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ABSTRACT 

GCD attack depends on modifying the cipher text and then get 

an access to the decryption of the modified cipher text that is 

discarded identifying as due to bad implementation. In this 

paper we mount a GCD attack on Demytko’s cryptosystem on 

elliptic curves. In this we implement the attack by point 

addition with projective coordinates using a fast computation 

method. As this involves working only with x -coordinates. 

We start with developing the formulas for the projective 

coordinates ]:[ ZX  generalizing the ideas of Montgomery and 

propose to use these formulas to generate the polynomials for 

the GCD attack. 

Keywords 
Elliptic Curves, Projective Coordinates and Demytko’s 

Cryptosystem. 

1. INTRODUCTION 
RSA Cryptosystem is the most popular public key 

cryptosystem with security depending on difficulty of 

factoring large integers. As RSA is susceptible to 

homomorphic attacks, systems with non homomorphic nature 

were developed. In this context, in 1985 Koblitz and Miller 

made use of elliptic curves in cryptography. Koyama etal and 

Demykto developed analogues to RSA with elliptic curves. 

Demytko cryptosystem uses only the first coordinate of a 

point on elliptic curve making it more resistant to chosen 

message attack, however in the paper " On the importance of 

securing your bins: The garbage-man-in-the-middle attack" by 

Marc Joye and Jean-Jacques Quisquater, it is shown that 

Demytko cryptosystem is susceptible to gcd attack using 

division polynomials. In this paper we implemented the gcd 

attack on Demytko cryptosystem with point addition by 

projective coordinates. As Demytko cryptosystem involves 

working only with x -coordinates, we start with developing 

the formulas for the projective coordinates ]:[ ZX  

generalizing the ideas of Montgomery and propose to use 

these formulas to generate the polynomials for the GCD 

attack.  

2. POINT ADDITION WITH 

PROJECTIVE COORDINATES 

Let K  be a field with Characteristic 2,3K  and consider 

the elliptic curve )(KE  over K  in Weierstrass form 

BAxxyE 32 =:  and for any points ),(= 11 yxP  

and }{\),(= 22 EyxQ   with 21 xx   the affine 

addition ),(= 33 yxQP  is given as:  

,= 21

2

3 xxmx 

.=where,)(=
12

12
1313

xx

yy
myxxmy




  

 and for EyxP ),(= 11  the affine addition 

),(=2 yxP  is given as:  

,2= 1

2 xmx 
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 Now for any point EyxP ),(= , the projective 

coordinates are denoted as ),,(= ZYXP  for 
Z

X
x =  

and 
Z

Y
y = .  

Theorem 1:  Let K  be a field of characteristic not equal to 

2,3 and E  be the elliptic curve given by the equation 

BAxxy 32 = . If ),(= yxP  then for any positive 

integer k , the projective coordinates of kP  are denoted as 

)::( kkk ZYX  and ]:[ kk ZX  are given by recursion 

formulas as follows: 

If 12= mk ,  
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Remark 1:  The formulas for computation of ]:[ kk ZX  in 

kP  depend only on ]:[ 11 ZX  for ),(= yxP  and 

1;=,= 11 ZxX  i.e., the formulas are polynomials in 

)(Px  and 
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Theorem 2:  Let   be a field of characteristic not equal to 

2, 3 and let E  be the elliptic curve given by the equation 

BAxxyE 32 =:)(  and also ),(= mm yxP  

and }{\)(),(= 11 EyxQ mm   with QP  . 

Given the point ),(= yxQP , if 0y  then the y -

coordinate of P  satisfies  
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3. FAST COMPUTATION METHOD 

FOR eX  AND eZ  

We describe the fast computation method to compute eX  

and eZ  suggested by P. Smith for Lucas sequences and this 

method directly leads to the computation of ]:[ ee ZX  with 

no ambiguity of adding or doubling at each stage right from 

]:[ 11 ZX  by using the above recursive formulas. 

For any integer e , we have the binary expression 

given as 0=1,=,2= 0

0=

i

it

i

t

t

xxxe   or 1, for 0.i  

Let 
ik

i

k

i

k xe  2=
0=

, for tk 0 , then 1=,= 0eeet . 

Theorem 3:  
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 Remark 3: ]:[ ee ZX are computed by evaluating 

]:[
k

e
k

e ZX  for tk 0,1,...,=  by using recursive 

formulas for ]:[ 1212 
k

e
k

e ZX  and ]:[ 22
k

e
k

e ZX .  

We give in the following an algorithm for fast computation 

method for computing the projective coordinates ee ZX ,  of 

NeP mod  for a point P  on Elliptic curve. Let 

),,( 111 ZYX  be the projective coordinates of the initial 

point P  on E  we initialize with ]:[ 11 ZX  to obtain the 

result ]:[ ee ZX . 

Algorithm:  

Write the binary expression of e  as 1=,2= 0

0=

xxe it

i

t

i



.  Initialize the values for 11,,, ZXBA  and 

1

1

Z

X
. 

