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ABSTRACT 

An ad hoc network is collection of mobile nodes that do not 

have any fixed topology. In such a network, nodes are likely 

to join or leave the network in an arbitrary manner. Joining of 

any nodes is announced by itself to other neighboring nodes 

and nodes already present in the network learns about joining 

of the new node by this announcement. In such a scenario, 

discovery of path from one node to other node is an important 

task for the routing protocols used for the purpose. Adhoc on 

demand vector (AODV) is one routing protocol used in 

MANET environment. Being a reactive protocol, path 

discovery process in AODV is initiated by sender node when 

there is no routing information for an intended destination.   

In this paper, we present a formal model for path discovery 

process of the AODV protocol using Event-B. The model 

have been developed and checked using the RODIN tool 

which provides an integrated framework for development of 

Event-B models. Event-B technique uses a notion of 

refinement to specify the mathematical models of distributed 

systems in an incremental manner. The specifications of the 

system have been checked for consistency and satisfy the 

behavioural properties of the system expressed as invariants. 

All the proof obligations were discharged automatically by the 

RODIN tool.   
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1. INTRODUCTION 
A mobile ad hoc network (MANET) may be defined as a 

collection of autonomous mobile hosts which are free to move 

arbitrarily. Every node is independent and may join or leave 

frequently the periphery of the existing network of 

cooperative and coordinating nodes. Thus a MANET 

environment may be visualized as a complex distributed 

environment where the number of nodes may vary and their 

topology keep on changing frequently during normal 

operation. Routing of messages in such an environment 

becomes difficult compared to the stationary environment, as 

the routing protocol to be used, need to be adaptive to 

changing topology of the environment. 

In an ad hoc network, there is no way that the location of a 

host can be precisely determined. There is no centralizing 

server to administer the network. So the problem of 

communication, in a small area where an ad hoc network is 

set up, is still manageable if the movement of nodes is not 

very fast. In a situation like this, every node could be 

preloaded with route table initially and to routing table may 

keep on updating in an incremental manner whenever any 

node in the network broadcast route update information. If the 

network is very dynamic and spread widely, then a different 

approach is needed. In fact, in a decentralized environment 

where network topology keep on changing, establishment of a 

route between two nodes  can be visualized as path finding in 

any dynamic graph. 

Routing protocols proposed for MANET are categorized by 

the routing strategy followed by them. First, there are 

protocols that are distance vector typed. The typical distance 

vector algorithms such as Distributed Bellman Ford algorithm 

[1, 2], cannot be adapted for mobile networks because of their 

slow rate of convergence and count-to-infinity problem.  

Protocols such as Wireless Routing Protocol (WRP) [3], 

Destination Sequence Distance Vector (DSDV) routing 

protocol [4], are extensions of distance vector algorithm. 

Second, there are protocols that are based on link state [5] 

algorithms such as Global State Routing (GSR) [6], Fisheye 

State Routing (FSR) [7], Source Tree Adaptive Routing 

(STAR) [8], Optimized Link State Routing (OLSR) protocol 

[9], and Landmark Ad Hoc Routing (LANMAR) [10].  

An important class of algorithms, termed as on-demand 

routing protocols [11, 12], are proposed exclusively for ad hoc 

networks only. On-demand routing protocols do not maintain 

route table of the network on a continual basis, rather, routes 

are established whenever there is a demand by the source. 

When a route is needed by the source, it floods a route request 

packet to construct a route. Upon receiving route requests, the 

destination selects the best route based on route selection 

algorithm.  Lightweight Mobile Routing (LMR) [13], 

Dynamic Source Routing (DSR) [14, 15], Temporarily 

Ordered Routing Algorithm (TORA) [16], Ad-Hoc on 

demand distance vector (AODV) routing [17]  are typical on-

demand routing protocols. 

Network protocols have been analysed using number of 

formal methods. Some of the analyses have been performed 

using model checking [18, 19]. The protocols have also been 

analysed using theorem prover [20] and technique of 

refinements [21, 22, 23, 24, 25]. An extensive study for 

routing in changing environment has been reported in [26]. 

