
International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.5, August 2015

24

Formal Development of Path Discovery in AODV

Routing Protocol using Event-B

Arun Kumar Singh

Department of Electronics
Engg.

IET, Lucknow, India

Divakar Yadav

Department of Computer
Science & Engg.

IET, Lucknow, India

Vinod Kumar Singh

Department of Electronics
Engg.

IET, Lucknow, India

ABSTRACT

An ad hoc network is collection of mobile nodes that do not

have any fixed topology. In such a network, nodes are likely

to join or leave the network in an arbitrary manner. Joining of

any nodes is announced by itself to other neighboring nodes

and nodes already present in the network learns about joining

of the new node by this announcement. In such a scenario,

discovery of path from one node to other node is an important

task for the routing protocols used for the purpose. Adhoc on

demand vector (AODV) is one routing protocol used in

MANET environment. Being a reactive protocol, path

discovery process in AODV is initiated by sender node when

there is no routing information for an intended destination.

In this paper, we present a formal model for path discovery

process of the AODV protocol using Event-B. The model

have been developed and checked using the RODIN tool

which provides an integrated framework for development of

Event-B models. Event-B technique uses a notion of

refinement to specify the mathematical models of distributed

systems in an incremental manner. The specifications of the

system have been checked for consistency and satisfy the

behavioural properties of the system expressed as invariants.

All the proof obligations were discharged automatically by the

RODIN tool.

Keywords

MANET, AODV, Formal Method, Event-B.

1. INTRODUCTION
A mobile ad hoc network (MANET) may be defined as a

collection of autonomous mobile hosts which are free to move

arbitrarily. Every node is independent and may join or leave

frequently the periphery of the existing network of

cooperative and coordinating nodes. Thus a MANET

environment may be visualized as a complex distributed

environment where the number of nodes may vary and their

topology keep on changing frequently during normal

operation. Routing of messages in such an environment

becomes difficult compared to the stationary environment, as

the routing protocol to be used, need to be adaptive to

changing topology of the environment.

In an ad hoc network, there is no way that the location of a

host can be precisely determined. There is no centralizing

server to administer the network. So the problem of

communication, in a small area where an ad hoc network is

set up, is still manageable if the movement of nodes is not

very fast. In a situation like this, every node could be

preloaded with route table initially and to routing table may

keep on updating in an incremental manner whenever any

node in the network broadcast route update information. If the

network is very dynamic and spread widely, then a different

approach is needed. In fact, in a decentralized environment

where network topology keep on changing, establishment of a

route between two nodes can be visualized as path finding in

any dynamic graph.

Routing protocols proposed for MANET are categorized by

the routing strategy followed by them. First, there are

protocols that are distance vector typed. The typical distance

vector algorithms such as Distributed Bellman Ford algorithm

[1, 2], cannot be adapted for mobile networks because of their

slow rate of convergence and count-to-infinity problem.

Protocols such as Wireless Routing Protocol (WRP) [3],

Destination Sequence Distance Vector (DSDV) routing

protocol [4], are extensions of distance vector algorithm.

Second, there are protocols that are based on link state [5]

algorithms such as Global State Routing (GSR) [6], Fisheye

State Routing (FSR) [7], Source Tree Adaptive Routing

(STAR) [8], Optimized Link State Routing (OLSR) protocol

[9], and Landmark Ad Hoc Routing (LANMAR) [10].

An important class of algorithms, termed as on-demand

routing protocols [11, 12], are proposed exclusively for ad hoc

networks only. On-demand routing protocols do not maintain

route table of the network on a continual basis, rather, routes

are established whenever there is a demand by the source.

When a route is needed by the source, it floods a route request

packet to construct a route. Upon receiving route requests, the

destination selects the best route based on route selection

algorithm. Lightweight Mobile Routing (LMR) [13],

Dynamic Source Routing (DSR) [14, 15], Temporarily

Ordered Routing Algorithm (TORA) [16], Ad-Hoc on

demand distance vector (AODV) routing [17] are typical on-

demand routing protocols.

