
International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.9, August 2015

46

DD-PLAC: Preserving Privacy with Encrypted

Cloud Database

Shital H. Dinde

PG scholar
PVPIT, Pune.

Arati M. Dixit, PhD
Professor

PVPIT, Pune
Dept. of Technology, Savitribai Phule, University of

Pune.

ABSTRACT

Cloud database services assure the high availability and

scalability, but there are many issues about data privacy and

confidentiality. The online applications are also vulnerable to

attack that gain access to the sensitive data as the attacker can

easily exploit software bug. Hence the security and privacy of

the sensitive data stored on the cloud is the biggest challenge

today. Storing critical and sensitive data in the hands of cloud

service provider will not guarantee the privacy of data.

Several ways are available for storage services , but the data

privacy and confidentiality solutions for cloud database are

still in research. The data privacy and confidentiality can be

maintained by combining encryption of data with SQL

operations. The application that uses SQL database can be

secured by using DD-PLAC architecture which provides

confidentiality of the data stored on cloud. DD-PLAC

(Distributed Database with Proxy-less architectures that store

meta data in the cloud) architecture combines data encryption,

key management and access control policies which addresses

the issues related to typical threat for cloud database.

Keywords
Security, Privacy, cloud database, Symmetric key algorithm

(SKA), access control, DD-PLAC (Distributed Database with

Proxy-less architectures that store meta data in the cloud)

1. INTRODUCTION
Cloud computing refers to both the application delivered as

services over the internet and the hardware and system

software in the data centers that provide those services. Most

of the cloud users outsource their sensitive information;

security is one of the most major objections to cloud

computing. Cloud users face security threats both from

outside and inside the cloud. Many of the security concerns

involved in protecting clouds from outside threats are similar

to those already facing large data centers. Cloud based

solutions for database services are now considered as an

alternative to scalability and availability. In Cloud computing,

sensitive information or data is kept in the hands of untrusted

third parties as cloud service providers. The original plain text

data must be accessible by trusted and authenticated third

parties only, this will not include cloud provider,

intermediaries, and Internet. While outsourcing sensitive data

to untrusted cloud providers still poses many security and

privacy concerns. As the cloud provider is responsible for

physical security, like enforcing external firewall policies.

Cloud user is responsible for the application level security.

So, the goal is to allow users to take advantage of cloud

infrastructure and services with data confidentiality by

avoiding cloud service providers may access user’s data.

The client can access DD-PLAC after the authentication

process. After the authentication, a user interacts with the

cloud database. DD-PLAC analyzes the original operation to

identify which tables are involved and retrieve their meta data

from the cloud DBMS. The meta data are decrypted through

the unique master key and the information is used to translate

the original plain SQL into a query that operates on the

encrypted database.

2. RELATED WORK
DD-PLAC provides some features that are 1) allow

concurrent SQL operations over encrypted data. 2) Multiple

clients can access concurrently and independently a cloud

database securely. 3) It does not require intermediate proxy

servers. 4) It provides the same availability, scalability as this

is compatible with most relational databases. Cryptographic

file systems and secure storage will guarantee confidentiality

of the data and the integrity of data which will be stored on

untrusted cloud. DBMS engines offers encryption of data

using Transparent Data Encryption (TDE) [3].It possible to

build a trusted DBMS over untrusted storage by using this

technique. But, in the DBaaS context the DBMS engine is not

trusted because it is controlled by the cloud provider; hence

the TDE approach is not suitable for the cloud database

services. An approach to preserve data confidentiality in

scenarios where the DBMS is not trusted. However it requires

a modified DBMS engine that is not compatible with

commercial and open source DBMS software adopted by

cloud providers. On the other hand, the proposed architecture

is compatible with standard DBMS engines, and allows

customers to make a secure cloud database by leveraging

cloud DBaaS readily available. The architecture given in [4]

uses encryption to control access to encrypted data stored in a

cloud. This solution is not suitable to usage contexts in which

the structure of the database changes, and does not support

concurrent access from multiple clients possibly distributed

on a geographical scale.

The following are three types of architectures are defined to

preserve the privacy.

1. Proxy Based Architecture: The proxy-based

architectures[5] do not satisfy our design requirements

because the proxy is a bottleneck and a single-point-of-failure

that limits availability, scalability and elasticity of the cloud

DBaaS. Since the proxy must be trusted, it cannot be

outsourced to the cloud and has to be deployed and

maintained locally.