In this paper, we attempt to delineate a path discovery model 

in MANET of AODV protocol applying Event-B. The model 

contains a Send event that models the sending of route request 

message. The route request messages from one node to other 

node is forwarded using event Forward. The events 

Rev_Route_Entry, Rrep_to_Rreq,  Rrep-Backward, Receive 

 models the event of information of traversed node, sending of 

reply message in response to route request message, passing 

of route reply message in backward direction and delivery of 

message at destination or target site respectively. 
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The rest of the paper is organized as follows. Section 2 

describes framework for formal modeling using Event-B and 

RODIN. The informal description and assumptions for 

modeling is given in section 3. Section 4 presents formal 

model of path discovery of AODV followed by conclusion of 

the paper in section 5.  

2. FORMAL MODELING USING 

EVENT-B AND RODIN PLATEFORM 
 

Event-B [21, 23, 26] is a method for discrete-level modeling 

and analysis which is derived from the B-Method [27] by 

incorporating the ideas of action systems [28].  It is based on 

set theory and logic as modeling notations, refinement to 

represent systems at different abstraction levels and proof 

obligations to verify consistency between refinement levels. 

The purpose of the proof obligations is to show that a model is 

rigorous with respect to some behavioural semantics and to 

verify properties of the model. This purpose permits to use the 

same proof obligations for different modeling domains such 

as concurrent, reactive, and distributed systems. For 

developing mathematical models, set theory is used as 

modeling notation. These models consist of several 

components which are either a machine or a context. 

The behavioural properties of an Event-B model [29, 30] are 

described by Machine which is dynamic and includes 

variables, invariants, theorems, and events. Variables refer to 

mathematical objects like functions, sets, binary relations, and 

numbers. These variables are constrained by invariants which 

are supposed to be fixed whenever value of variable changes. 

However, this must be proved through the discharge of proof 

obligation. The theorem of machine is used within the context 

and invariants. A machine also contains a number of events 

which have three components: an event name, guard(s) and 

action(s). The guard is necessary condition for the 

performance of event. The actions regulate the way through 

which the state variables are evolving during event. Moreover, 

machines are refined by other machines with the limitation 

that each machine can refine maximum one machine. 

The static structure of an Event-B model is designated by 

Context which includes constants, axioms, carrier sets and 

theorems which are further used to describe the properties of 

sets and constants. Constants enlist the different constants 

introduced in the context, while axioms defines the main 

properties of the constants and any axiom can be marked as 

theorem if it is derived from previously declared axioms. The 

Figure1 given below explains the relationship between 

various components of a model. 

The static structure of an Event-B model is designated by 

Context which includes constants, axioms, carrier sets and 

theorems which are further used to describe the properties of 

sets and constants. Constants enlist the different constants 

introduced in the context, while axioms defines the main 

properties of the constants and any axiom can be marked as 

theorem if it is derived from previously declared axioms. 

There also exists a relationship between components of model 

as shown in Figure 1.  

The Rodin tool provides an extensible and configurable 

platform for specifying and refining Event-B machines and 

offers a seamless integration between modeling and proof 

obligations. 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Relationship between components of model 

 

3. INFORMAL DESCRIPTION OF 

AODV AND MODELING ASSUMPTIONS  

3.1 Informal Description of AODV 
The AODV is a source initiated reactive routing protocol. It is 

adaptive to dynamic link conditions and determines unicast 

between sources and destinations. It uses destination sequence 

numbers in order to ensure that paths are free from loops. 

AODV do not suffer from counting to infinity problems 

associated with classical distance vector protocols. This is an 

on demand protocol which has the same functionality as in 

DSR during route discovery phase.  In contrast to DSR, it is  

not a source based routing scheme. Rather, every hop of a 

route in AODV maintains the next hop information by its 

own. It employs the destination sequence number technique 

used in DSDV. Thus, AODV may be visualized as an on 

demand version of DSDV because it typically minimizes the 

number of required broadcasts by creating routes on an on-

demand basis. In AODV, nodes that are not on a selected path 

do not maintain routing information or participate in routing 

table exchanges. 

Path Discovery 

The process of path discovery starts initially by sending a 

Hello message by all nodes on its interface and receive Hello 

messages from its neighbors. This process is repeated 

periodically to determine connectivity to the neighbours. 