]:[=]:[ 11 ZXZX cc  
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For i  from 0 to t  do  

cc 2        

              12       cc
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 1= if ix  

 12then  cc  

 1)2(        cc  

 
2

12 )()(4


  ccccmcccccc ZAZXXZXZXZBZX

)( 3232

1)2(


  cceccc BZZAXAZXX  

 12       cc XX  

 12       cc ZZ  

 1)2( 

 cc XX  

 1)2( 

 cc ZZ  

 cc 2 else   

 12  cc  

Remark 4:  For any point )( nEM   where pqn = , 

the point )mod,mod(= qMpMM  as 

)()()( qppq EEE    and therefore the formulas 

in Theorems 1, 2 and 3 are valid for M  on )( pqE  .  

Notation: For any point )( nEM   we write as 

),(= yx MMM  and for any integer k , kX  the point 

kM  is written as ),(= ,, ykxk MMkM .  

4. THE GCD ATTACK ON DEMYTKO’S 

CRYPTOSYSTEM WITH 

PROJECTIVE COORDINATES 

Demytko’s System: 
In this paper we impliment the gcd attack on Demytko’s 

system using point addition with projective coordinated given 

as in above theorems. We first describe Demytko’s system. 

In this system sender chooses two large primes qp,  and 

makes pqn =  public. If m  is the message to be sent 

sender takes xMm = , for ),(= yx MMM  a point on 

an elliptic curve nBAxxyE BA mod=: 32

,   with 

1.=),( n  

Encryption: For nn EN =# , sender chooses 1=),( nNe  

and d  be such that 

nNed mod1  then e  is made public.  

    The sender encrypts the m  as 

e

e

Z

X
MexC =)(=  and ]:[ ee ZX computed by using 

the point addition with projective coordinates.  

Decryption:  

                                            asmod)(=)(by srecover Receiver nMxMxm ed

                     )(=)( edMxdCx  

                                   n
Z

X

ed

ed mod=  

                

.mod1 as)(in)(= nn NedEMx   

 Let m  be the message such that )(= Mxm  for M  a 

point on elliptic curve mod N  for pqN =  and for 

1=))(#,( NEe   let ),( Ne  be the public key and if 

)(= CxCx  for eMC =  is the cipher text. 

In gcd  attack the cryptanalyst chooses a random integer k , 

such that 1=),( ek  and computes )(=
~

kCxCx  and 

sends xC
~

 to the receiver, the receiver computes 

)
~

(= CdxC'

x  finds 
'

xC  irrelevant and discards, then 

cryptanalyst gets hold of 
'

xC  and recovers )(Mx  as 

follows. 

The projective co-ordinates of a point M  on E  are given as 

),,(= ZYXM  then for point addition eM  of M  the 

projective coordinates are denoted as ) , ,( eee MZX  as we 

have formulas for ] :[ ee ZX  as in the Theorem 1 and 

e

e

Z

X
eMx =)(  and for )(=,= xXXx

Z

X
ee  and 

)(= xZZ ee , we implement the point addition on 

projective coordinates as in Theorem 1 and find ]:[ ee ZX .  

Now the cryptanalyst consider the polynomials 

)(),(),( xXxZxX kee  and )(xZk  as in Remark 1 for a 

variable x  and takes  

,mod)()(=)( NxZCxXxP exe   

.mod)()(=)( NxZCxXxQ kxk   
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 Now note for )(= Mxx  solves the polynomials )(xP  

and )(xQ , there fore as mx  is a common factor of 

)(),( xQxP , the cryptanalysis recovers the message 

)(= Mxm  from the ))(),((gcd xQxP , further note 

)(),( xQxP  is of high probability that gcd is a linear 

polynomial, for mx ~=  is any other common solution for 

)(xP  and )(xQ  then we have  
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Example:   Take (1,122)=M  a point on elliptic curve 

83=: 32  xxyE  over )( 143E  then as 

144=)(# 143E . Choose 5=e  and take 2=k . 

Computations of xC : 

e

e
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Z

X
eMxCxC =)(=)(= . Now Using the fast 
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cryptanalyst gets hold of xC   computed by the receiver.  

Then for 2=5,= ke  and 143=N  the cryptanalyst 

consider the polynomials )(),( 55 xZxX and 

)(),( 22 xZxX  as follows:  
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 Then cryptanalyst takes the polynomials  

143,mod)()(=)( 55 xZCxXxP x

143.mod)()(=)( 22 xZCxXxQ x
  

 Now note 1,=x  solves (1)P  and (1)Q , i.e.,  

143,mod0=129(1466)1927=

(1)129(1)=(1) 55



 ZXP
 

143.mod0=106(48)83=(1)106(1)=(1) 22  ZXQ

Therefore 1x  is a common factor of )(xP  and )(xQ  

and also note 1x  is the only common factor. 

Hence the cryptanalyst recovers the message 1=m  from 

the ))(),((gcd xQxP , note the computation of gcd is easy 

by an appropriate choice of .k   

5.  CONCLUSION 
In the gcd attack on Demytko’s system by Marc Joye and 

Jean-Jacques Quisquater in the paper " On the importance of 

securing your bins: The garbage-man-in-the-middle attack" 

division polynomials are used. In this paper we mounted the 

attack by replacing the division polynomials with polynomials 

generated by the recursive formulas for ]:[ kk ZX  of the 

projective coordinates ],,[ kkk ZYX  and in the evaluation 

of polynomials )(xP  and )(xQ  fast computation method 

plays a vital role in the computation of ]:[ kk ZX , 

]:[ ee ZX  and these polynomials are easy to handle than the 

division polynomials. 
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