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ABSTRACT 

For the past time a number of algorithms were presented to 

produce a deterministic finite automaton (DFA) for the 

regular expression. These algorithms could be divided into 

what they used as an initial data from which to produce DFA. 

The method to produce DFA from non-deterministic finite 

automaton (NFA) by a subset construction could be 

generalized for extended regular expressions, including 

intersection, negation and subtraction of the regular 

languages. In this article the modified algorithm of subset 

construction is presented; this algorithm produces a unigram 

DFA for the regular expression with extensions (specifically 

AND-operator). 
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1. INTRODUCTION 
In this paper the common technical and theoretical approach 

is stated in order to build the finite automaton for extended 

regular expressions, which include operators like intersection 

(presented in this article), negation and subtraction. The latter 

operators (negation and subtraction) will be left for further 

research and discussion. In this article only cross-product of 

control vector for a transitions in NFA is defined and a way to 

use the vector values in subset construction in order to build a 

DFA for more effective, practical and technical use. This 

method could be generalized to the extended operations 

(intersection, negation, subtraction) over automata for pattern 

matching and subset construction. 

2. REGULAR EXPRESSIONS 
The regular expression is a method to describe verbally and 

syntactically the set of words, which is further defined as a 

language, in more readable, understandable and technically 

simple way. This expression is described by a grammar which 

in turn consists of a set of rules. 

Let’s describe in BNF form the regular expressions with some 

assumptions: 

1) the regular expression describes language (finite or 

infinite set of words) specified by the following grammar; 

2) let’s define R and Ri as a regular expression, and A as 

a set of alphabetic symbols from a to z (A = {a, .., z}); 

3) let’s define L(R) as a language of a regular expression 

R. 

The regular expression then can be defined recursively as (in 

order of precedence from highest to lowest): 

1. R = ε (an empty word, L(R) = {ε}); 

2. R = A (a single symbol from alphabet A, L(R) = {a: 

a  A}); 

3. R = R+ (an infinite language L(R) = L(R)  L(RR)  

L(RRR…)); 

4. R = R* = ε | R+ (an infinite language or Kleene 

closure: L(R) = {ε}  L(R)); 

5. R = R? (a set of words L(R) = {ε}  L(R)); 

6. R = R1R2 (a set of words L(R) = {ab: a  L(R1), b 

 L(R2)}); 

7. R = R1|R2 (a set of words L(R) = L(R1)  L(R2)). 

2.1 Definition of Extended Regular 

Expression 
The extended regular expression is a regular expression 

supporting one more operation on languages (AND-operator). 

The AND-operator can be described in regular expression 

grammar with an additional definition: 

R = R1 & R2 (a set of words L(R): L(R) = L(R1)  L(R2)). 

This operation is an intersection of languages produced by 

sub-expressions (conjunction operator). It has the lowest 

precedence in regular expression. 

Extended regular expressions also include subtraction and 

negation operator which are equal in technical sense, because 

negation is a subtraction of a closed language and an operand: 

~R = А* – R. 

The subtraction or MINUS-operator can be defined as 

follows: 

R = R1 – R2. 

The language of the subtraction can be also described: 

L(R) = {w: w  L(R1) & w !   L(R2)}). 



International Journal of Computer Applications (0975 – 8887) 

Volume 124 – No.8, August 2015 

32 

3. THOMPSON ALGORITHM 
In [1] there is a description of algorithm to construct 

automaton for the regular expression in order to match the 

word. For each of the element of regular expression starting 

and final states are recursively created. The algorithm can be 

illustrated by the diagram on Figure 1. The result of this 

algorithm is NFA for the input regular expression (an 

argument). 

4. SUBSET CONSTRUCTION 
In [2] there is a description of converting NFA to DFA. These 

conversion is called subset construction. The naming of 

algorithm is based on fact that algorithm utilizes Kleene 

closure result for a set of reachable states in corresponding 

NFA. These sets are thus divided by the DFA-states, which in 

turn are subsets of NFA states, by the non-empty transitions in 

NFA. These facts together form a subset paradigm. 

 

 

ALGORITHM 1. SUBSET CONSTRUCTION 

 NFA can be converted to DFA [2]. 

 This can be achieved by NFA 

simulation. 

 Functions used in algorithm: 

1.             is a set of states 

reachable from    by symbol a; 

2.               is a set of states 

reachable from    by empty 

transition  . 

 Steps of algorithm: 

1. Start from the initial state 

                      ; 
2. Add DFA-state S to the stack T. 

While stack T is not empty perform the 

following steps: 

  Pop element t from the stack T; 

    For each symbol    : 

      Compute set                      ; 
      Compute set                          ; 
      If DFA-state    wasn’t encountered before, 

then add    to the stack T. 

