
International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.8, August 2015

31

Algorithm to Generate DFA for AND-operator in

Regular Expression

Mirzakhmet Syzdykov
Institute of Information and Computing Technologies

125 Pushkin Str., 050010
Almaty, Republic of Kazakhstan

ABSTRACT

For the past time a number of algorithms were presented to

produce a deterministic finite automaton (DFA) for the

regular expression. These algorithms could be divided into

what they used as an initial data from which to produce DFA.

The method to produce DFA from non-deterministic finite

automaton (NFA) by a subset construction could be

generalized for extended regular expressions, including

intersection, negation and subtraction of the regular

languages. In this article the modified algorithm of subset

construction is presented; this algorithm produces a unigram

DFA for the regular expression with extensions (specifically

AND-operator).

General Terms

Pattern Recognition; Finite Automata; Algorithms.

Keywords

Algorithm; Deterministic; Automaton; Extension;

Intersection; Subset Construction.

1. INTRODUCTION
In this paper the common technical and theoretical approach

is stated in order to build the finite automaton for extended

regular expressions, which include operators like intersection

(presented in this article), negation and subtraction. The latter

operators (negation and subtraction) will be left for further

research and discussion. In this article only cross-product of

control vector for a transitions in NFA is defined and a way to

use the vector values in subset construction in order to build a

DFA for more effective, practical and technical use. This

method could be generalized to the extended operations

(intersection, negation, subtraction) over automata for pattern

matching and subset construction.

2. REGULAR EXPRESSIONS
The regular expression is a method to describe verbally and

syntactically the set of words, which is further defined as a

language, in more readable, understandable and technically

simple way. This expression is described by a grammar which

in turn consists of a set of rules.

Let’s describe in BNF form the regular expressions with some

assumptions:

1) the regular expression describes language (finite or

infinite set of words) specified by the following grammar;

2) let’s define R and Ri as a regular expression, and A as

a set of alphabetic symbols from a to z (A = {a, .., z});

3) let’s define L(R) as a language of a regular expression

R.

The regular expression then can be defined recursively as (in

order of precedence from highest to lowest):

1. R = ε (an empty word, L(R) = {ε});

2. R = A (a single symbol from alphabet A, L(R) = {a:

a A});

3. R = R+ (an infinite language L(R) = L(R) L(RR)

L(RRR…));

4. R = R* = ε | R+ (an infinite language or Kleene

closure: L(R) = {ε} L(R));

5. R = R? (a set of words L(R) = {ε} L(R));

6. R = R1R2 (a set of words L(R) = {ab: a L(R1), b

 L(R2)});

7. R = R1|R2 (a set of words L(R) = L(R1) L(R2)).

2.1 Definition of Extended Regular

Expression
The extended regular expression is a regular expression

supporting one more operation on languages (AND-operator).

The AND-operator can be described in regular expression

grammar with an additional definition:

R = R1 & R2 (a set of words L(R): L(R) = L(R1) L(R2)).

This operation is an intersection of languages produced by

sub-expressions (conjunction operator). It has the lowest

precedence in regular expression.

Extended regular expressions also include subtraction and

negation operator which are equal in technical sense, because

negation is a subtraction of a closed language and an operand:

~R = А* – R.

The subtraction or MINUS-operator can be defined as

follows:

R = R1 – R2.

The language of the subtraction can be also described:

L(R) = {w: w L(R1) & w ! L(R2)}).

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.8, August 2015

32

3. THOMPSON ALGORITHM
In [1] there is a description of algorithm to construct

automaton for the regular expression in order to match the

word. For each of the element of regular expression starting

and final states are recursively created. The algorithm can be

illustrated by the diagram on Figure 1. The result of this

algorithm is NFA for the input regular expression (an

argument).

4. SUBSET CONSTRUCTION
In [2] there is a description of converting NFA to DFA. These

conversion is called subset construction. The naming of

algorithm is based on fact that algorithm utilizes Kleene

closure result for a set of reachable states in corresponding

NFA. These sets are thus divided by the DFA-states, which in

turn are subsets of NFA states, by the non-empty transitions in

NFA. These facts together form a subset paradigm.

ALGORITHM 1. SUBSET CONSTRUCTION

 NFA can be converted to DFA [2].

 This can be achieved by NFA

simulation.

 Functions used in algorithm:

1. is a set of states

reachable from by symbol a;

2. is a set of states

reachable from by empty

transition .

 Steps of algorithm:

1. Start from the initial state

 ;
2. Add DFA-state S to the stack T.

While stack T is not empty perform the

following steps:

 Pop element t from the stack T;

 For each symbol :

 Compute set ;
 Compute set ;
 If DFA-state wasn’t encountered before,

then add to the stack T.

 Add a DFA-transition

S0 S1a

S1 S2a

S3 S4b

S0 S5

ε

ε

ε

ε

S1 S2a S3 S4b S5S0 ε ε ε

S1 S2a S3S0 ε ε

ε

ε

NFA for a
NFA for ab

NFA for a|b NFA for a*

Fig 1: Example of Thomson algorithm result (empty transitions marked with “ε”-sign)

5. ALGORITHM TO PRODUCE DFA

FOR AND-OPERATOR
To produce DFA, the subset construction algorithm described

in previous section will be parametrized with a modified

NFA. This NFA is extended as it has counters for each of the

state. The counter is a positive integer number representing

minimal number of input transitions to the state required to

make it active. When the state is active it can be used to

compute the next states reachable by empty transitions in

function .

5.1 NFA Construction for AND-Expression
Let us consider the NFA construction for the expression:

 .