Network protocols have been analysed using number of

formal methods. Some of the analyses have been performed

using model checking [18, 19]. The protocols have also been

analysed using theorem prover [20] and technique of

refinements [21, 22, 23, 24, 25]. An extensive study for

routing in changing environment has been reported in [26].

In this paper, we attempt to delineate a path discovery model

in MANET of AODV protocol applying Event-B. The model

contains a Send event that models the sending of route request

message. The route request messages from one node to other

node is forwarded using event Forward. The events

Rev_Route_Entry, Rrep_to_Rreq, Rrep-Backward, Receive

 models the event of information of traversed node, sending of

reply message in response to route request message, passing

of route reply message in backward direction and delivery of

message at destination or target site respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.5, August 2015

25

The rest of the paper is organized as follows. Section 2

describes framework for formal modeling using Event-B and

RODIN. The informal description and assumptions for

modeling is given in section 3. Section 4 presents formal

model of path discovery of AODV followed by conclusion of

the paper in section 5.

2. FORMAL MODELING USING

EVENT-B AND RODIN PLATEFORM

Event-B [21, 23, 26] is a method for discrete-level modeling

and analysis which is derived from the B-Method [27] by

incorporating the ideas of action systems [28]. It is based on

set theory and logic as modeling notations, refinement to

represent systems at different abstraction levels and proof

obligations to verify consistency between refinement levels.

The purpose of the proof obligations is to show that a model is

rigorous with respect to some behavioural semantics and to

verify properties of the model. This purpose permits to use the

same proof obligations for different modeling domains such

as concurrent, reactive, and distributed systems. For

developing mathematical models, set theory is used as

modeling notation. These models consist of several

components which are either a machine or a context.

The behavioural properties of an Event-B model [29, 30] are

described by Machine which is dynamic and includes

variables, invariants, theorems, and events. Variables refer to

mathematical objects like functions, sets, binary relations, and

numbers. These variables are constrained by invariants which

are supposed to be fixed whenever value of variable changes.

However, this must be proved through the discharge of proof

obligation. The theorem of machine is used within the context

and invariants. A machine also contains a number of events

which have three components: an event name, guard(s) and

action(s). The guard is necessary condition for the

performance of event. The actions regulate the way through

which the state variables are evolving during event. Moreover,

machines are refined by other machines with the limitation

that each machine can refine maximum one machine.

The static structure of an Event-B model is designated by

Context which includes constants, axioms, carrier sets and

theorems which are further used to describe the properties of

sets and constants. Constants enlist the different constants

introduced in the context, while axioms defines the main

properties of the constants and any axiom can be marked as

theorem if it is derived from previously declared axioms. The

Figure1 given below explains the relationship between

various components of a model.

The static structure of an Event-B model is designated by

Context which includes constants, axioms, carrier sets and

theorems which are further used to describe the properties of

sets and constants. Constants enlist the different constants

introduced in the context, while axioms defines the main

properties of the constants and any axiom can be marked as

theorem if it is derived from previously declared axioms.

There also exists a relationship between components of model

as shown in Figure 1.

The Rodin tool provides an extensible and configurable

platform for specifying and refining Event-B machines and

offers a seamless integration between modeling and proof

obligations.

Fig 1: Relationship between components of model

3. INFORMAL DESCRIPTION OF

AODV AND MODELING ASSUMPTIONS

3.1 Informal Description of AODV
The AODV is a source initiated reactive routing protocol. It is

adaptive to dynamic link conditions and determines unicast

between sources and destinations. It uses destination sequence

numbers in order to ensure that paths are free from loops.

