

3. DIFFERENTIAL EVOLUTION (DE)
Differential evolution (DE) is a population based bio-inspired tech-
nique which utilizes mutation, crossover, and selection operators to
minimize an objective function. At generation G, a new population
is generated out of the current population members according to
a uniform probability distribution xi,G, i = 1, 2, ...,N where N
is the population size. After initialization, DE undergoes mutation,
crossover, and selection operators [17].
At each generation G, a mutant vector vi,G is generated for each
target vector xi,G, i = 1, 2, ...N in the current population. Some of
the most used mutation strategies2 in the literature are as follows:

—DE/rand/1

vi,G = xr0,G + F ∗ (xr1,G − xr2,G) (3)

—DE/current-to-best/1

vi,G = xr0,G + F*(xr1,G - xr2,G) + F*(xr3,G - xr4,G) (4)

—DE/best/1

vi,G = xbest,G + F ∗ (xr0,G − xr1,G) (5)

where r0, r1, r2, r3, and r4 are distinct integers randomly chosen
from the current population and are different from i. xbest,G is the
best individual vector in the current generation G, and F is the
mutation factor which is generally within the range of [0, 1+]. In
our approach, DE/best/1 strategy (Eq. 5) is employed due to its fast
convergence speed and strong exploitation capability.
After mutation, a binomial crossover operation is carried out
on vi,G and xi,G to generate a new trial vector ui,G =
(ui,1,G, ui,2,G, ..., ui,D,G) using Eq. (6),

ui,j,G = { vi,j,G, if Rj (0, 1) ≤ Cr or j = jrand xi,j,G, if Rj (0, 1) > Cr

(6)
where j = 1, 2, ...,D, jrand is a randomly chosen integer in

[1,D], Rj (0, 1) is uniformly generated random number between
0 and 1 for each j, and Cr ∈ [0, 1] is the crossover rate parameter.
A selection process is carried out to choose the better of the parent
vector xi,G and the trial child vector ui,G. In case of a minimization
problem, the selected parent vector in the next generation is given
by Eq. eq:selectioneq,

xi,G+1 { ui,G, if f (ui,G) < f (xi,G) xi,G, otherwise (7)

where f (·) is the function for minimization. If trial vector ui,G

produces a better fitness value, it replaces its parent in the next gen-
eration; otherwise the parent is kept in the population.

2http://www.icsi.berkeley.edu/~storn/code.html

2

http://www.icsi.berkeley.edu/~storn/code.html

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.4, August 2015

Algorithm 1 Detailed pseudo-code of CDEOA
[1] Parameters: S ← total number of bacteria in the population
Ned ← number of elimination dispersal steps Nc ← number
of chemotaxis steps Ns ← swimming steps C(i) ← the run-
length unit f ← objective function to be minimized //Initial-
ize some local variables θbest ← random position in the search
space fbest ← f(θbest) Mfes ← maximum number of FEs
allowed Nfes ← 0 //current number of function evaluations //
Define a helper function J that will call the actual objective func-
tion f . This helper function also updates the Nfes, θbest, and fbest
variables. J (θ): v ← f(θ) Nfes ← Nfes +1//update number of
FEs v ¡ fbest θbest ← θ //update global best location fbest ←
v //update global best function value end//if v end// function
Nfes ¡ Mfes//FEs control loop j from 1 to Ned//Elimination
dispersal loopj from 1 to Nc//Chemotaxis loopi from 1 to
S//Tumble-Swim loop Jlast ← J(θ(i, j, k))// J(·) computes the
fitness ∆(i)← random vector within [-1,1] //tumble θ (i, j + 1, k)

= θ (i, j, k)+ C (i) ∗ ∆(i)√
∆T (i)∗∆(i)

//Swim: m from 1 to Ns//

Swim loop J (θ (i, j + 1, k)) ¡ Jlast Jlast = J (θ (i, j + 1, k))