2. Proxy-less architectures that store meta data in the

clients (PLA):The Proxy-less architecture that store meta data

in the clients[4] does not use an intermediate proxy and meta

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.9, August 2015

47

data are stored at the client side. So the clients can connect

directly to the cloud database, this architecture provides

availability, scalability and elasticity. So, each client has its

own encryption engine and manages a local copy of meta

data. So, this solution can represent a sub-case of the proxy-

based architecture, in which a different proxy is deployed

within each client. A similar architecture for cloud accesses

would suffer from the same consistency issues of proxy-based

architectures.

3. Proxy-less architectures that store meta data in the

cloud database (PLAC):The third architecture is proxy-less

architectures[6] that store meta data in the cloud database. In

this the meta data is stored to the cloud database, but the

encryption engine is executed by each client. As meta data are

not shared among all the clients there is no need of

synchronization. Client machines execute a client software

component that allows a user to connect and issue queries

directly to the cloud DBaaS. This software component

retrieves the necessary meta data from the untrusted database

through SQL statements and makes them available to the

encryption engine at the client. Multiple clients can access the

untrusted cloud database independently, with high

availability, scalability and elasticity. The drawback of this

architecture is bottleneck and the single point of failure.

3. THE DESIGN OF DD-PLAC
Protecting privacy is very much difficult in a computerized

world where individuals, devices, and sensors are associated

and information is created, accessed and shared widely with

one another. To ensure the client's security, governments

additionally came up with legitimate measures, for example,

the US federal law called The Secret Data Assurance and

Measurable Productivity Act (CIPSEA). In the same

endeavors, organizations have utilized different information

de-ID routines, for example, pseudonymization, encryption

and so on to remove/hide any data that recognizes people.

However these de-ID strategies have not been totally ready to

secure the client's protection. If anyone wants to store the

personal or confidential data in the cloud, these are securely

encrypted before storing them to the cloud. Encrypting the

data will safeguard the privacy of your data; especially

important when you are storing sensitive corporate data or

personal information that should never fall into the wrong

hands.

A client organization in which a trusted Database Admin

machine hosts the DD-PLAC client, which is the application

for the creation and management of the encrypted database.

All database users can issue SQL operations directly to the

cloud database even from geographically distributed locations

by executing a DD-PLAC client on their machines. The entire

set of data is stored in an encrypted form in the cloud

database. Due to the SQL-aware encryption strategies, the

cloud database engine can execute queries on encrypted data

without accessing any decryption keys. Even meta data that

are necessary to manage encryption strategies are considered

critical information, hence DD-PLAC stores them encrypted

in the cloud database: the Database Admin and the users can

efficiently retrieve meta data through standard SQL queries.

Figure 1: DD-PLAC Architecture

It is assumed that Database admin is the only who has root

credentials for the client application and no internal or

external attackers able to access, or crack the credentials.

Database Admin will manage the user accounts and the access

control policies. The access control matrix is mostly used for

describing access control policies[15], [16]. Each row in the

matrix is a database user and each column is a structure (e.g.,

column, table, database). Each cell of the access control

matrix defines whether a user can access the corresponding

data or not. These policies will include set of rules to define

which user can access which subset of database. In DD-PLAC

the access control is implemented as follows. Each user is

provided with a set of user credentials including all

information that allows him/her to access all and only the

authentic data. Due to this access control policies the data

isolation is achieved.

The DD-PLAC architecture shown in Fig.1 is same as proxy-

less architectures that store meta data in the cloud database

but to provide the more availability and to improve the

performance the distributed cloud database is used where the

data is distributed over the cloud, which will allow the

databases to truly support the elastic requirements of cloud

computing applications. Databases have been distributed in

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.9, August 2015

48

terms of instances running on servers that have access to a

high-speed network for a while.

In the encryption algorithm, the encryption key is to be

designed based on the data to be stored in to the database.

Unlike PLAC architecture for every record the different

encryption key is being used and that data is encryption key,

database name, table name and unique record id is to be stored

in again encrypted format in meta data.

Figure 2: Metadata Structure

The structure of meta data is given in Fig. 2. Using this meta

data it is easier to find the encryption key of record being

stored in database for the application. Concurrent read and

write operations that do not modify the structure of the

encrypted database. This encryption algorithm ensures the

data privacy and the distributed cloud database will ensures

the continuous service from the cloud service provider as well

as confirms the data is safe in hands of cloud database.

