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ABSTRACT

GCD attack depends on modifying the cipher text and then get
an access to the decryption of the modified cipher text that is
discarded identifying as due to bad implementation. In this
paper we mount a GCD attack on Demytko’s cryptosystem on
elliptic curves. In this we implement the attack by point
addition with projective coordinates using a fast computation
method. As this involves working only with X -coordinates.
We start with developing the formulas for the projective
coordinates [x:z] generalizing the ideas of Montgomery and
propose to use these formulas to generate the polynomials for
the GCD attack.
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1. INTRODUCTION

RSA Cryptosystem is the most popular public key
cryptosystem with security depending on difficulty of
factoring large integers. As RSA is susceptible to
homomorphic attacks, systems with non homomorphic nature
were developed. In this context, in 1985 Koblitz and Miller
made use of elliptic curves in cryptography. Koyama etal and
Demykto developed analogues to RSA with elliptic curves.
Demytko cryptosystem uses only the first coordinate of a
point on elliptic curve making it more resistant to chosen
message attack, however in the paper " On the importance of
securing your bins: The garbage-man-in-the-middle attack™ by
Marc Joye and Jean-Jacques Quisquater, it is shown that
Demytko cryptosystem is susceptible to gcd attack using
division polynomials. In this paper we implemented the gcd
attack on Demytko cryptosystem with point addition by
projective coordinates. As Demytko cryptosystem involves
working only with X -coordinates, we start with developing

the formulas for the projective coordinates [X :Z]

generalizing the ideas of Montgomery and propose to use
these formulas to generate the polynomials for the GCD
attack.

2. POINT ADDITION WITH
PROJECTIVE COORDINATES
Let K be a field with Characteristic K # 2,3 and consider

the elliptic curve E(K) over K in Weierstrass form

E: y2 = x3 + AX+ B and for any points P = (X1' yl)
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and Q=(X,,Y,) € E\{O} with X, #X, the affine
addition P +Q = (X3, Y,) is given as:

— m?2
Xy = M° =X —X,,

- Yo=Y
Yo = M(X —X;) — Y;, Wherem = .
3 1 3 1 XZ—X]_

and for P=(X,y,)€E the affine addition
2P = (X, Y) isgivenas:

X=m?—-2x,,
32+ A

y =m(x —X;)—Y,, wherem = 2y,

Now for any point P = (X, y) € E , the projective

coordinates are denoted as P = (X,Y,Z) for X = ;
dy= Y
and Yy = —.
z

Theorem 1: Let K be a field of characteristic not equal to
2,3and E be the elliptic curve given by the equation

y> = X3+ AX+B.1f P =(X,y) then for any positive
integer K, the projective coordinates of KP are denoted as
(X, 1Y, :Z,) and [X, :Z,] are given by recursion
formulas as follows:

rk =2m+1,

X, =-4BZ 7, (X, Z, ., +X

me=m+l m+1

X
2= S (KnZa =Xl

2
m+1 m+1 m) '

33

Zm)+(xmxm+l - Azmzm+l)21
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itk =2m, l[xmﬂ_xmjz_
{ Xk = (Xri _'Azl’i)2 _8BXer?p Z Zm+1 Zm
- 3 2
Z,=4Z (X2 +AX_Z2+BZ3). o Yma Yo op [ ay Xn Xoa [ Xa , Xna |
m+1 m Zm+l Ym Zm+l
Proof. 4
Forany point M = (x, y)on X oma (ﬁj Xm+1 _
2 3 ZZm+1 Z Zm+1
E:y° =x"+ Ax+ Bwe have
X Y ZB_'_[ m+1 ][ ]}
x=—,y=—for(X,Y,Z |: Zm+
2 V=g ) 1

2
the projective coordinates of M. ( j (

Thereforey® = x* + Ax + B.