θ (i, j + 1, k) = θ (i, j, k)+C (i) ∗ ∆(i)√
∆T (i)∗∆(i)

m = Ns//Break

from switch loop end//if end//Swim loop end//Tumble-Swim loop
end //Chemotaxis loop Bacterium with rank 2 undergoes DE oper-
ators as in Eq. (5), Eq.(6), and Eq. (7) The rest (4 bacteria) except
rank 1-2 are dispersed to the random positions.
i from 1 to S //Elimination dispersal loop random number ¿ Ped

Disperse to a random position end/if end//Elimination dispersal
loop end // FEs control loop θbest

4. MICRO CDEOA
In CDEOA, a population of six bacteria which make consecutive
tumble and run steps (chemotaxis) throughout their lifetime. Af-
ter a chemotaxis loop, all the bacteria are sorted according to their
objective function values. A bacterium which is close to the global
optimum is called the best bacterium (rank 1). The second best bac-
terium (rank 2) attempts to approach the neighborhood of the best
bacterium through the means of DE operators (mutation, crossover,
and selection). The rest of the population (four bacteria) are dis-
persed to the random positions in the search space. Unlike the pop-
ulation size of BFOA, the population size of CDEOA is increased
to an appropriate value, 6, due to the number of the individuals
chosen in mutation strategies (Eq. 3, Eq. 4, and Eq. 5). The sec-
ond best bacterium (rank 2) is positioned in the vicinity of the best
bacterium. This is carried out through the means of DE mutation
strategies. In our study, we employed DE/best/1 (Eq 5) mutation
strategy which yields a best solution based trial vector.
In order to figure out the behavior of the virtual bacteria in BFOA,
we illustrated the six bacteria in a one dimensional search space
in Fig. (1). Objective is the minimization of 1-dimensional sphere
function Eq. (8) which is a widely employed unimodal function
with a minimum equal to 0.

f (x) = x2 (8)

In Eq. (8), the parameter x is the position of a bacterium, and f(x)
is the objective function value. The roles of six bacteria may change
after a chemotaxis process. The closest position to the global opti-
mum of the search space is retained by the best bacterium (rank
1). The dispersal of the second best bacterium (rank 2) to a po-
sition close to the best bacterium will ease local search for the
next chemotaxis process. Maintaining the population diversity and
avoiding premature convergence are performed by the worst bac-

Fig. 1: Behavior of the bacteria on one dimension

teria (rank 3-6). A flowchart of the classical BFOA adapted from
Dasgupta [4] is given in Fig. 2.

Initialize positions of
bacteria randomly

Increase elimination-
 dispersal loop counter, l=l+1

l < Ned ? Stop

Yes

Perform elimination-
dispersal with the
probability of Ped

No

Increase Chemotaxis
loop counter j=j+1

j < Nc ?

Rank the population according
to their function values

The second ranked
bacterium undergoes

mutation, crossover, and
selection operator of DE

The third, fourth, fifth,
and sixth bacteria are
dispersed randomly

The first ranked
bacterium retains

its position

Set bacterium index, i =i+1

Let the bacterium tumble and swim

The new population is
obtained for the next

generation

Start

Yes

No

Fig. 2: Flowchart of the CDEOA

3

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.4, August 2015

5. EXPERIMENTAL STUDY AND RESULTS
The CDEOA was tested using a set of 16 unimodal and multimodal
benchmark functions (see Section 5.1) taken from IEEE CEC spe-
cial sessions and competitions on single objective real parameter
numerical optimization [18], [6]. Unlike standard benchmark func-
tions, the shifted functions shift the global optimum to a random
position, i.e., F (x) = f(x − onew), where F (x) is the new func-
tion, f(x) is the old function, and onew is the new global optimum
with different values for different dimensions. Its global optimum is
not situated at the center of the search space. The rotated functions
rotate the function F (x) = f(Mx), where M is an orthogonal ro-
tation matrix [7]. The descriptions of these functions are given in
Table 1. Functions 1-6 are unimodal and functions 7-16 are simple
multimodal functions.