AODV do not suffer from counting to infinity problems

associated with classical distance vector protocols. This is an

on demand protocol which has the same functionality as in

DSR during route discovery phase. In contrast to DSR, it is

not a source based routing scheme. Rather, every hop of a

route in AODV maintains the next hop information by its

own. It employs the destination sequence number technique

used in DSDV. Thus, AODV may be visualized as an on

demand version of DSDV because it typically minimizes the

number of required broadcasts by creating routes on an on-

demand basis. In AODV, nodes that are not on a selected path

do not maintain routing information or participate in routing

table exchanges.

Path Discovery

The process of path discovery starts initially by sending a

Hello message by all nodes on its interface and receive Hello

messages from its neighbors. This process is repeated

periodically to determine connectivity to the neighbours.

When a source node desires to send a message to some

destination node, it checks for the valid route to that

destination. If the same is not found, it initiates a Path

Discovery process to locate the other node. For this purpose, it

broadcasts a route request (RREQ) packet to its neighbors,

which forward the request to their neighbors, and so on. The

process is repeated until either the destination or an

intermediate node with a relatively fresh route to the

destination is located.

Figure 2 illustrates the path discovery process of AODV.

AODV utilizes destination sequence numbers to ensure all

routes are loop-free and contain the most recent route

information. Each node maintains its own sequence number.

The RREQ packet of the source node contains the most recent

sequence number of the destination and its own sequence

number. Intermediate nodes can reply to the RREQ request

only if they have a route to the destination whose

corresponding destination sequence number is greater than or

equal to that contained in the RREQ. During the process of

forwarding the RREQ, intermediate nodes record the address

of the neighbor from which the first copy of the broadcast

Refinement

Chain

Abstract

Model

Machine Context
Sees

Refines Extend

Refines Extend

Machine Context Sees

Machine Context Sees

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.5, August 2015

26

packet is received. This helps in establishing a reverse path. If

copies of the same RREQ are received later, the packets are

discarded. Once the RREQ reaches the destination or an

intermediate node with a fresh enough route, the destination

intermediate node responds by a route reply (RREP) packet to

the neighbor from where it received the RREQ first.

(a) Route Request (RREQ)

(b) Route Reply (RREP)

Fig 2: Path discovery in AODV

As the RREP is routed along the reverse path, nodes

appearing in this path update forward route entries in their

route tables. This entry points to the node from which the

RREP was received. These forward route entries signify the

active forward routes. When Route Reply Message reaches the

source node of RREQ, the route is ready and is fresh. If any

link on the forward path is broken, the intermediate node

adjacent to the broken link sends new Route Reply Message to

all the sources to inform them of the link failure using the

forward path. Consequently, other nodes will send to their

neighbors until all nodes that use forward path are informed.

The source nodes can then initiate new RREQ procedures if

route is desired to the destination.

3.2 Modeling Assumptions

In MANET environment the status of links changes

arbitrarily, therefore, sometimes it is not possible that each

node have the correct information of network topology and

status of links. Also in real time the environments behavior

may not be represented correctly by the protocol in use [30].

To handle the situation, we consider the limiting case, when

the environment is reasonably stable in terms of topology and

anticipate that the information maintained in local routing

table will become consistent with states of the actual topology

at the time of conclusion.

The major requirements of the system can be outlined as

follows

-Message transition from source node to destination node

must be successful in MANET.

-Every node has the correct status of the links between all

nodes in the network assuming the topology stable for a

reasonably long time.

Before developing the formal model of path discovery of

AODV, we have following assumption on MANET

environment:

- There are only finite no of nodes.

- There are directed links between some pairs of distinct

nodes. Links may become active or inactive at any point of

time.

- Nodes are communicating by broadcasting when they are

directly connected. A new node announces its presence and

listens for announcements broadcast by its neighbours.

-Messages are transmitted asynchronously.

- When any messages sent on a link which is not received are

treated as lost and link is treated as inactive.

In following section, we present the formal mmodel of the

system using Event-B.

4. SYSTEM MODEL
We start with our abstract model of DSDV routing protocol

presented in [24]. The context part contains NODE and MSG

as carrier sets which represents nodes and messages

respectively. The variables sent, got and lost are defined as a

subset of MSG. The variable ALinks defined as: ALinks ∈

NODE↔NODE represents the set of active links between

nodes. The variables and invariants are given in figure 3.