When a source node desires to send a message to some 

destination node, it checks for the valid route to that 

destination. If the same is not found, it initiates a Path 

Discovery process to locate the other node. For this purpose, it 

broadcasts a route request (RREQ) packet to its neighbors, 

which forward the request to their neighbors, and so on. The 

process is repeated until either the destination or an 

intermediate node with a relatively fresh route to the 

destination is located.  

 

Figure 2 illustrates the path discovery process of AODV. 

AODV utilizes destination sequence numbers to ensure all 

routes are loop-free and contain the most recent route 

information. Each node maintains its own sequence number. 

The RREQ packet of the source node contains the most recent 

sequence number of the destination and its own sequence 

number. Intermediate nodes can reply to the RREQ request 

only if they have a route to the destination whose 

corresponding destination sequence number is greater than or 

equal to that contained in the RREQ. During the process of 

forwarding the RREQ, intermediate nodes record the address 

of the neighbor from which the first copy of the broadcast 
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packet is received. This helps in establishing a reverse path. If 

copies of the same RREQ are received later, the packets are 

discarded. Once the RREQ reaches the destination or an 

intermediate node with a fresh enough route, the destination 

intermediate node responds by a route reply (RREP) packet to 

the neighbor from where it received the RREQ first. 

 

 

 

 

 

 

 

 

(a) Route Request (RREQ) 

 

 

 

 

 

 

 

 

(b) Route Reply (RREP) 

Fig 2: Path discovery in AODV 

As the RREP is routed along the reverse path, nodes 

appearing in this path update forward route entries in their 

route tables. This entry points to the node from which the 

RREP was received. These forward route entries signify the 

active forward routes. When Route Reply Message reaches the 

source node of RREQ, the route is ready and is fresh. If any 

link on the forward path is broken, the intermediate node 

adjacent to the broken link sends new Route Reply Message to 

all the sources to inform them of the link failure using the 

forward path.  Consequently, other nodes will send to their 

neighbors until all nodes that use forward path are informed. 

The source nodes can then initiate new RREQ procedures if 

route is desired to the destination. 

3.2 Modeling Assumptions 

In MANET environment the status of links changes 

arbitrarily, therefore, sometimes it is not possible that each 

node have the correct information of network topology and 

status of links. Also in real time the environments behavior 

may not be represented correctly by the protocol in use [30].  

To handle the situation, we consider the limiting case, when 

the environment is reasonably stable in terms of topology and 

anticipate that the information maintained in local routing 

table will become consistent with states of the actual topology 

at the time of conclusion. 

The major requirements of the system can be outlined as 

follows 

-Message transition from source node to destination node 

must be successful in MANET. 

-Every node has the correct status of the links between all 

nodes in the network assuming the topology stable for a 

reasonably long time. 

Before developing the formal model of path discovery of 

AODV, we have following assumption on MANET 

environment: 

- There are only finite no of nodes. 

- There are directed links between some pairs of distinct 

nodes. Links may become active or inactive at any point of 

time. 

- Nodes are communicating by broadcasting when they are 

directly connected. A new node announces its presence and 

listens for announcements broadcast by its neighbours. 

-Messages are transmitted asynchronously. 

- When any messages sent on a link which is not received are 

treated as lost and link is treated as inactive. 

In following section, we present the formal mmodel of the 

system using Event-B. 

4. SYSTEM MODEL 
We start with our abstract model of DSDV routing protocol 

presented in [24]. The context part contains NODE and MSG 

as carrier sets which represents nodes and messages 

respectively. The variables sent, got and lost are defined as a 

subset of MSG. The variable ALinks defined as: ALinks ∈ 

NODE↔NODE represents the set of active links between 

nodes. The variables and invariants are given in figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Variables and  Invariants of Machine 

Other important variables are detailed below. 

(i) The variable chstore is a relation which contains 

messages which are in communication channel. A 

mapping nmm: chstore represents that message m is 

sent by node n and it is present in channel. 