Each state in the final NFA has default counter of value one,

this means that the only transition is required to make it

active. The construction of the NFA for this expression is

same as for alternation operator:

 .

The difference is that the final state of this construction has a

counter of value two. Additional new final state is added. This

additional state is required to create an output state to follow

the subset construction from NFA with counters of value two.

This can be better illustrated by the diagram in Figure 2.

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.8, August 2015

33

S1

/1

S2

/1

S4

/1

S3

/1

S5

/1

S6

/2

S7

/1

ε

ε R2

R1 ε

ε

ε

Fig 2: NFA construction for the expression “R1&R2” (counter values after “/”-sign)

Let us write the definition of the typical NFA as a tuple –

<S, sinitial, F, E, A>,

Where: S is a set of states,

sinitial is an initial state (sinitial is an element of S),

F is a set of final (accepting) states,

E is a set of edges in NFA:

(), and

A is a set of alphabet.

The edge thus is a triple (sa, sb, c) where c is a symbol mark

on the edge accepting the alphabet element and sa and sb are

initial and final states of the corresponding edge.

The definition of the extended NFA is same except that there

is additional set C (a set of counter values for each of the state

in the non-extended NFA):

 .

Please note, this NFA construction could be applied to two

automata by replacing the R1 and R2 on Figure 2 with the

corresponding graphs.

5.2 DFA Construction for Extended NFA
The algorithm is based on subset construction (Algorithm 1).

The difference is in computing the reachable states in function

 .

This algorithm is the same as for a typical NFA with respect

to the counter value of the reached state:

1) At each step of computing the closure the counters are

reinitialized to their default values;

2) Each time the state is reached its counter value is

decreased by one;

3) The state can be considered active if its counter value

equals zero.

5.3 Example of DFA for Extended Regular

Expression
Let’s consider the following regular expression:

 .

The resulting DFA (initial state is grayed and the final states

are marked with double-circle) can be viewed on Figure 3.

Fig 3: Example of DFA for AND-operator in regular

expression

6. COMPARATIVE STUDY
The algorithm can be compared to the method of product

construction for the DFA – D1 and D2. The resulting product

DFA D3 has the following property as a graph structure:

N (D3) = N (D1) * N (D2),

Where: N is the number of states.

In [3] algorithm to build the minimal product of regular

expressions for the intersection of their languages is

described, it’s shown that this method gives fewer states than

product construction. This is based on the possibility of

product automaton – the resulting DFA of product operation –

to include the excess edges and states which have no

deterministic meaning and thus have no path, or in more

complex case – an access, to the final states.

Experimental study shows that algorithm, presented in this

article, can produce not a feasible DFA. This means that the

resulting DFA has states and edges that has no possible path

to the final states (deterministic meaning). Thus, this DFA is

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.8, August 2015

34

to be optimized by the inverse edges from the final states. The

states, which cannot be reached, are excluded.

7. EXPERIMENTAL RESULTS
The experimental results are provided for the regular

expression “(((a|b)*a(a|b)*)&((a|b)*b(a|b)*))” (more practical

example of similar expression can be found in [4]). This

expression in test cases was repeated with direct

concatenation and AND-operator. In Table 1 the benchmarks

were collected, including the number of times the expression

was repeated (“Repeat Count”), “Running Time” and

“Number of States” in the produced DFA. The Figure 4 gives

a graphical plot of the performance and memory allocation,

depending on the number of states. As you can see the

concatenation requires more running time and memory.

Table 1. Benchmarks of subset construction

 Concatenated Concatenated by AND-operator

Repeat Count Running Time (sec.) Number of States Running Time (sec.) Number of States

1 0,098 9 0,102 9

2 0,297 17 0,22 9

4 1,269 45 0,643 9

8 8,648 149 2,341 9

16 94,816 549 9,175 9

Fig 4: Graphical representation of data in Table 1

8. CONCLUSION AND FURTHER

WORK
The algorithm in overall can be represented as a cross-product

of NFA and control vector (see Section 1) which forms a

hierarchy. The hierarchy can be defined as a set of semantic

rules due to which the complexity expands. This hierarchy is

bounded by AND-operator counters. The hierarchies (a, b)

and (a, b, c) are equivalent over step of subset construction if

in parameterized NFA the states a and b are met earlier than

state c. These states are assigned the counter of value two, as

they are states for the AND-operator construction.

The further work is to describe the theoretical continuation of

cross-over product transition options for negation and

subtraction operator, including the methods to use them in

order to build the final DFA.

9. ACKNOWLEDGMENTS
It’s necessary to acknowledge the previous work in the field

of studying the subjects of finite automata, pattern matchings

and applied algorithms. It’s also required to acknowledge the

Editorial Support Team of the International Journal of

Computer Applications (Foundation of Computer Science,

New York, USA) for the quick response on the request to

publish the article.

10. REFERENCES
[1] K. Thompson. Regular expression search algorithm.

Comm. ACM, 11 (6) (1968), pp. 419–422.

[2] M.O. Rabin, D. Scott. Finite automata and their decision

problems. IBM J. Res. Develop., 3 (2) (1959), pp. 114–

125.

[3] Samuel C. Hsieh. Product Construction of Finite-State

Machines. Proceedings of the World Congress on

Engineering and Computation Science, Vol. I (2010), pp.

141-143.

[4] Kai Wang, Jun Li. Towards Fast Regular Expression

Matching in Practice. Proceedings of the ACM

SIGCOMM 2013 conference on SIGCOMM (2013), pp.

531-532.

0

20

40

60

80

100

1 2 4 8 16

Running Time (sec.)

0

100

200

300

400

500

600

1 2 4 8 16

Number of States

IJCATM : www.ijcaonline.org