St AORE Sl 2

/—&\;/NX
N><

m+1J ]K J A

m+1 X
_ _ +| 2B+ —2 N
Inparticular for afixed P = (x, y)on E i1 Lo
and any integer mZO,vzvehavefor (2m+1)P Xm X ¥ (X Y X
Ym+1 _Yim Zm Zm+1
X2m+l — A +1 Zm _ﬁ_ Xm+1 =-4B 2
Zm+1 Zm L Zm+1 Zm

X2m+l(xm+l_me2_ m

Zywa \Zna  Zn X ? X ? X X

, , + A2 + m m+1 + 2A m m+1
Ym+l Ym X m X m+1 X m+1 X m Z m Z m-+1 Z m Z m+1
Z Z Z

m-+1 m

= M 2 + Y 2 _p_md Ym+1 Ym _

Zm+1 Zm Zm+l Zm X « )

h3+ Xn 3_ Xt me_ X zh :_48( m 4 m+1](zm_zm+1] +

Zm+1 Zm Zm+l Zm Zm Zm+1 i r;+l " m-;l

Xn X X X

— xm+1 Xm [ m m+l Aj [ m m+1]

_A(Z j+B+A{Y j+B Z. Z. . z. Z..

m+1

_Zthm‘f' Z_mtl
Z . Z

m+1 m

:_ZhY_m_}_ZB_{_ A.}.&h &4_&
Z .7 Z Z Z Z

m-+1 m
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X[ Xa Xau|

Z\Z, L,

—4B XmZm+1+Xm+lzm + Xme+l_AZmZm+1 i
Z 7 Z 7

mT—m+1 m—m+l

é XmZm+1_Xm+1Zm 2
Z Z 7

mT—m+1

— _4Bzmzm+1(xmzm+1+ Xm+1zm)+(xmxm+1_AZmzm+l)2
é(xmzmﬂ_ Xerlzm)2
[X 2m+1 ZZm+1] = [_4Bzmzm+l(xmzm+l + Xm+1zm)

+(mem+l _AZmZm+l)2;
X
f(xmzmﬂ - Xm+lzm)2]
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[x2 - az2f -88x,2:
3
4Z$mej + A(ij + B]
Zm Zm

(xz-Azzf -8BX,2;

47, (X2 +AX,z2 +BZE)
[XomiZon]=
[(x; ~Az2Y -8BX, 2342, (X3 + AX,Z2 + Bz;)]

Remark 1: The formulas for computation of [ X, :Z, ] in
KP depend only on [X,:Z,] for P=(X,y) and
X, =X,Z,=1; ie, the formulas are polynomials in

{Xk = X (%)
X(P) and
Z = Z, (%)

Theorem 2: Let K be a field of characteristic not equal to
2, 3 and let E be the elliptic curve given by the equation

E(K):y*=x+AX+B and also P=(X,,Y,)

and Q=(X,4,¥Yny) € E(K)\{O} with P=Q.
Given the point P—Q =(X,y), if y#0 then the Yy -

coordinate of P satisfies

—[ZB +(A+X X)X+ X ) =X (X~ xm)z]
2y '

y(P) =y, =
Proof.
DefineD = P-Q = (X, y).

SinceQ=P-D=(X, 1, Yn4)

2
+
we havex,, , = In ¥V X — X
Xy — X

Then X,y (X =X)* = (Yo +¥)* = (X + X)Xy =X)°

= Y+ Y7 2,y = 0 + X =X X = XX,,)
=2y, y+(A+x,X)(x, +X)+2B

2ymy = Xm—l(xm - X)2 _(A+ me)(xm + X)_ZB
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_ = 2B = (A+ X, X) (X + X) + Xy (X = X)?
2y

m

Therefore y = )
y

3. FAST COMPUTATION METHOD
FOR X, AND Z,

We describe the fast computation method to compute Xe
and Ze suggested by P. Smith for Lucas sequences and this

method directly leads to the computation of [ X, : Z,] with
no ambiguity of adding or doubling at each stage right from
[ X, :Z,] by using the above recursive formulas.

For any integer €, we have the binary expression

t
givenas € = in 27 %, =1,% =0or1,for i >0.
=0

k .