Table 1. : Global optimum, the search ranges and the global best (f(x*)) of
500 dimensional test functions. 0 is the shifted vector, C=Characteristics
of test functions: U=Unimodal, M=Multimodal, S=Separable, N=Non-
Separable

f Global Optimum x* f(x*) C Search Range
f1 0 0 US (-2,2)
f2 (0,0,,0) 0 UN (-500,500)
f3 0 0 UN (-500,500)
f4 0 0 UN (-500,500)
f5 (0,0,,0) 0 UN (-500,500)
f6 0 0 UN (-100,100)
f7 0 0 MN (-2,2)
f8 0 0 MN (-2,2)
f9 0 0 MN (-2,2)
f10 0 0 MN (-2,2)
f11 0 0 MN (-10,10)
f12 0 0 MN (-10,10)
f13 0 0 MS (-2,2)
f14 0 0 MN (-2,2)
f15 (420.96,,420.96) 0 MN (-2,2)
f16 (420.96,,420.96) 0 M (-500,500)

5.1 Test Functions
(1) Shifted Sphere Function f1 (x) =

∑D

i=1
z2
i

z = x− o
o = [o1, o2, ...oD] : shiftedglobaloptimum

(2) Schwefel problem 1.2 f2(x) =
∑D

i=1
(
∑i

j=1
zj)

2

(3) Shifted Schwefel problem 1.2 f3(x) =
∑D

i=1
(
∑i

j=1
zj)

2

z = x− o
o = [o1, o2, ...oD] : shiftedglobaloptimum

(4) Shifted Schwefel problem 1.2 with noise in fitness f4(x) =∑D

i=1
(
∑i

j=1
zj)

2 ∗ (1 + 0.4|N(0, 1)|)
z = x− o
o = [o1, o2, ...oD] : shiftedglobaloptimum

(5) Schwefel problem 2.21 f6(x) = max {|xi, 1 ≤ i ≤ D|}
(6) Shifted and rotated high conditioned elliptic function f6 =∑

(106)
i−1
D−1 z2

i

z = M(x− o)
o = [o1, o2, ...oD] : shiftedglobaloptimum

(7) Shifted Rosenbrock’s function f7(x) =
∑D−1

i=1
(100(x2

i −
xi+1)2 + (xi − 1)2)
z = x− o+ 1
o = [o1, o2, ...oD] : shiftedglobaloptimum

(8) Shifted and rotated Rosenbrock’s function f8(x) =∑D−1

i=1
(100(x2

i − xi+1)2 + (xi − 1)2)
z = M(x− o)
o = [o1, o2, ...oD] : shiftedglobaloptimum

(9) Shifted Ackley’s function f9(x) =

−20exp(−0.2

√
1
D

∑D

i=1
z2
i)

− exp(1
D

∑D

i=1
cos(2πzi)) + 20 + e,

z = x− o
o = [o1, o2, ...oD] : shiftedglobaloptimum

(10) Shifted rotated Ackley’s function f10(x) =

−20exp(−0.2

√
1
D

∑D

i=1
z2
i)

− exp(1
D

∑D

i=1
cos(2πzi)) + 20 + e,

z = M(x− o)
o = [o1, o2, ...oD] : shiftedglobaloptimum

(11) Shifted Griewank’s function f11(x) =
∑D

i=1

z2
i

4000
z = x− o
o = [o1, o2, ...oD] : shiftedglobaloptimum

(12) Shifted and rotated Griewank’s function f12(x) =∑D

i=1

z2
i

4000
z = M(x− o)
o = [o1, o2, ...oD] : shiftedglobaloptimum

(13) Shifted Rastrigin’s function f13(x) =
∑D

i=1
(z2

i −
10cos(2πzi) + 10)
z = x− o
o = [o1, o2, ...oD] : shiftedglobaloptimum

(14) Shifted and rotated Rastrigin’s function f14(x) =∑D

i=1
(z2

i − 10cos(2πzi) + 10)
z = M(x− o)
o = [o1, o2, ...oD] : shiftedglobaloptimum

(15) Shifted noncontinuous Rastrigin’s function f15(x) =∑D

i=1
(y2

i − 10cos(2πyi) + 10)
yi = { r ound(2zi)/2, |zi| >= 1/2zi, |zi| < 1/2
for i = 1,2,...,D
o = [o1, o2, ...oD] : shiftedglobaloptimum

