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ABSTRACT 

The effects of lightning strike to transmission and distribution 

systems are numerous and unfavorable. Just imagine the cost 

and havoc if a giant telecommunications company is shut 

down for an hour or day as a result of devices damage or a 

petrochemical plant catches fires due to lightning strike. 

Hence the needs to protect power apparatus from overvoltage 

surge are imperative. In this study an adaptive risk analysis & 

management (ARAM) based on artificial neural networks is 

proposed to analyze and proactively control the overvoltage at 

power substation due to lightning strike.   

General Terms 

Machine learning classification problem and System design. 

Keywords 

Machine learning modeling, Lightning strike, Risk 

management, Power & Control Systems. 

1. INTRODUCTION 
Lightning occurs randomly in nature and has adverse effects 

on overhead line faults, it has been estimated that 5% to 10% 

of overhead line faults course by lightening resulted to 

permanent damage to power system equipment [1].  Lightning 

surge voltages that arrive at a substation, traveling along a 

transmission system are caused by a lightning stroke 

terminating either on a tower, shield wire, or a phase 

conductor. The shape and magnitude of these voltages are 

functions of many parameters including polarity, shape, 

magnitude of the lightning stroke current, the footing 

impedance, line surge impedance and the tower surge 

impedance. For shielded transmission system, the induced 

surge voltages due to shielding failure are typically to a 

greater extent severe than those stimulated by a backflash. 

That is, they have greater crest voltage and greater steepness 

[2] 

Having insight on the level of stroke (low, medium or high) 

and localizing the stroke to specific location of station and/or 

substation will help to control the risk of damaging power 

system equipment. This paper proposed ARAM based on 

artificial neural networks to accurately predict the level of 

stroke and mapped the stroke to a specific substation. This 

will make it possible to proactively isolate the power  

equipment from damage. That is, by serving as an additional 

protection level which aimed at enhances lightning shielding 

performance and plays a crucial role in the lightning 

protection of transmission systems. 

The rest of the paper is organized as follows: section 2 is the 

background of the study and it discusses the basic studies of 

lightning, effects of the lightening and lightning location 

system. Basic Artificial neural networks hypothesis is 

explained in section 3, while section 4 presents the proposed 

adaptive risk analysis & management (ARAM) design and 

description. Section 5 is the experimental studies and it 

explains adopted experimental procedures, results and 

discussion. Finally, conclusion is presented in section 6.  

2. BACKGROUND OF THE STUDY 
Lightning is a physical phenomenon of random nature which 

generated fast transients in power systems. It is the major 

cause of power system outage or equipment damage by 

indirect strokes [3] and direct strokes [4]. Overhead 

transmission and distribution lines are often exposed to 

lightning overvoltage, whose waveforms vary widely. The 

transient overvoltage due to lightning are electromagnetically 

induced in power lines after a stroke within the vicinity of the 

lines.  

Lightning surge voltages that arrive at a substation, traveling 

along a transmission system, are caused by a lightning stroke 

terminating either on a tower, shield wire, or a phase 

conductor. The shape and magnitude of these voltages are 

functions of the polarity, shape, and magnitude of the 

lightning stroke current, the footing impedance, line surge 

impedance, and the tower surge impedance. For lines that are 

effectively shielded, the induced surge voltages due to 

shielding failure are typically to a greater extent severe than 

those stimulated by a backflash. In other words, they are faced 

with fast front surge [2].  The voltage along the shielding wire 

varies significantly as a function of front time, peak current 

and position along the wire. Vast numbers of lightning 

shielding failures in a UHV and EHV transmission system 

result in fault [5]. 

Lightning strikes and associated effects are real serious threat. 

They are the cause of fires, injury or loss of life, damage & 

destruction of property, significant downtown and outage-

related revenue loose due to equipment damage [6].   

2.1 Basic study of lightning 
Cloud flashes are the most frequent flashes in their classes. 

This group of flashes occurs whenever there is a severe storm. 

However, it shrinks spatial differences in charge among 

clouds. Generally cloud flashes within the region of primary 

negative charge at the height of 4-8 km in the cloud, 

propagates toward a region of predominately positive charge 

at a height of 8-12 km [7]. Cloud to Ground flash is the other 

category of flashes which is initiated by electrical breakdown 

in the cloud, and a negative charge from the electrified cloud 

spread-out to link earth as shown in Figure 1.     

Subsequent flashes may result from lightning flash if cloud to 

cloud (CC) discharges originated from the depletion of charge 

in the main cloud cluster linking the adjacent charge cluster 

gather sufficient charges. Some of these charges are 
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channelled in a sequence of individual return strokes that 

feature a nominal duration of tens of microseconds, peak 

current ranging from few kilo amperes to more than 200 kA, 

and are spaced by 20–100 ms [7]. Since the discharge route 

from the main flash is quiet ionized, it assumes little charge to 

initiate a flash. In comparison with the primary stroke, the 

pre-ionized channel effects in subsequent strokes with about 

one-third the current and shorter rise time [8] 

Both classes of flashes are considered to radiate 

electromagnetic energy in terms of high-frequency over a 

wide range of frequency spectrum. This makes it possible for 

the lightning sensing device to process electromagnetic signal 

in traditional radio-frequency ranges that relate to common 

signal-processing bands. 