MACHINE 

RoutingM1 

VARIABLES 

chstore, dseq, dseqm, sseqm, nodemetric, neighbour, 

nodemetricm, rreq, receivedreq, messagetype, 

travel_node, pathnode, pathsize, travel_node, chback  

INVARIANTS 

inv1   :    chstore∈ NODE ↔MSG 

inv2   :    dseq ∈ (NODE↔NODE)→ℕ 

inv3   :    dseqm ∈ (MSG↔NODE)→ℕ 

inv4   :    sseqm ∈ (MSG↔NODE)→ℕ 

inv5   :    nodemetric ∈ NODE→(NODE→ℕ)  

inv6   :    neighbour∈NODE↔NODE 

inv7   :    nodemetricm ∈MSG→(NODE→ℕ) 

inv8   :    rreq∈NODE→MSG 

inv9  :    messagetype∈MSG→MSGTYPE 

inv10 :    travel_node∈TNODE 

inv11 :    pathnode⊆NODE 

inv12 :    pathsize∈ℕ 

inv13 :    travel_node∈1‥pathsize⤖pathnode 

inv14 :    chback∈ NODE ↔MSG 
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(ii) Every site maintains the information about sequence 

number of destination site. The variable dseq represents 

sequence number of destination site. It is represented as 

dseq ∈ NODE→ (NODE→ℕ).A mapping {sm({tmn1})} ∈ 

dseq indicates that routing table of site s has entry that n1 

is the sequence number of destination site t.  

(iii) The variable sseqm specifies sequence number of source 

assigned to source field of message. The domain of this 

variable is a relation between message set MSG and node 

set NODE. A mapping of form ({datamsg↦s}) ↦n1 ∈ 

sseqm indicates that n1 is sequence number assigned to 

source node s of message datamsg. Similarly, variable 

dseqm specifies sequence number of destination assigned 

to destination field of message.  

(iv) The variable neighbour gives the information about 

neighbour of any node. 

(v) The variable nodemetric contains the information about 

the total hop count from a particular node.   

(vi) The variable rreq presents route request message send by 

any site. A mapping x↦mm ∈ rreq indicates that node x 

has sent route request message mm.  

(vii) The variable travel_node is declared as: 

travel_node∈1‥pathsize⤖pathnode 

This variable sequentially maintains entry of each 

traversed node. It is defined as a total bijective function. 

The total bijective function is a one-to-one  and onto 

relation which maps all elements of the domain. Each 

time when a route request message passes from one node 

to other this variable makes the entry of traversed node 

sequentially 

(viii)The variable chback presents the information about node 

from which route reply message is received. 

  

4.1 Send  Event 

This event models the sending of route request message (fig. 

4). The s and t are two different nodes are specified through 

the guard grd1, grd2 and grd3. The message datamsg has not 

been sent is specified through guard grd5. The node s and 

node t are the source and destination or target of message 

datamsg is specified through guard grd6 and grd7. The guard 

grd8 specifies that type of datamsg is RREQ i.e; route request 

message. The guard grd9 ensures that message datamsg has 

not been sent. This event adds the datamsg in to channel 

(act2).  The action act3 assigns the sequence number of 

source s to the source field of message datamsg. Similarly, 

action act4 assigns the sequence number of destination d to 

the destination field of message datamsg. The action act5 

assigns nodemetric of source s to message datamsg. The 

action act6 add the request message datamsg in to request set 

rreq. The action act7 add the source node s as starting node 

because node information is added at 0th position. 

4.2 Forward Event 
This event forwards the route request message from one node 

to other node (fig. 5). The guard grd6 ensures that message 

datamsg is a route request message. The message has been 

sent but it is neither received nor lost is ensured through guard 

grd1. The guard grd3 ensures that channel contains the route 

request message sent by site x. The guard grd2 ensures that 

node x and node y are connected with each other. The guard 

grd4 specifies that y is a neighbour of node x. The guard grd8 

ensures that route request message has travelled the node x. 

This event forwards route request message from node x to 

node y. The action act1 add route request message in rreq set. 

The action act2 formalize the forwarding of route request 

message. It adds the entry for node y and remove entry of 

node x.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Send Event 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Forward Event 

4.3 Capturing Traversed Node Information 

(Rev_Route_Entry Event) 
This event formalizes the information of traversed node (fig. 