(16) Shwefel’s function f16(x) = 418.9829 ∗ D −∑D

i=1
xisin(|xi|1/2)

5.2 Parametric setup
We use the same parameter values as in the original papers in each
technique. DE is sensitive to the mutation scaling factor F and
crossover rate Cr . Choosing Cr=0.9 or 1.0 not only speeds up con-
vergence but also diversifies the population by means of one of the
best solution dependent DE mutation strategies, DE/best/1. In this
context, Cr parameter of DE was set to be 0.9. F is selected within
the range of [0−2.0]. It is reported that a smaller F value (e.g., 0.5)
can lead to a statistically better performance than the other param-
eter values ([17], [14]). Therefore, F of -CDEOA was set to be 0.5.
For the proposed technique and the classical BFOA, the following
parameter values were set: Ns=12, Nre=16, C(i)=0.1.

4

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.4, August 2015

Fig. 3: Median convergence graphs of BFOA-6, BFOA-30, BFOA, and -CDEOA for test functions (a) f1: Shifted Sphere; (b) f2: Schwefel
problem 1.2; (c) f3: Shifted Schwefel problem 1.2; (d) f4: Shifted Schwefel problem 1.2 with noise in fitness;(e) f5: Schwefel problem
2.21; (f) f6: Shifted and rotated high conditioned elliptic; (g) f7: Shifted Rosenbrock; (h) f8: Shifted and rotated Rosenbrock; (i) f9: Shifted
Ackley.

5.3 Simulation
The study introduced in this paper aims to test the quality of the fi-
nal solution and the convergence speed at the end of a fixed number
of function evaluations (FEs). The maximum number of FEs was
set to 5 103. All simulations were done on 500-D problems. Each
algorithm and the objective function pair were run 50 times. For
convenience of illustration, the convergence graph was plotted for
the first 9 functions in Fig. 3. The horizontal axis of these graphs is
the number of function evaluations and the vertical axis is the mean
of function values. Table 2 and Table 3 report the best final func-
tion value (BFV), the worst final function value (WFV), the mean

of the final best function value (Mean), the median of the final best
function value (Median). These values comply (F (x) − F (x∗))
for evaluating the success of five algorithms, where x is the best
value of the bacterium in a run and x ∗ is the global best of the test
function (Table 1). The standard deviation of the final best function
value and the mean time spent per trial in seconds are also reported.

5.4 Comparison of CDEOA with three nature-inspired
techniques

The performance of CDEOA technique was compared with clas-
sical BFOA with 6 and 30 population sizes, BFOA-6, BFOA-30

5

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.4, August 2015

Table 2. : Comparison of BFOA-6, BFOA-30, BFOA, and -CDEOA. BFV: the best final function value, WFV: the worst final function value,
Mean: mean of the final best function value, Median: median of the final best function value, StdDev: the standard deviation of the final best
function value, Time: mean time spent per trial in seconds