4. IMPLEMENTATION DETAILS
The implementation of DD-PLAC architecture is done using

the case study 'E governance'. The Jelastic public cloud is

used to deploy the application and this cloud provides the

database storage as Mysql server.

The DD-PLAC architecture is divided into following four

parts:

1. Developing application

2. Creating distributed database

3. Implementation of Security algorithm

4. Generating Metadata

1. Developing application:

The web application is developed using PHP, includes the

following details of human being:

• Personal Information

• Professional Details

• Banking Details

• Insurance Details

2. Creating distributed database:

The vertical partitioning technique is used to distribute the

database over the network.

3. Implementation of Security algorithm:

The AES symmetric key algorithm is used for maintaining

security in application. The Encryption key is generated based

on the information entered by the user.

4. Generating Metadata:

Metadata stores the Encryption Key, Unique Registration Id

in encrypted format.

4.1 Algorithms
K is a random secret generated by the application from the

personal details of user at the time of registration. The length

of K is 256 bits, as is recommended by most of the standards

regarding key length for symmetric key algorithms (SKAs).

However, the length of the key can be altered depending on

SKA. K is obtained in a two-step process. In the first step, a

random number R of length 256 bits is generated such that R

= {0, 1}256. In the next step, R is passed through a hash

function that could be any hash function with a 256-bit output.

In this case, secure hash algorithm 256 (SHA-256) is used.

The second step completely randomizes the initial user-

derived random number R. The output of the hash function is

termed as K and is used in symmetric key encryption [e.g., the

Advanced Encryption Standard (AES)] for securing the data.

For encryption algorithm, input is plain text (like email-id,

phone number as well as birth time, birth place and one

random string) to generate the encryption key. From the plain

text generate some random key R. By using SHA-512,

generate the hash values based on input R. The generated 128

bit hash value is used as encryption key for AES algorithm.

Encryption Algorithm

Input: Plaintext data P, SKA, 512 bit hash function H

Output: Encrypted data C

Steps:

1. Read the Plaintext data(P).

2. Generate the random key(R) from the personal details of

user.

 R = {Personal Details}512

3. Generate the symmetric key by applying hash function.

 K = H(R)

4. Encrypt the data by using the key K.

 C = SKA(P, K)

5. Store the C in particular table from the database.

6. Store the key K and random number R in meta data in

encrypted format by using the encryption of meta data.

Decryption Algorithm

Input: Encrypted data C, SKA, 512 bit hash function H

Output: Plaintext data P

Steps:

1. Retrieve the key K from the meta data.

2. Decrypt the stored data by using the key K.

 P=SKA(C,K)

3. Get the original plain text, do the operation on it.

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.9, August 2015

49

In decryption algorithm, first retrieve the key from meta data

with respect to particular record. Decrypt the data by using

AES and the key and use it.

4.2 Generation of Secret Key
For encryption algorithm, input is plain text (like email-id,

phone number as well as birth time, birth place and one

random string) to generate the encryption key. From the plain

text generate some random key R. By using SHA-512,

generate the hash values based on input R. The generated 128

bit hash value is used as encryption key for AES algorithm.

Figure 3: Secret Key Generation

4.3 Queries over encrypted data
DD-PLAC architecture enables the DBMS server to execute

SQL queries on encrypted data same as if it were executing

the same queries on plain text data. Existing applications do

not need to be changed. The DBMS’s query plan for an

encrypted query is typically the same as for the original query,

except that the operators comprising the query, such as

selections, projections, joins, aggregates, and orderings, are

performed on cipher texts, and use modified operators in some

cases. meta data stores a secret master key MK, the database

schema.

Processing a query in DD-PLAC given in fig.4 involves three

steps:

1. The application issues a query, which the encryption engine

intercepts and rewrites it.

2. Then it forwards the encrypted query to the DBMS server,

which executes it using standard SQL.

3. The DBMS server returns the (encrypted) query result,

which the encryption engine decrypts it and returns to the

application.

Figure 4: Query Processing

4.3.1 Read Query
To understand the query execution over cipher text, consider

the following schema given in Fig.5 To illustrate consider the

query: SELECT ID FROM Employees WHERE Name =

`Alice, The encrypted query is

SELECT C1-Eq, C1-IV FROM Table1 WHERE C2-Eq =

x7..d

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.9, August 2015

50

where column C1-IV corresponds to ID, and where x7..d is

encryption of “Alice”.