6). The message datamsg is route request message is ensured 

through guard grd1. The guard grd4 ensures that route request 

message  datamsg  is currently at node x. The target of route 

request message is node t. The guard grd7 ensures that 

message is updated because destination sequence number in 

route request message datamsg is greater than sequence 

Forward   ≙    

ANY datamsg, x,y 

WHERE 

grd1   :    datamsg ∈ sent ∖ (got ∪ lost) 

grd2   :    x↦ y ∈ ALinks 

grd3   :    x↦ datamsg ∈ chstore 

grd4   :    y∈ neighbour[{x}] 

grd5   :    y↦ datamsg ∉ chstore 

grd6   :    messagetype(datamsg)=RREQ 

grd7   :    datamsg∈ ran(rreq) 

grd8   :    x∈ ran(travel_node) 

THEN 

act1   :    rreq≔ rreq ∪ {y↦datamsg} 

act2   :    
chstore ≔ (chstore ∖ {x↦ datamsg})∪  

{y↦ datamsg} 

END 

 

 

Send   ≙    

ANY s, t, datamsg 

WHERE 

grd1   :    s∈NODE 

grd2   :    t∈NODE 

grd3   :    s≠t 

grd4   :    datamsg ∈ MSG 

grd5   :    datamsg ∉ sent 

grd6   :    source(datamsg) = s 

grd7   :    target(datamsg) = t 

grd8   :    messagetype(datamsg)=RREQ 

grd9   :    s↦datamsg ∉chstore     

THEN 

act1   :    sent ≔ sent ∪ {datamsg} 

act2   :    chstore ≔ chstore ∪ {s↦ datamsg} 

act3   :    sseqm({datamsg↦s})≔dseq({s↦s}) 

act4   :    dseqm({datamsg↦t})≔dseq({s↦t}) 

act5   :    nodemetricm(datamsg)≔nodemetric(s) 

act6   :    rreq≔rreq∪{s↦datamsg} 

act7   :    travel_node(pathsize+1)≔s 

END 
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Rrep_to_Rreq   ≙    

ANY t, datamsg1, y, datamsg2, n,s 

WHERE 

grd1   :    n = pathsize 

grd2   :    datamsg1∈ MSG 

grd3   :    messagetype(datamsg1)=RREQ 

grd4   :    datamsg2∈ MSG 

grd5   :    messagetype(datamsg2)=RREP 

grd6   :    target(datamsg1) = t 

grd7   :    source(datamsg1)=s 

grd8   :    y↦ datamsg1 ∈ chstore 

grd9   :    (n↦ y)∈ travel_node 

grd10 :    dseqm({datamsg1↦t})< dseq({y↦t}) 

grd11:    target(datamsg2)=s 

THEN 

act1   :    sent≔ sent∪ {datamsg2} 

act2   :    chback≔ chback ∪ {y↦ datamsg2} 

END 

number of destination at node x. The action act1 makes the 

entry of traversed node node x. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Rev_Route_Entry Event 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Rrep_to_Rreq Event 

4.4 Sending of Reply Message (Rrep_to_Rreq 

Event) 
This event models the sending of reply message in response to 

route request message (fig. 7). The message datamsg1 is route 

request message is ensured through grd2 and grd3. The 

message datamsg2 is route reply message is ensured through 

grd4 and grd5. The target and source of route request message 

datamsg1 are node t and node s respectively (grd6 and grd7). 

The guard grd8 ensures that route request message datamsg1 

is currently present at node y. The guard grd9 specifies that 

node y is traversed node. The guard grd10 ensures that node y 

has more updated route information since sequence number of 

destination is greater than destination sequence number 

present in route request message datamsg1. This event 

triggers the sending of route reply message datamsg2 to the 

source of route request message datamsg1. The action act2 

adds the information that y has sent route reply message 

datamsg2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Rrep_Backward Event 

4.5 Passing Reply Message in Backward 

Direction (Rrep_Backward Event) 

This event models the passing of route reply message in 

backward direction (fig. 8). The guard grd1 and grd2 specifies 

that route reply message is currently present at node y. The 

grd3 ensures that next node to which route reply message to 

be forwarded is node x. specifically, node x is that node from 

where node y has received route request message. The guard 

grd4 ensures that type of message datamsg is route reply 

message. The message has already been sent is ensured 

through guard grd5. The guard grd6 specifies that node y and 

node x are connected node. The action act1 forwarded route 

reply message from node y to node x. The action act2 reduces 

path size by one. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Receive Event 

4.6 Receive Event 
This event models the delivery of message at destination or 

target site (fig. 9). The guard grd4 and grd5 specify that 

source and target of message datamsg are node s and node t 

respectively. The guard grd6 ensures that message has been 

sent but not received by the target node. The guard grd7 

specifies that message is forwarded to target node t. The 

delivery of message may be done either in forward direction 

for route request message or in backward direction for route 

reply message.The action act1 specifies that receiving of 

message. 