Functions Algorithm BFV WFV Mean StdDev Med Time

f1

BFOA-6 9.17E+02 1.05E+03 9.95E+02 3.22E+01 9.96E+02 0.47
BFOA-30 1.07E+03 1.16E+03 1.12E+03 2.3E+01 1.12E+03 0.56

-BFOA 6.77E+02 9.05E+02 7.91E+02 5.97E+01 7.96E+02 0.65
-CDEOA 7.16E+02 8.68E+02 7.82E+02 3.93E+01 7.80E+02 0.55

f2

BFOA-6 2.33E+09 2.37E+09 2.35E+09 7.48E+06 2.35E+09 27.61
BFOA-30 1.69E+09 1.69E+09 1.69E+09 9.80E+05 1.69E+09 27.77

-BFOA 2.26E+08 6.11E+08 4.24E+08 7.93E+07 4.27E+08 28.08
-CDEOA 1.17E+08 5.28E+08 2.92E+08 8.65E+07 2.89E+08 27.32

f3

BFOA-6 6.27E+12 6.27E+12 6.27E+12 5.04E+08 6.27E+12 27.74
BFOA-30 6.27E+12 6.27E+12 6.27E+12 2.58E+08 6.27E+12 28.35

-BFOA 4.47E+12 5.70E+12 5.07E+12 2.74E+11 5.04E+12 28.42
-CDEOA 5.23E+12 6.18E+12 5.60E+12 2.19E+11 5.63E+12 28.43

f4

BFOA-6 7.14E+12 7.17E+12 7.14E+12 6.51E+09 7.14E+12 28.33
BFOA-30 7.14E+12 7.22E+12 7.16E+12 1.82E+10 7.15E+12 28.27

-BFOA 6.91E+12 7.18E+12 7.08E+12 5.85E+10 7.09E+12 28.23
-CDEOA 6.95E+12 7.21E+12 7.11E+12 4.86E+10 7.11E+12 28.52

f5

BFOA-6 9.81E+01 9.87E+01 9.84E+01 1.24E-01 9.85E+01 0.91
BFOA-30 9.85E+01 9.90E+01 9.87E+01 1.25E-01 9.88E+01 0.86

-BFOA 9.51E+01 9.80E+01 9.73E+01 5.85E-01 9.74E+01 0.96
-CDEOA 7.30E+01 8.94E+01 8.21E+01 3.55E+00 8.17E+01 0.90

f6

BFOA-6 1.46E+11 1.51E+11 1.51E+11 9.73E+08 1.51E+11 1.14
BFOA-30 1.14E+11 1.17E+11 1.17E+11 3.68E+08 1.17E+11 1.12

-BFOA 8.33E+10 1.11E+11 1.02E+11 6.92E+09 1.03E+11 1.27
-CDEOA 7.21E+10 1.08E+11 8.84E+10 7.77E+09 8.86E+10 1.15

f7

BFOA-6 1.30E+06 1.62E+06 1.47E+06 6.13E+04 1.47E+06 0.55
BFOA-30 1.60E+06 1.82E+06 1.73E+06 4.47E+04 1.73E+06 0.55

-BFOA 3.57E+05 5.79E+05 4.90E+05 5.58E+04 4.97E+05 0.59
-CDEOA 8.13E+05 1.25E+06 1.09E+06 7.43E+04 1.10E+06 0.52

f8

BFOA-6 5.16E+06 6.87E+06 5.91E+06 3.41E+05 5.87E+06 1.27
BFOA-30 6.43E+06 7.52E+06 7.07E+06 2.52E+05 7.08E+06 1.28

-BFOA 1.32E+06 2.59E+06 2.13E+06 2.80E+05 2.20E+06 1.42
-CDEOA 3.68E+06 4.91E+06 4.16E+06 2.91E+05 4.14E+06 1.11

[13] and BFOA [4]. The compared algorithm (BFOA) was chosen
due to fact that it possesses very small population size (3) as in its
original paper. As for BFOA, we aimed to test its performance with
small population size (6) and large population size (30).

5.4.1 Unimodal functions f1 - f6 . As reported in Table 2, in
these six unimodal functions, the micro techniques exhibit their su-
periority to their classical counterparts in terms of quality of the fi-
nal solution. CDEOA shares the first place with BFOA in f1 and f4

functions. All the algorithms show similar performances in f4 func-
tion. We can also observe that the proposed technique performs bet-
ter than that of other techniques in f5 and f6 functions. In contrast,
CDEOA remains behind BFOA in f2 and f3 functions. The classi-
cal BFOA-6 and BFOA-30 fail in most of the unimodal functions.
We can infer that the success of a technique is problem-dependent.
While BFOA-6 outperforms the BFOA-30 in only one function f1,
BFOA-30 performs better than BFOA-6 in two functions, f2 and
f6.