Figure 5: Employee Schema

4.3.2 Write Query
For the INSERT, DELETE, and UPDATE queries, the

architecture applies the same processing to the predicates (i.e.,

the WHERE clause) as for read queries. DELETE queries

require no additional processing. For all INSERT and

UPDATE queries that set the value of a column to a constant,

it encrypts each inserted column’s value by using the

encryption algorithm.

4.4 Distributed Cloud Database
Cloud uses database partitioning for two purposes: 1. If the

load of a single machine exceeds its capacity, then scale the

database to multiple machines, and (2) for load balance on the

back-end machines. To scale these workloads, partition the

data such that it minimizes the number of mulch-node

transactions and then place the different partitions on different

nodes. The aim is to minimize the number of cross-node

distributed transactions, which incur overhead both because of

the extra work done on each node and because of the increase

in the time spent holding locks at the back-ends.[10]

It is obvious that replicating data to an extent will increase the

read capacity of the system. However, after a certain

replication factor, it might be difficult to maintain consistency

even if eager replication and synchronous update processing

are used. On the other hand, write capacity can be scaled

through partial replication where only subsets of nodes are

holding a particular portion of the database. Thus, write

operations can be localized and the overheads of concurrent

update processing can be reduced. Sharding is a technique to

split data into multiple partitions (i.e., Shards). There are two

basic ways of partitioning data [13]

1. Vertical Partitioning: by splitting the table attributes (i.e.,

columns) and thus creating tables with small number of

attributes. The main idea is to map different functional areas

of an application into different partitions. Both the datasets

and workload scalability are driven by different functional

aspects of an application. Thus, it is necessary to pick up the

right tables and column(s) to create the correct partition,

because the ‘join’ operations in a relational database will now

need to be performed within the application code. Vertical

partitioning is strictly done for performance reasons.

2. Horizontal Partitioning: by splitting the tuples (i.e., rows)

across different tables. It allows scaling into any number of

partitions. The tuples are partitioned based on a key which can

be hash based, range based or directory based. Join operations

are similarly discouraged to avoid cross-partition queries.

For the DD-PLAC architecture the vertical partitioning is used

because vertical partitioning is possible in all versions of

MySQL and requires no special functionality on the part of

the MySQL server and the proper use of vertical partitioning

can lead to performance increases of up to 90%. Vertical

partitioning lets queries scan less data. This increases query

performance. For example, a table that contains seven

columns of which only the first four are generally referenced

may benefit from splitting the last three columns into a

separate table.

5. RESULT ANALYSIS

5.1 Performance Analysis
The performance and the scalability of the DD-PLAC

architecture, implemented in PHP, is measured on the cloud

database using workloads based on the standard database

benchmark TPC-C where concurrent clients are

geographically distributed. . The database used for this

architecture is MySql Server which supports the main data

manipulation (SELECT, INSERT, UPDATE, DELETE) and

data definition (CREATE, DELETE) operations of the SQL

language with no required modification of the cloud database

service, and it can be ported to any relational DBMS and to

any commercial cloud database service. The current

implementation of the DD-PLAC architecture includes all the

encryption algorithms that are necessary to support each SQL

operation of the TPC-C workloads on the encrypted database

columns. The client load for MySql server is measured by

using mysqlslap benchmarking tool which reports the timing

of each stage. mysqlslap can emulate a large number of client

connections hitting the database server at the same time. The

load testing parameters are fully configurable and the results

from different test runs can be used to fine-tune database

design or hardware resources.

To evaluate encryption costs, the execution time of the SQL

commands of the TPC-C benchmark is measured. For each

geographically distributed client, average Round Trip Time

with respect to the cloud database server (RTT in ms), and the

average time required for an AES encryption (ENCT in ms) is

measured given in Fig 6. From this figure, the encryption time

is below 1 ms for the majority of operations.

Figure 6: Distribution of the RTTs and ENCT times for

the 20 clients

To evaluate the performance overhead of encrypted SQL

operations, the focus is on the most frequently executed

SELECT, INSERT, UPDATE, and DELETE commands of

the TPC-C benchmark. The performance of the DD-PLAC

architecture which is evaluated using standard TPC-C

benchmark's mysqlslap tool on realistic SQL operations is

compared with SecureDBaaS[6] .The graph based on this

comparison is plotted in Fig. 7.

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.9, August 2015

51

Figure 7: Comparison of DD-PLAC and SecureDBaaS

w.r.t Response time

The Y -axis reports the boxplots of the response times

expressed in ms (at a different scale), while the X-axis

identifies the SQL operations. For SELECT and UPDATE

operations, the response times of DD-PLAC SQL commands

are slightly greater w.r.t. SecureDBaaS[6], as compared to

INSERT operation. INSERT command has to encrypt all

columns of a tuple, while an UPDATE operation encrypts just

one or few values.