Fig. 3. Variables and Invariants of Machine

Other important variables are detailed below.

(i) The variable chstore is a relation which contains

messages which are in communication channel. A

mapping nmm: chstore represents that message m is

sent by node n and it is present in channel.

MACHINE

RoutingM1

VARIABLES

chstore, dseq, dseqm, sseqm, nodemetric, neighbour,

nodemetricm, rreq, receivedreq, messagetype,

travel_node, pathnode, pathsize, travel_node, chback

INVARIANTS

inv1 : chstore∈ NODE ↔MSG

inv2 : dseq ∈ (NODE↔NODE)→ℕ

inv3 : dseqm ∈ (MSG↔NODE)→ℕ

inv4 : sseqm ∈ (MSG↔NODE)→ℕ

inv5 : nodemetric ∈ NODE→(NODE→ℕ)

inv6 : neighbour∈NODE↔NODE

inv7 : nodemetricm ∈MSG→(NODE→ℕ)

inv8 : rreq∈NODE→MSG

inv9 : messagetype∈MSG→MSGTYPE

inv10 : travel_node∈TNODE

inv11 : pathnode⊆NODE

inv12 : pathsize∈ℕ

inv13 : travel_node∈1‥pathsize⤖pathnode

inv14 : chback∈ NODE ↔MSG

N2

N3

 S N5

N7

 D

N6 N4

 RREP

N2

N3

 S N5

N7

 D

N6 N4

 RREQ

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.5, August 2015

27

(ii) Every site maintains the information about sequence

number of destination site. The variable dseq represents

sequence number of destination site. It is represented as

dseq ∈ NODE→ (NODE→ℕ).A mapping {sm({tmn1})} ∈

dseq indicates that routing table of site s has entry that n1

is the sequence number of destination site t.

(iii) The variable sseqm specifies sequence number of source

assigned to source field of message. The domain of this

variable is a relation between message set MSG and node

set NODE. A mapping of form ({datamsg↦s}) ↦n1 ∈

sseqm indicates that n1 is sequence number assigned to

source node s of message datamsg. Similarly, variable

dseqm specifies sequence number of destination assigned

to destination field of message.

(iv) The variable neighbour gives the information about

neighbour of any node.

(v) The variable nodemetric contains the information about

the total hop count from a particular node.

(vi) The variable rreq presents route request message send by

any site. A mapping x↦mm ∈ rreq indicates that node x

has sent route request message mm.

(vii) The variable travel_node is declared as:

travel_node∈1‥pathsize⤖pathnode

This variable sequentially maintains entry of each

traversed node. It is defined as a total bijective function.

The total bijective function is a one-to-one and onto

relation which maps all elements of the domain. Each

time when a route request message passes from one node

to other this variable makes the entry of traversed node

sequentially

(viii)The variable chback presents the information about node

from which route reply message is received.

4.1 Send Event

This event models the sending of route request message (fig.

4). The s and t are two different nodes are specified through

the guard grd1, grd2 and grd3. The message datamsg has not

been sent is specified through guard grd5. The node s and

node t are the source and destination or target of message

datamsg is specified through guard grd6 and grd7. The guard

grd8 specifies that type of datamsg is RREQ i.e; route request

message. The guard grd9 ensures that message datamsg has

not been sent. This event adds the datamsg in to channel

(act2). The action act3 assigns the sequence number of

source s to the source field of message datamsg. Similarly,

action act4 assigns the sequence number of destination d to

the destination field of message datamsg. The action act5

assigns nodemetric of source s to message datamsg. The

action act6 add the request message datamsg in to request set

rreq. The action act7 add the source node s as starting node

because node information is added at 0th position.