5.4.2 Simple multi modal functions f7 − f16 . In these ten mul-
timodal functions, overall, the proposed technique performs better
than its competitors. CDEOA exhibits better performance in 4 func-
tions, f10, f13, f14, and f15 by outperforming its counterparts. On
the other hand, CDEOA exhibits similar performance with BFOA

in 2 functions, f11 and f12 while BFOA outperforms the CDEOA
in 2 functions, f7 and f8. Overall, classical BFOA-6 and BFOA-
30 do not succeed in most of the multimodal functions. However,
we can observe that these two classical counterparts catch up with
micro algorithms in 2 functions, f9 and f16

The convergence map of BFOA-6, BFOA-30, BFOA, and CDEOA
in Fig. 3 implies that the proposed CDEOA technique has signif-
icantly faster and reliable convergence speed than that of its com-
petitors. BFOA is the second fastest technique. We can observe that
the classical counterparts exhibit poor convergence speed, thereby
getting trapped in local optima whereas the micro techniques tend
to move to global optimum Fig. 3.
In summary, although there are slight differences at the quality of
final solution and convergence speed of the algorithms, overall,
the proposed technique presents superior performance to the other
techniques on unimodal and multimodal functions.

6. SOURCE CODES
The Python source codes of the algorithms classical BFOA,
BFOA, and proposed CDEOA can be accessed from Y.
Emre Yildizs homepage (https://sites.google.com/site/
yeyildiz12/). These codes are written to be compatible with the
opn global optimization framework available in Ouz Altuns Bit-

6

https://sites.google.com/site/yeyildiz12/
https://sites.google.com/site/yeyildiz12/

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.4, August 2015

Table 3. : Comparison of BFOA-6, BFOA-30, BFOA, and -CDEOA. BFV: the best final function value, WFV: the worst final function value,
Mean: mean of the final best function value, Median: median of the final best function value, StdDev: the standard deviation of the final best
function value, Time: mean time spent per trial in seconds