5.3 Comparison of DD-PLAC with Secure

DBaaS
Based on analysis done in section 5.1 and 5.2, the conclusion

can be done that the performance of DD-PLAC architecture is

lower than Secure DBaaS architecture due to the use of

distributed database which takes more time to execute the

queries over encrypted data.

But the security provided by DD-PLAC is higher than the

security provided by SecureDBaaS due the encryption

technique used in DD-PLAC

6. CONCLUSION
The DD-PLAC architecture provides a strong level of security

and privacy. All the data which is stored on the cloud provider

are encrypted through cryptographic algorithms which allow

the execution of standard SQL queries on encrypted data. This

architecture is also providing direct, independent and

concurrent access to the cloud database. It does not rely on a

trusted proxy that represents and also avoids the single point

of failure and a system bottleneck, which in turn increases the

availability and scalability of cloud database services.

7. REFERENCES
[1] Daniel J. Abadi, Data Management in the Cloud:

Limitations and Opportunities, IEEE Data Engineering

Bulletin, Volume 32, March 2009, 3-12.

[2] James Broberg, Rajkumar Buyya, Zahir Tari, MetaCDN:

Harnessing Storage Clouds or high performance content

delivery, Journal of Network and Computer

Applications, 1012–1022, 2009.

[3] Oracle corporation: Oracle advanced security (October

2012),

http://www.oracle.com/technetwork/database/options/ad

vanced-security

[4] Damiani, E., De Capitani di Vimercati, S., Foresti, S.,

Jajodia, S., Paraboschi, S., Samarati, P.: Metadata

Management in Outsourced Encrypted Databases. In:

Jonker, W., Petkovi´c, M. (eds.) SDM 2005. LNCS, vol.

3674, pp. 16–32. Springer, Heidelberg (2005)

[5] Popa, R.A., Redfield, C.M.S., Zeldovich, N.,

Balakrishnan, H.: CryptDB: protecting confidentiality

with encrypted query processing. In: Proceedings of the

Twenty- Third ACM Symposium on Operating Systems

Principles, SOSP 2011, pp. 85–100. ACM, New York

(2011)

[6] Luca Ferretti, Michele Colajanni, and Mirco Marchetti:

Distributed, Concurrent, and Independent Access to

Encrypted Cloud Databases. IEEE Transactions On

Parallel And Distributed Systems, Vol. 25, No. 2,

February 2014

[7] “Xeround: The Cloud Database,” Xeround,

http://xeround.com, Apr. 2013.

[8] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M.Newbold, M. Hibler, C. Barb, and A. Joglekar, “An

Integrated Experimental Environment for Distributed

Systems and Networks,” Proc. Fifth USENIX Conf.

Operating Systems Design and Implementation, Dec.

2002.

[9] Tim Mather, Subra Kumaraswamy, and Shahed Latif

”Cloud Security and Privacy” Published by O’Reilly

Media, Inc.

[10] Carlo Curion, Evan P.C.Jones, Hari Balkrishna, Nirmesh

Malviya, "Relational Cloud: A Database as a Service for

the Cloud"

[11] ”Addressing Data Security Challenges in the Cloud” A

Trend Micro White Paper | July 2010

[12] tpcc-mysql: Simple usage steps and how to build graphs

with gnuplot, by Michael Rikmas.

https://www.percona.com/blog/2013/07/01/tpcc-mysql-

simple-usage-steps-and-how-to-build-graphs-with-

gnuplot/

[13] How To Measure MySQL Query Performance with

mysqlslap: https://www.digitalocean.com/community/

tutorials/how-to-measure-mysql-query-performance-

with-mysqlslap

[14] Manual Reference Pages - \FBMYSQLSLAP\FR (1)

http://manpages.sgvulcan.com/mysqlslap.1.php

[15] M. R. Asghar, G. Russello, B. Crispo, and M. Ion,

“Supporting complex queries and access policies for

multi-user encrypted databases,” in Proc. ACM

Workshop Cloud Comput. Secur., Nov.2013, pp. 77–88

[16] R. S. Sandhu and P. Samarati, “Access control: Principle

and practice,” IEEE Commun. Mag., vol. 32, no. 9, pp.

40–48, Sep. 1994.

IJCATM : www.ijcaonline.org