4.2 Forward Event
This event forwards the route request message from one node

to other node (fig. 5). The guard grd6 ensures that message

datamsg is a route request message. The message has been

sent but it is neither received nor lost is ensured through guard

grd1. The guard grd3 ensures that channel contains the route

request message sent by site x. The guard grd2 ensures that

node x and node y are connected with each other. The guard

grd4 specifies that y is a neighbour of node x. The guard grd8

ensures that route request message has travelled the node x.

This event forwards route request message from node x to

node y. The action act1 add route request message in rreq set.

The action act2 formalize the forwarding of route request

message. It adds the entry for node y and remove entry of

node x.

Fig. 4. Send Event

Fig. 5. Forward Event

4.3 Capturing Traversed Node Information

(Rev_Route_Entry Event)
This event formalizes the information of traversed node (fig.

6). The message datamsg is route request message is ensured

through guard grd1. The guard grd4 ensures that route request

message datamsg is currently at node x. The target of route

request message is node t. The guard grd7 ensures that

message is updated because destination sequence number in

route request message datamsg is greater than sequence

Forward ≙

ANY datamsg, x,y

WHERE

grd1 : datamsg ∈ sent ∖ (got ∪ lost)

grd2 : x↦ y ∈ ALinks

grd3 : x↦ datamsg ∈ chstore

grd4 : y∈ neighbour[{x}]

grd5 : y↦ datamsg ∉ chstore

grd6 : messagetype(datamsg)=RREQ

grd7 : datamsg∈ ran(rreq)

grd8 : x∈ ran(travel_node)

THEN

act1 : rreq≔ rreq ∪ {y↦datamsg}

act2 :
chstore ≔ (chstore ∖ {x↦ datamsg})∪

{y↦ datamsg}

END

Send ≙

ANY s, t, datamsg

WHERE

grd1 : s∈NODE

grd2 : t∈NODE

grd3 : s≠t

grd4 : datamsg ∈ MSG

grd5 : datamsg ∉ sent

grd6 : source(datamsg) = s

grd7 : target(datamsg) = t

grd8 : messagetype(datamsg)=RREQ

grd9 : s↦datamsg ∉chstore

THEN

act1 : sent ≔ sent ∪ {datamsg}

act2 : chstore ≔ chstore ∪ {s↦ datamsg}

act3 : sseqm({datamsg↦s})≔dseq({s↦s})

act4 : dseqm({datamsg↦t})≔dseq({s↦t})

act5 : nodemetricm(datamsg)≔nodemetric(s)

act6 : rreq≔rreq∪{s↦datamsg}

act7 : travel_node(pathsize+1)≔s

END

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.5, August 2015

28

Rrep_to_Rreq ≙

ANY t, datamsg1, y, datamsg2, n,s

WHERE

grd1 : n = pathsize

grd2 : datamsg1∈ MSG

grd3 : messagetype(datamsg1)=RREQ

grd4 : datamsg2∈ MSG

grd5 : messagetype(datamsg2)=RREP

grd6 : target(datamsg1) = t

grd7 : source(datamsg1)=s

grd8 : y↦ datamsg1 ∈ chstore

grd9 : (n↦ y)∈ travel_node

grd10 : dseqm({datamsg1↦t})< dseq({y↦t})

grd11: target(datamsg2)=s

THEN

act1 : sent≔ sent∪ {datamsg2}

act2 : chback≔ chback ∪ {y↦ datamsg2}

END

number of destination at node x. The action act1 makes the

entry of traversed node node x.

Fig. 6. Rev_Route_Entry Event

Fig. 7. Rrep_to_Rreq Event

4.4 Sending of Reply Message (Rrep_to_Rreq

Event)
This event models the sending of reply message in response to

route request message (fig. 7). The message datamsg1 is route

request message is ensured through grd2 and grd3. The

message datamsg2 is route reply message is ensured through

grd4 and grd5. The target and source of route request message

datamsg1 are node t and node s respectively (grd6 and grd7).