Functions Algorithm BFV WFV Mean StdDev Med Time

f9

BFOA-6 6.29E+00 6.69E+00 6.49E+00 8.88E-02 6.50E+00 0.56
BFOA-30 6.69E+00 6.91E+00 6.83E+00 4.79E-02 6.83E+00 0.54

-BFOA 5.90E+00 6.46E+00 6.22E+00 1.20E-01 6.22E+00 0.63
-CDEOA 5.91E+00 6.32E+00 6.09E+00 8.63E-02 6.06E+00 0.78

f10

BFOA-6 8.52E+00 8.97E+00 8.80E+00 1.23E-01 8.83E+00 1.39
BFOA-30 8.76E+00 9.06E+00 8.92E+00 5.31E-02 8.92E+00 1.37

-BFOA 8.01E+00 8.67E+00 8.41E+00 1.34E-01 8.44E+00 1.83
-CDEOA 7.65E+00 8.22E+00 7.88E+00 1.28E-01 7.87E+00 1.18

f11

BFOA-6 8.13E+00 8.56E+00 8.39E+00 8.78E-02 8.40E+00 1.24
BFOA-30 8.50E+00 8.74E+00 8.63E+00 6.03E-02 8.64E+00 1.11

-BFOA 5.65E+00 7.19E+00 6.36E+00 3.74E-01 6.29E+00 1.39
-CDEOA 5.81E+00 6.84E+00 6.23E+00 2.06E-01 6.22E+00 1.07

f12

BFOA-6 1.66E+01 1.75E+01 1.71E+01 1.98E-01 1.71E+01 1.75
BFOA-30 1.72E+01 1.79E+01 1.77E+01 1.78E-01 1.76E+01 1.78

-BFOA 1.15E+01 1.50E+01 1.29E+01 8.26E-01 1.27E+01 2.19
-CDEOA 1.15E+01 1.34E+01 1.25E+01 4.14E-01 1.26E+01 2.09

f13

BFOA-6 1.02E+04 1.16E+04 1.10E+04 2.85E+02 1.11E+04 0.54
BFOA-30 1.18E+04 1.23E+04 1.20E+04 1.02E+02 1.20E+04 0.51

-BFOA 9.52E+03 1.09E+04 1.03E+04 3.39E+02 1.03E+04 0.65
-CDEOA 8.94E+03 1.01E+04 9.53E+03 2.80E+02 9.49E+03 0.63

f14

BFOA-6 1.95E+04 2.12E+04 2.05E+04 4.52E+02 2.06E+04 1.41
BFOA-30 2.06E+04 2.15E+04 2.11E+04 2.09E+02 2.11E+04 1.31

-BFOA 1.66E+04 1.99E+04 1.84E+04 6.64E+02 1.84E+04 1.52
-CDEOA 1.46E+04 1.70E+04 1.60E+04 5.41E+02 1.60E+04 1.12

f15

BFOA-6 1.23E+04 1.27E+04 1.25E+04 1.08E+02 1.25E+04 0.73
BFOA-30 1.20E+04 1.24E+04 1.22E+04 9.18E+01 1.22E+04 0.95

-BFOA 9.90E+03 1.15E+04 1.09E+04 2.69E+02 1.09E+04 0.74
-CDEOA 9.39E+03 1.04E+04 9.87E+03 2.28E+02 9.86E+03 0.76

f16

BFOA-6 2.04E+05 2.04E+05 2.04E+05 1.24E+02 2.04E+05 0.77
BFOA-30 1.97E+05 1.98E+05 1.98E+05 4.98E+01 1.98E+05 0.45

-BFOA 1.87E+05 1.98E+05 1.94E+05 2.25E+03 1.94E+05 0.50
-CDEOA 1.92E+05 2.02E+05 1.98E+05 2.21E+03 1.98E+05 0.48

bucket repository (https://bitbucket.org/oaltun/opn). Al-
gorithm 1 does not correspond one to one to CDEOA code given,
as we wanted to hide unnecessary details of the framework used.
The lines 14-21 in Algorithm 1 summarize what opn does to make
given code runnable.

7. CONCLUSION
The experimental studies in this paper were performed on 16 single
objective numerical optimization problems taken from IEEE CEC.
CDEOA was compared with classical BFOA with 6 and 30 popula-
tion sizes, and BFOA. Nature-inspired algorithms with small pop-
ulation demonstrated the superiority to the classical counterparts in
more complex forms of the classical high dimensional problems in
terms of the quality of the final solution and the convergence speed.
In particular, overall, CDEOA exhibited better performance than its
competitors in unimodal and multimodal functions.
As a future work, the micro algorithm proposed will be improved
in terms of quality of final solution to compete with the techniques
in large scale optimization field .

8. REFERENCES
[1] Juan C. Fuentes Cabrera and Carlos A. Coello Coello. Han-

dling constraints in particle swarm optimization using a small
population size. In MICAI 2007: Advances in Artificial Intel-
ligence, pages 41–51. Springer, 2007.

[2] Fabio Caraffini, Ferrante Neri, and Ilpo Poikolainen. Micro-
differential evolution with extra moves along the axes. In Dif-
ferential Evolution (SDE), 2013 IEEE Symposium on, pages
46–53. IEEE, 2013.

[3] Ying Chu, Hua Mi, Huilian Liao, Zhen Ji, and Q.H. Wu.
A Fast Bacterial Swarming Algorithm for high-dimensional
function optimization. In IEEE Congress on Evolutionary
Computation, 2008. CEC 2008. (IEEE World Congress on
Computational Intelligence), pages 3135–3140, June 2008.

[4] Sambarta Dasgupta, Arijit Biswas, Swagatam Das, Bijaya K.
Panigrahi, and Ajith Abraham. A micro-bacterial foraging al-
gorithm for high-dimensional optimization. In Evolutionary
Computation, 2009. CEC’09. IEEE Congress on, pages 785–
792. IEEE, 2009.

[5] Kalmanje Krishnakumar. Micro-Genetic Algorithms For Sta-
tionary And Non-Stationary Function Optimization. volume
1196, pages 289–296, 1990.