        Add a DFA-transition            

 

S0 S1a

S1 S2a

S3 S4b

S0 S5

ε

ε

ε

ε

S1 S2a S3 S4b S5S0 ε ε ε

S1 S2a S3S0 ε ε

ε

ε

NFA for a
NFA for ab

NFA for a|b NFA for a*
 

Fig 1: Example of Thomson algorithm result (empty transitions marked with “ε”-sign) 

 

5. ALGORITHM TO PRODUCE DFA 

FOR AND-OPERATOR 
To produce DFA, the subset construction algorithm described 

in previous section will be parametrized with a modified 

NFA. This NFA is extended as it has counters for each of the 

state. The counter is a positive integer number representing 

minimal number of input transitions to the state required to 

make it active. When the state is active it can be used to 

compute the next states reachable by empty transitions in 

function          . 

5.1 NFA Construction for AND-Expression 
Let us consider the NFA construction for the expression: 

       . 

Each state in the final NFA has default counter of value one, 

this means that the only transition is required to make it 

active. The construction of the NFA for this expression is 

same as for alternation operator: 

       . 

The difference is that the final state of this construction has a 

counter of value two. Additional new final state is added. This 

additional state is required to create an output state to follow 

the subset construction from NFA with counters of value two. 

This can be better illustrated by the diagram in Figure 2. 
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Fig 2: NFA construction for the expression “R1&R2” (counter values after “/”-sign) 

 

Let us write the definition of the typical NFA as a tuple – 

<S, sinitial, F, E, A>, 

Where: S is a set of states, 

sinitial is an initial state (sinitial is an element of S), 

F is a set of final (accepting) states, 

E is a set of edges in NFA: 

(                 ), and 

A is a set of alphabet. 

The edge thus is a triple (sa, sb, c) where c is a symbol mark 

on the edge accepting the alphabet element and sa and sb are 

initial and final states of the corresponding edge. 

The definition of the extended NFA is same except that there 

is additional set C (a set of counter values for each of the state 

in the non-extended NFA): 

                       . 

Please note, this NFA construction could be applied to two 

automata by replacing the R1 and R2 on Figure 2 with the 

corresponding graphs. 

5.2 DFA Construction for Extended NFA 
The algorithm is based on subset construction (Algorithm 1). 

The difference is in computing the reachable states in function 

         . 

This algorithm is the same as for a typical NFA with respect 

to the counter value of the reached state: 

1) At each step of computing the closure the counters are 

reinitialized to their default values; 

2) Each time the state is reached its counter value is 

decreased by one; 

3) The state can be considered active if its counter value 

equals zero. 

5.3 Example of DFA for Extended Regular 

Expression 
Let’s consider the following regular expression: 

                 . 

The resulting DFA (initial state is grayed and the final states 

are marked with double-circle) can be viewed on Figure 3. 

 

Fig 3: Example of DFA for AND-operator in regular 

expression 

6. COMPARATIVE STUDY 
The algorithm can be compared to the method of product 

construction for the DFA – D1 and D2. The resulting product 

DFA D3 has the following property as a graph structure: 

N (D3) = N (D1) * N (D2), 

Where: N is the number of states. 

In [3] algorithm to build the minimal product of regular 

expressions for the intersection of their languages is 

described, it’s shown that this method gives fewer states than 

product construction. This is based on the possibility of 

product automaton – the resulting DFA of product operation – 

to include the excess edges and states which have no 

deterministic meaning and thus have no path, or in more 

complex case – an access, to the final states. 

Experimental study shows that algorithm, presented in this 

article, can produce not a feasible DFA. This means that the 

resulting DFA has states and edges that has no possible path 

to the final states (deterministic meaning). Thus, this DFA is 
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to be optimized by the inverse edges from the final states. The 

states, which cannot be reached, are excluded. 

7. EXPERIMENTAL RESULTS 
The experimental results are provided for the regular 

expression “(((a|b)*a(a|b)*)&((a|b)*b(a|b)*))” (more practical 

example of similar expression can be found in [4]). This 

expression in test cases was repeated with direct 

concatenation and AND-operator. In Table 1 the benchmarks 

were collected, including the number of times the expression 

was repeated (“Repeat Count”), “Running Time” and 

“Number of States” in the produced DFA. The Figure 4 gives 

a graphical plot of the performance and memory allocation, 

depending on the number of states. As you can see the 

concatenation requires more running time and memory. 

 

Table 1. Benchmarks of subset construction 

  Concatenated Concatenated by AND-operator 

Repeat Count Running Time (sec.) Number of States Running Time (sec.) Number of States 

1 0,098 9 0,102 9 

2 0,297 17 0,22 9 

4 1,269 45 0,643 9 

8 8,648 149 2,341 9 

16 94,816 549 9,175 9 

 

 

 
 

Fig 4: Graphical representation of data in Table 1 

 

 

8. CONCLUSION AND FURTHER 

WORK 
The algorithm in overall can be represented as a cross-product 

of NFA and control vector (see Section 1) which forms a 

hierarchy. The hierarchy can be defined as a set of semantic 

rules due to which the complexity expands. This hierarchy is 

bounded by AND-operator counters. The hierarchies (a, b) 

and (a, b, c) are equivalent over step of subset construction if 

in parameterized NFA the states a and b are met earlier than 

state c. These states are assigned the counter of value two, as 

they are states for the AND-operator construction. 

The further work is to describe the theoretical continuation of 

cross-over product transition options for negation and 

subtraction operator, including the methods to use them in 

order to build the final DFA. 
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