The guard grd8 ensures that route request message datamsg1

is currently present at node y. The guard grd9 specifies that

node y is traversed node. The guard grd10 ensures that node y

has more updated route information since sequence number of

destination is greater than destination sequence number

present in route request message datamsg1. This event

triggers the sending of route reply message datamsg2 to the

source of route request message datamsg1. The action act2

adds the information that y has sent route reply message

datamsg2.

Fig. 8. Rrep_Backward Event

4.5 Passing Reply Message in Backward

Direction (Rrep_Backward Event)

This event models the passing of route reply message in

backward direction (fig. 8). The guard grd1 and grd2 specifies

that route reply message is currently present at node y. The

grd3 ensures that next node to which route reply message to

be forwarded is node x. specifically, node x is that node from

where node y has received route request message. The guard

grd4 ensures that type of message datamsg is route reply

message. The message has already been sent is ensured

through guard grd5. The guard grd6 specifies that node y and

node x are connected node. The action act1 forwarded route

reply message from node y to node x. The action act2 reduces

path size by one.

Fig. 9. Receive Event

4.6 Receive Event
This event models the delivery of message at destination or

target site (fig. 9). The guard grd4 and grd5 specify that

source and target of message datamsg are node s and node t

respectively. The guard grd6 ensures that message has been

sent but not received by the target node. The guard grd7

specifies that message is forwarded to target node t. The

delivery of message may be done either in forward direction

for route request message or in backward direction for route

reply message.The action act1 specifies that receiving of

message.

Receive ≙

ANY s, t, datamsg

WHERE

grd1 : s∈NODE

grd2 : t∈NODE

grd3 : datamsg ∈ MSG

grd4 : source(datamsg) = s

grd5 : target(datamsg) = t

grd6 : datamsg ∈ sent ∖ (got ∪ lost)

grd7 : t↦ datamsg ∈ chstore ∨ t↦ datamsg ∈ chback

THEN

act1 : got ≔ got ∪ {datamsg}

END

Rev_Route_Entry ≙

ANY datamsg, x, t

WHERE

grd1 : messagetype(datamsg)=RREQ

grd2 : x∈ NODE

grd3 : t∈ NODE

grd4 : x↦ datamsg ∈ chstore

grd5 : x↦ datamsg∈ rreq

grd6 : target(datamsg) = t

grd7 : dseqm({datamsg↦t}) > dseq({x↦t})

THEN

act1 : travel_node(pathsize+1) ≔ x

act2 : pathsize≔ pathsize+1

END

Rrep-Backward ≙

ANY x, y, datamsg

WHERE

grd1 : y=travel_node(pathsize)

grd2 : y↦ datamsg ∈ chback

grd3 : x=travel_node(pathsize−1)

grd4 : messagetype(datamsg)=RREP

grd5 : datamsg ∈ sent ∖ (got ∪ lost)

grd6 : y↦ x ∈ ALinks

THEN

act1 :
chback ≔ (chback ∖ {y↦datamsg})∪

{x↦datamsg}

act2 : pathsize≔pathsize−1

END

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.5, August 2015

29

4.7 Critical Invariant Of Model
During route discovery process, when any intermediate node

receives a route request message it sends the RREP provided

it has recent information about destination node. The

following invariant tells that a route reply message datamsg2

will present in channel (y↦ datamsg2)∈chback) when an

intermediate node y has fresh route information i.e; (sequence

number of destination node present in the route request

message datamsg1 is less than sequence number of

destination node present in intermediate node y i.e;

dseqm({datamsg1↦t})< dseq({y↦t})).