Let & = » X2 for 0O<SK <t then e =e,€, =1.
i=0

2e, ifx,,=0

Theorem3: €, ; = . _
2e +1 ifx,, =1

Proof.

kK+1
We havee,,, = > x 2"

i=0

k
— zle 2k—l + Xk+12k+lfk—l
s

k .
=2> %2 4+ Xy

i=0
=28, + X,

2e, ifx,,=0

Thereforee, ,, = {Ze W1 ify =1
k k+l = =

2, +1 ifx ., =0
2(e, +1) if x, =1.

2e, -1 ifx,=0
€ -1= .
2e, ifx., =1

Remark 2: €, , +1= {

—[ZB+(A+ X X)X, +X) =X, (X, —x)z]
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Remark 3: [X,:Z,]are computed by evaluating
[XekZZek] for k=0,1,....,t by using recursive

formulas for [XZek+l : ZZek+1] and [X2ek ; ZZek ]

We give in the following an algorithm for fast computation
method for computing the projective coordinates Xe , Ze of

ePmod N for a point P on Elliptic curve. Let
(X,,Y;,Z,) be the projective coordinates of the initial

point P on E we initialize with [ X, :Z,] to obtain the
result [ X, :Z,].
Algorithm:

t
Write the binary expression of € as € = in 27! y Xg = 1
i=0

X
. Initialize the values for A, B, X,,Z; and =% .
1

[X.:Z]=[X,:Z]
[XQZZ%]=

[(Xl - AZ12)2 _8BX1213 .
4Z, (X7 + AX,Z7 +BZ2)]

For | from0Oto t do
c<«2c
C,«2c+1

Xy = (X2 —AZ2)?-8X Z2

Z, «4Z (X2+AX Z2+BZ?)

X20+1(__4BZCZC (XCZC +XC Zm)+(XCXC _AZCZC )2

ZZc+l(_%(chc _Xc Zc)2

1
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if x, =1
thenc «2c+1

c, < 2(c+1)

x20+1 <« _4Bzczc+ (Xczc+ + Xc+Zm) 'I'(chcJr - AZch+)2

X2(c+1) <_(Xc2+ _Azci +'A‘XE+Z(:2Jr + BZ;)

X <~ X2c+l

c

Zc <~ ZZc+l

Xc+ <~ X2(c+1)

Zc+ <~ ZZ(c+1)

elsec « 2c

C,«<2c+1

Remark 4: For any point M € E(Z ) where N = pq,
the point M = (M mod p, M mod q) as
E(Z,); E(Z,)®E(Z,) and therefore the formulas

in Theorems 1, 2 and 3 are valid for M on E(Z ).

Notation: For any point M € E(Z ) we write as
M =(M,,M,) and for any integer K, X, the point
KM is written as KM = (M, ,,M, ).

4. THE GCD ATTACK ON DEMYTKO’S
CRYPTOSYSTEM WITH
PROJECTIVE COORDINATES

Demytko’s System:

In this paper we impliment the ged attack on Demytko’s
system using point addition with projective coordinated given
as in above theorems. We first describe Demytko’s system.

In this system sender chooses two large primes [P, and
makes N = PQ public. If M is the message to be sent
sender takes M =M, for M =(M,,M,) a point on
an elliptic curve E, 51 y> = X°+ AX+Bmodn with
(A,n) =1

Encryption: For N, =#E_ , sender chooses (&,N,) =1
and d be such that
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ed =1mod N,, then € is made public.

The sender encrypts the M as

X
C =x(Me) = Z—e and [ X, : Z,] computed by using
e
the point addition with projective coordinates.

Decryption:

Receiver recover smby x(M) = x(M,,) mod nas
X(dC) = x(edM)

X
=% modn
ed

=X(M)IinE(Z,)ased =1mod N,,.

Let M be the message such that M= X(M) for M a
point on elliptic curve mod N for N = pg and for
(e,#E(Z\)) =1 tet (e,N) be the public key and if
C, = X(C) for C =eM is the cipher text.