Receive   ≙    

ANY s, t, datamsg 

WHERE 

grd1   :    s∈NODE 

grd2   :    t∈NODE 

grd3   :    datamsg ∈ MSG 

grd4   :    source(datamsg) = s 

grd5   :    target(datamsg) = t 

grd6   :    datamsg ∈ sent ∖ (got ∪ lost) 

grd7   :    t↦ datamsg ∈ chstore ∨ t↦ datamsg ∈ chback 

THEN 

act1   :    got ≔ got ∪ {datamsg} 

END 

Rev_Route_Entry   ≙    

ANY datamsg, x, t 

WHERE 

grd1   :    messagetype(datamsg)=RREQ 

grd2   :    x∈ NODE 

grd3   :    t∈ NODE 

grd4   :    x↦ datamsg ∈ chstore 

grd5   :    x↦ datamsg∈ rreq 

grd6   :    target(datamsg) = t  

grd7   :    dseqm({datamsg↦t}) > dseq({x↦t}) 

THEN 

act1   :    travel_node(pathsize+1) ≔ x 

act2   :    pathsize≔ pathsize+1 

END 

Rrep-Backward   ≙    

ANY x, y, datamsg 

WHERE 

grd1   :    y=travel_node(pathsize) 

grd2   :    y↦ datamsg ∈ chback 

grd3   :    x=travel_node(pathsize−1) 

grd4   :    messagetype(datamsg)=RREP 

grd5   :    datamsg ∈ sent ∖ (got ∪ lost) 

grd6   :    y↦ x ∈ ALinks 

THEN 

act1   :    
chback ≔ (chback ∖ {y↦datamsg})∪  

{x↦datamsg} 

act2   :    pathsize≔pathsize−1 

END 
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4.7 Critical Invariant Of Model 
During route discovery process, when any intermediate node 

receives a route request message it sends the RREP provided 

it has recent information about destination node. The 

following invariant tells that a route reply message datamsg2 

will present in channel (y↦ datamsg2)∈chback) when an 

intermediate node y has fresh route information i.e; (sequence 

number of destination node present in the route request 

message datamsg1 is less than sequence number of 

destination node present in intermediate node y i.e; 

dseqm({datamsg1↦t})< dseq({y↦t})).  

∀datamsg1,datamsg2,t,y·(t∈NODE∧ y∈NODE ∧ messagetype 

(datamsg1)=RREQ∧ target(datamsg1)=t ∧ messagetype 

(datamsg1) =RREP ∧ (y↦ datamsg2)∈ chback ⇒ 

dseqm({datamsg1↦t})< dseq({y↦t})) 

5. CONCLUSION 
The Path discovery process is crucial element of any routing 

protocol in MANET environment. Path discovery in AODV 

routing protocol is based on a route request/route reply query 

messages. It is initiated to locate other nodes in the network 

when a message has to be sent to some destination node and 

there do not exist any valid path to that destination. The 

process starts by broadcasting RREQ packet to its neighbours, 

the neighbours receiving this packet forward the request to 

their neighbours. This process is repeated till a fresh route to 

the destination is located with the help of RREP received 
from the intermediate nodes. In this work, formal 

specifications of Path discovery process of AODV routing 

protocol have been developed using Event-B. RODIN 

platform has been used for writing the Event-B specifications 

and discharging proof obligations generated by system. The 

behavioural properties of the system have been expressed in 

terms of number of Invariants.  The specifications have been 

model checked for consistency.  The specifications ensure that 

any source node initiating the path discovery will eventually 

have the fresh route information and will get to know about 

the route to other node, if it exists. The specifications satisfy 

all the invariants signifying that correctness of the system in 

terms of the behavioural properties of the system. 

Total 71 proof obligations were generated by system out of 

which 66 were discharged automatically while 5 of them were 

proved interactively.  
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