∀datamsg1,datamsg2,t,y·(t∈NODE∧ y∈NODE ∧ messagetype

(datamsg1)=RREQ∧ target(datamsg1)=t ∧ messagetype

(datamsg1) =RREP ∧ (y↦ datamsg2)∈ chback ⇒

dseqm({datamsg1↦t})< dseq({y↦t}))

5. CONCLUSION
The Path discovery process is crucial element of any routing

protocol in MANET environment. Path discovery in AODV

routing protocol is based on a route request/route reply query

messages. It is initiated to locate other nodes in the network

when a message has to be sent to some destination node and

there do not exist any valid path to that destination. The

process starts by broadcasting RREQ packet to its neighbours,

the neighbours receiving this packet forward the request to

their neighbours. This process is repeated till a fresh route to

the destination is located with the help of RREP received
from the intermediate nodes. In this work, formal

specifications of Path discovery process of AODV routing

protocol have been developed using Event-B. RODIN

platform has been used for writing the Event-B specifications

and discharging proof obligations generated by system. The

behavioural properties of the system have been expressed in

terms of number of Invariants. The specifications have been

model checked for consistency. The specifications ensure that

any source node initiating the path discovery will eventually

have the fresh route information and will get to know about

the route to other node, if it exists. The specifications satisfy

all the invariants signifying that correctness of the system in

terms of the behavioural properties of the system.

Total 71 proof obligations were generated by system out of

which 66 were discharged automatically while 5 of them were

proved interactively.

6. REFERENCES
[1] Shree Murthy, J.J. Garcia-Luna-Aveces, Distributed

Bellman-Ford routing protocol (DBF), a routing

protocol for packet radio networks, In Proc. ACM

International Conference on Mobile Computing and

Networking, pp. 86-95, Nov, 1995.

[2] M. S. Corson and A. Ephremides, A distributed routing

algorithm for mobile wireless networks, In ACM Journal

of Wireless Networks, vol. 1, no. 1, pp. 61-81, 1995.

[3] S. Murthy and J.J. Garcia-Luna-Aceves, An Efficient

Routing Protocol for Wireless Networks, In ACM Mobile

Networks and App. J., Special Issue on Routing in

Mobile Communication Networks, pp. 183-97 Oct 1996.

[4] C. Perkins and P. Bhagwat, Highly dynamic destination-

sequenced distance- vector routing (DSDV) for mobile

computers, In ACM SIGCOMM’94 Conference on

Communications Architectures, Protocols and

Applications, London, UK,pp. 234-244.Aug 1994.

[5] E. Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani. and

R. D. Gitlin. AIRMAIL: A link-layer protocol for wireless

networks. In Wireless Networks, 1(1) pp. 47-60,Feb

1995.

[6] T.Chen and M. Gerla, Global State Routing: A new

routing scheme for ad- hoc wireless networks, In Proc. of

IEEE International Conference on Computers and

Communications (ICC ‘98),Atlanta,GA,June 1998.

[7] Mario Gerla, Guangyu Pei, Xiaoyan Hong, Tsu-Wei

Chen, Fisheye State Routing Protocol (FSR) for Ad Hoc

Networks , Internet Draft, draft-ietfm anet-fsr-00.txt,

work in progress, June 2001.

[8] J. Garcia-Luna, M. Spohn. Source Tree Adaptive Routing

Internet Draft, draft-ietf-manet-star-00.txt, work in

progress, October 1999.

[9] T. Clausen, P. Jacquet, P. Muhlethaler, A. Laouiti, A.

Qayyum, and L. Viennot, Optimized link state routing

protocol, In IEEE INMIC’Ol, Lahore, Pakistan, Dec

2001.

[10] Mario Gerla, Xiaoyan Hong, Li Ma, Guangya Pei,

Landmark routing protocol (LANM4R), Internet Draft,

draft-ietf-manet-lanmar-0 I .txt, work in progress, June

2001.

[11] C. E. Perkins and E. M. Royer, Ad-hoc On-Demand

Distance Vector Routing, In Proc. of the 2nd IEEE

Workshop on Mobile Computing Systems and

Applications, pp. 90-100. New Orleans, LA, Feb 1999.

[12] Y.C. Hu and D. B. Johnson, Caching -strategies in on-

demand routing protocols for wireless ad hoc network,

In Proc. 6th Annual ACM/IEEE International Conf. on

Mobile Computing and Networking (ACMMobiCom

‘00), pp 231-242, Aug 2000.