In ng attack the cryptanalyst chooses a random integer K,
such that (k,e) =1 and computes C, = X(KC) and

sends C to the receiver, the receiver computes

X

C,=X(dC) finds C, irrelevant and discards, then

cryptanalyst gets hold of C;( and recovers X(M) as

follows.

The projective co-ordinates of a point M on E are given as

M =(X,Y,Z) then for point addition €M of M the

projective coordinates are denoted as (X, Z,, M) as we

have formulas for [X,:Z.] as in the Theorem 1 and
X X

X(eM)=—=%- and for —=X,X,=X,(X) and
Z, z

Z,=Z,(X), we implement the point addition on

projective coordinates as in Theorem 1 and find [Xe . Ze] .

Now the cryptanalyst consider the polynomials
X (%), Z,(X), X, (X) and Z, (X) as in Remark 1 for a
variable X and takes

P(x) = X.(x)-C,Z,(x)mod N,

Q(x) =X, (x)-C,Z,(x)mod N.
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Now note for X = X(M) solves the polynomials P(X)
and Q(X), there fore as X—M is a common factor of
P(x),Q(x).
m=Xx(M) from the gcd (P(x),Q(X)), further note
P(x),Q(X) is of high probability that gcd is a linear
polynomial, for X = m is any other common solution for
P(x) and Q(X) then we have

the cryptanalysis recovers the message

X, (M)-C,(Z,(M)) =0
{Xk(rﬁ)—CL(Zk(rﬁ)) =0.

then

Z,(m) = 0mod Nand
Suppose ~
Z,(m)=0mod N,
Z,(m) "
xk—(m)_C ., =0.
Z(m)
Thatis for M :(M M ;) with |\/| =

, we have

x(eM)—-C, =0
x(kM)-C, =0.

x(eM)—x(eM) =0

Therefore we have ~
{x(kM )= x(kM) = 0.

Now as(e, k) = 1thereexist r,ssuch thater +ks =1.

Thenx(r(eP)) — x(r(eP)) = 0andx(s(kP)) — x(s(kP)) = 0.
Which implies that x((er + ks) |5) —X((er +sk)P) =0.
This gives that x(|5) -x(P)=0.

Thenm-m=0.
Therefore M =M.

Example: Take M = (1,122) a point on elliptic curve
E:y®=x°+3%x+8 over E(Z,,5) thenas
#E(Z,,3) =144 . Choose € =5 and take kK = 2.

Computations of C,:

C,=x(C)=x(eM) = % . Now Using the fast

e

computation method we find [ X, : Z,] as follows:
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Fore=5=1-2?+0-2"+1-2°withe, =1and as
M =(X,,Y;,Z;) =(1,122,1),
we have[Xe0 :ZEO] =[X;:Z,]1=[1:1].
Now for Xey =L Z, =1, we have

— — 2 2\2 3 _
Xo = Xge, = (Xg —AZ )" —8BX, Z; =83,
Z, =2y =4Z, (X3 + AX, Z2 +BZ3)=48'

xel 4BZ, Z, +1(x Zy o+ X aZ, ) (x Xoa—AZ, Z, . f =131,
X
Zel+1 = ?(Xe Zeo+1 e +1Z )Z 81
X, =-4BZ,Z, ,(X. Z, o+ X o2, )+ (X X, 1~ AZ,Z, . f =68,
X
Ze2 - ?(Xelze a1 e +lZ )2 36
— — & _ 68 —
ThereforeC, = &= —== % 129 mod143.
e ez

Computation of C,,

As
C, = X(dC) = x(d(kC,)) = x(k(d(eM))) = x(kM)
, we have for k = 2andM = (1,122) € E(Z,,),

C! = x(C') = x(kM) = %

k

X, =1,Z, =1,

eO ' eO

— — 2 2\2 3
X, = Xo0 =(X2 —AZ2)*—8BX, 2 =83,

Z, =2, =4Z (X2 +AX_ Z2 +BZ>)=48;
1 0 0% 0" % 0

X
Therefore C, = Z_ = — =106mod143 the
computed by the receiver.

cryptanalyst gets hold of CX,

Then for e =5,k =2 and N =143 the cryptanalyst
consider the polynomials X ¢ (X), Z5 (X) and

X, (X),Z,(X) as follows:
P(x) = X.(x)-C,Z,(x)mod N,

Q(x) =X, (x)-C,Z,(x)mod N.
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Taking[XeO :ZeO]:[le]
we have for e=5=1-22+0-2" +1;

€

X, =x,Z, =1.
0 0

= X = Xpe =X —6x? —64x+9andZ,,
= 4x° +12x + 32.