7

https://bitbucket.org/oaltun/opn

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.4, August 2015

[6] J. J. Liang, B. Y. Qu, and P. N. Suganthan. Problem defini-
tions and evaluation criteria for the CEC 2014 special session
and competition on single objective real-parameter numerical
optimization. Computational Intelligence Laboratory, 2013.

[7] J. J. Liang, P. N. Suganthan, and K. Deb. Novel composition
test functions for numerical global optimization. In Swarm
Intelligence Symposium, 2005. SIS 2005. Proceedings 2005
IEEE, pages 68–75. IEEE, 2005.

[8] Sergio Nesmachnow, Hctor Cancela, and Enrique Alba.
A parallel micro evolutionary algorithm for heterogeneous
computing and grid scheduling. Applied Soft Computing,
12(2):626–639, February 2012.

[9] Mauricio Olguin-Carbajal, Enrique Alba, and Javier
Arellano-Verdejo. Micro-differential evolution with local
search for high dimensional problems. In Evolutionary
Computation (CEC), 2013 IEEE Congress on, pages 48–54.
IEEE, 2013.

[10] Olusegun Olorunda and Andries Petrus Engelbrecht. Differ-
ential evolution in high-dimensional search spaces. In Evolu-
tionary Computation, 2007. CEC 2007. IEEE Congress on,
pages 1934–1941. IEEE, 2007.

[11] Konstantinos E. Parsopoulos. Cooperative micro-differential
evolution for high-dimensional problems. In Proceedings of
the 11th Annual conference on Genetic and evolutionary com-
putation, pages 531–538. ACM, 2009.

[12] Konstantinos E. Parsopoulos. Parallel cooperative micro-
particle swarm optimization: A masterslave model. Applied
Soft Computing, 12(11):3552–3579, 2012.

[13] Kevin M. Passino. Biomimicry of bacterial foraging for dis-
tributed optimization and control. Control Systems, IEEE,
22(3):52–67, 2002.

[14] A. K. Qin and Xiaodong Li. Differential evolution on the
CEC-2013 single-objective continuous optimization testbed.
In Evolutionary Computation (CEC), 2013 IEEE Congress
on, pages 1099–1106. IEEE, 2013.

[15] S. Rahnamayan and H.R. Tizhoosh. Image thresholding using
micro opposition-based Differential Evolution (Micro-ODE).
In IEEE Congress on Evolutionary Computation, 2008. CEC
2008. (IEEE World Congress on Computational Intelligence),
pages 1409–1416, June 2008.

[16] Marco Aurelio Sotelo-Figueroa, Hctor Jos Puga Soberanes,
Juan Martn Carpio, Hctor J. Fraire Huacuja, Laura Cruz
Reyes, and Jorge Alberto Soria Alcaraz. Evolving bin pack-
ing heuristic using micro-differential evolution with indirect
representation. In Recent Advances on Hybrid Intelligent Sys-
tems, pages 349–359. Springer, 2013.

[17] Rainer Storn. On the usage of differential evolution for func-
tion optimization. In Fuzzy Information Processing Society,
1996. NAFIPS., 1996 Biennial Conference of the North Amer-
ican, pages 519–523. IEEE, 1996.

[18] Ponnuthurai N. Suganthan, Nikolaus Hansen, Jing J. Liang,
Kalyanmoy Deb, Y.-Po Chen, Anne Auger, and S. Tiwari.
Problem definitions and evaluation criteria for the CEC 2005
special session on real-parameter optimization. KanGAL re-
port, 2005005, 2005.

8

	Introduction
	Classical Bacterial Foraging Optimization Algorithm
	Chemotaxis
	Reproduction
	Elimination and dispersal

	Differential evolution (DE)
	Micro CDEOA
	Experimental study and results
	Test Functions
	Parametric setup
	Simulation
	Comparison of ÂµCDEOA with three nature-inspired techniques
	Unimodal functions f1 - f6
	Simple multi modal functions f7 - f16

	Source codes
	Conclusion
	References