[13] M.S. Ccorson and A. Ephremides, Lightweight mobile

routing protocol (LMR) ,A distributed routing algorithm

for mobile wireless networks, Wireless Networks 1

(1995).

[14] D. B. Johnson, D. A. Maltz, and J. Broch, DSR: The

dynamic source routing protocol for multihop wireless

ad hoc netivorks, In Ad Hoc Networking. Addison-

Wesley, 2001, ch. 5, pp. 139-172.

[15] Josh Broch, David Johnson, and David Maltz, The

dynamic source routing protocol for mobile ad hoc

networks, http://www.ietf.orglintemet-drafts/ draft-ietfm

anet-dsr-03.txt, Oct 1999. IETF Internet Draft

[16] ‘Joa-Ng and I.-T. Lu, A Peer-to-Peer zone-based two-

level link state routing for mobile Ad hoc Networks, In

IEEE Journal on Selected Areas in Communications,

Special Issue on ad-hoc networks, Aug1999, pp.1415-25.

[17] C. E. Perkins and E. M. Royer, Ad-hoc On-Demand

Distance Vector Routing, In Proc. of the 2nd IEEE

Workshop on Mobile Computing Systems and

Applications, pp. 90-100. New Orleans, LA, Feb 1999.

[18] Christel Baier and Joost-Pieter Katoen: Principles of

Model Checking. The MIT Press, 2008.

[19] Gerhard J. Holzmann: The Spin Model Checker: Primer

and Reference Manual. Addison–Wesley, 2003.

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.5, August 2015

30

[20] Marco Devillers, David Griffioen, Judi Romijn, and Frits

Vaandrager: Verification of a leader election protocol:

Formal methods applied to ieee 1394. Form. Methods

Syst. Des.,16(3):307–320, 2000.

[21] Abrial, J.R., J.R., Cansell, D.,M´ery, D.:A Mechanically

Proved and Incremental Development of IEEE 1394 Tree

Identify Protocol. Formal Asp. Comput. 14(3), 215–227,

2003.

[22] A Udaya Shankar and Simon S Lam: A stepwise

refinement heuristic for protocol construction.ACM

Transactions on Programming Languages and Systems,

14(3):417–461,1992.

[23] Dominique M´ery and Neeraj Kumar Singh:Analysis of

DSR Protocol in Event-B 13thInternational Symposium

on Stabilization, Safety, and Security of Distributed

Systems (2011)401-415.

[24] Arun Kumar Singh, Divakar Yadav and Vinod Kumar

Singh , 2014. MODELING OF DSDV ROUTING

PROTOCOL FOR AD HOC NETWORKS USING

EVENT-B. International Journal of Computer

Engineering & Technology (IJCET) Volume:5, Issue :2,

Pages:108-116.

[25] Singh, A.K and Singh, V.K.: Formal Modeling of

Distance Vector Routing Protocol using Event-B in

Advance in Electronic and Electric Engineering ISSN

2231-1297, Volume 3,Number 1 (2013), pp. 91-98.

[26] Hoang, T.S., Kuruma, H., Basin, D.A., Abrial, J.R.:

Developing Topology Discovery in Event-B. In:

Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS,

vol. 5423, pp. 1–19.Springer, Heidelberg (2009).

[27] Jean-Raymond Abrial. The B-book: assigning programs

to meanings. CambridgeUniversity Press, 1996.

[28] Ralph-Johan Back and Reino Kurki-Suonio.

Decentralization of process nets with centralized control.

Distributed Computing, 3(2):73–87, 1989.

[29] Abrial, J.R.:Modeling in Event-B: System and Software

Design. Cambridge University Press, 2010.

[30] Abrial, J.R.: Extending B without Changing it (for

developing distributed systems). Proc. of the 1st Conf. on

the B method, H. Habrias (editor), France, pages 169–

190, 1996.

IJCATM : www.ijcaonline.org