Xe1+l = X2e0+1 = _4bzeozeo+l(xeozeo+l + X
(XeO Xeo+1 - aZeO Zeo+1)

eo+lze0 ) +

= x" —36x® —53x” +127x°® +139x° + 40x* + 24x°
—x* +33x.

Zel+1 = X(Xeo Zeo+1 - Xe0+1ze0)2

= 9x° +108x" +4x° +127x° + 24x* + 26x° +
131x* +81x.

X, = —32(4x> +12x +32)(9x° +108x" + 4x°® +
127x° + 24x* + 26x° +131x? +81x)

[(x* —6x* —64x +9)(9x° +108x" + 4x° +127%°
+24x* +26x% +131x” +81x) +

(x' —36x® —53x" +127x° +139x° + 40x* + 24x°
—x? +33x)(4x> +12x + 32)] +
[(x* —6x% —64x+9)(x"® —36x® —53x" +127x°
+139x° +40x"* +24x° — x? +33x)

—3(4x® +12x +32)(9x° +108x" + 4x°® +127x° +

24x* +26x° +131x* + 81X)]°.

= x® £129x%° +91x*® +87x* +110x%® +99x* +

140x%" +98x%° — x* +14x"® + 6x"
+136x™ +64y™ +84x™ + 60x*® +135x*?

+108x* +135x*° +108x° +18x® +121x’
+13x° +49x° +89x* +33x°.

Z, = X[(x* —6X* —64x +9)(9x° +108x" + 4x°
+127x° + 24x* +26x° +131x? +81x)

—(x*® —36x® —53x" +127x° +139x° + 40x* + 24x°

—x? +33x)(4x® +12x + 32)]°.
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= 25x27 + X% +84x%* +121x® + Tx?? +99x2! +

100x?° +108x™ +114x"® + 45x*" +39x"®

+97x*° + 79x* +119x™ + 56X + 26X +19x*° +

54x° +26x® +53x" +5x° + 38x°
+43x* +108x°.

We have XeX =X (x) = Xe2 (x)
Z, =Z5(0) =2, (%).
and fork = 2, X, (x) = X, (X)
= X, (¥) = x* —6x* —64x+9.
Z,(x) = Z,(x) = Z,, () = 4x° +12x+32.

Then cryptanalyst takes the polynomials

P(x) = X;(x) —C,Z(x) mod143,
Q(X) = X,(x)—C,Z,(x)mod143.

Now note X =1, solves P(1) and Q(1), i.e.,

P(1) = X (1)-129Z (1)
= 1927 —129(1466) = 0mod 143,

Q(1) = X,(1)—106Z,(1) = 83—106(48) = 0mod 143.

Therefore X —1 is a common factor of P(X) and Q(X)

and also note X —1 is the only common factor.

Hence the cryptanalyst recovers the message M =1 from
the gcd (P(x), Q(X)) , note the computation of ged is easy

by an appropriate choice of K.

5. CONCLUSION

In the ged attack on Demytko’s system by Marc Joye and
Jean-Jacques Quisquater in the paper " On the importance of
securing your bins: The garbage-man-in-the-middle attack"
division polynomials are used. In this paper we mounted the
attack by replacing the division polynomials with polynomials

generated by the recursive formulas for [ X, :Z,] of the
projective coordinates [X,,Y,,Z,] and in the evaluation
of polynomials P(X) and Q(X) fast computation method
plays a vital role in the computation of [X, :Z,],

[X, :Z.] and these polynomials are easy to handle than the
division polynomials.
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