 

Fig 1: Classes of flashes

2.1 Mechanism of Lightning Location 

System 
Emerging microelectronic technologies are offering advanced 

techniques to observe, examine and mitigate the effect of 

lightning on power systems. Cloud-to-Ground lightning (CG) 

is one of the principal causes of outages and transient 

overvoltage faults in electric power transmission and 

distribution systems in lightning-prone areas. The 

electromagnetic field in the VLF, LF and VHF frequency 

ranges radiated by lightning is measured by Lightning 

Location systems (LLS). These systems employed sensor 

which are usually separated by 50-400 km to measure 

lightning radiated magnetic field [9]. The CG discharges are 

located by using various techniques like Time-of-Arrival 

(TOA), Magnetic Direction Finding (MDF), and combination 

of both (MDF+TOA). Locating lightning using TOA 

technique requires precise synchronization of the sensors, 

which is available in GPS satellite. This made it possible to 

detect differences in the arrival time at various distances from 

the striking point as the radiated field from Lightning 

propagates in all directions with the speed of light.  

The MDF systems determine the direction with the aid of 

crossed loop antennas once the upward propagating return 

stroke has attained a height of a few hundred meters [10]. So, 

the resulting direction vector indicates closely as possible to 

the position where the CG stroke linked to ground. The 

combined MDF+TOA technique provides azimuth data while 

absolute arrival time renders range information. This 

technique utilized location algorithm in conjunction with 

timing and angle information provided by the sensor to grants 

an optimized estimate of three variable parameters; discharge 

time, longitude and latitude [7]. 

2.2  Ground base Lightning Location 

System 

Correctly identification and classification of each emitted 

lightning electromagnetic wave is not an easy task. This task 

is accomplished either by central processor (CP) in which 

acquired sensor data is examines base on a set of information 

used in locating the stroke or at the sensor level through 

“waveform criteria” established on a set of stroke features of 

CG flashes [11]. 

Uman et al. (1975) relates peak current Ip to the peak field Ep 

based on transmission line model (TL) as shown in Equation 

1.  

2

02
p p

c D
I E

v

   
                                            (1)                

Where; 

D: horizontal distance between the lightning channel and the 

observation point, 

 V: return stroke speed 

 C: speed of light  

Assuming a reference distance D of 100 km and 1.108 m/s 

return stroke velocity, Equation 1 becomes the linear relation 

used to infer lightning peak currents from measured peak 

fields as shown in equation 2. 

( ) 5. ( )p pI kA E V m                                                    (2) 
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Lightning flashes over a very large area covered by the 

transmission and distribution Electrical Power System 

infrastructure can be monitored by a few numbered of 

installed ground base lightning detection systems (GLLS). In 

Figure 2, both the transmission system and the GLLS are on 

the same ground.   

The lightning peak current, strike locations and discharge time 

information is determine by the GLLS. Due to the tremendous 

amount of data that can be gathered by this system, it remains 

a promising source of standard and customized lightning data 

format outputs to implement this work. 

 

                   

Fig 2: Installed ground based lightning detection systems 

3. HYPOTHESIS OF THE ARTIFICIAL 

NEURAL NETWORKS (ANNs) 
The artificial neural network (ANN) derives its computing 

ability through its massively parallel distributed structured 

and through its power to learn and therefore generalize. These 

two capabilities make it possible for ANN to find good 

approximation solution for intractable complex problems [12]. 

Among the features of ANN that made it attractive 

classification or prediction model in many fields of research 

are: 

 (1) Nonlinearity: It has the ability to solve complex nonlinear 

problems.  

(2) Input-Output Mapping: The network learns from examples 

based on popular paradigm known as supervised learning by 

constructing an input-output mapping of the problem at hand.  

(3) Adaptively: this is a built-in power of neural networks to 

adapt their weights to changes in the surrounding 

environment. ANN trained to operate in a specific 

environment can be easily retrained to deal with minor 

changes in the operating environmental conditions [12]. 

ANNs were developed by simulating human neurons or 

network of neurons in the brain. Neurons are cells with cell 

body and dendrites which are the input wires connected to the 

cell body and receive signals from body receptors. In addition 

to these two, neurons have output wire known as axon which 

sends signals or informative messages to other neurons. Thus, 

at primitive level a neuron is a computational unit that 

receives a number of inputs (electric pulses) through its input 

wires (dendrites), does some computation in the cell body and 

sends output through its axon to other neurons in the brain. 
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Fig 3: Neuron model: (a) without bias, (b) with bias input x0 and weight ϴ0 explicitly

Figure 3 depicted ANN implementation of a simple model of 

a neuron; the empty circle (in orange) plays a role analogous 

to the body of neuron, each arrow linking an input   to the 

neuron, has attached a parameter or weight     ,the diagram 

represent the computation of a sigmoid fed with the dot 

product of      and      in the form of: 

 
xT

e
xh

 1

1
)(                                                       (3) 

Where x and   are parameter vectors  
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. Mathematically, ANN implementation of a 

simple model of a neuron figure3 can be represented as: 

         



m

j

jkjk xU
1

                                                        (4) 

Equation (4) is refers to weighted sum of input signals without 

bias.  

         )( kkk bUV                                                        (5) 

and   )( kkk bUhy                                                    (6) 

where 
kV is a weighted sum of input signals plus bias 

expressed as: 





m

j

jkjk xV
0

                                                          (7)                   

00xbk                                                                    (8)  

From equation (5)    can be seen clearly as a linear function, 

equivalent to equation of line (ax + c) which is expressed in 

eqn. (7). And    from equation (6) is the output of 

classification based on activation function which says when                                                    

.              ,              or when               ,                 

  

Fig 4: Affine transformation resulted by the presence of a 

bias 

Note that in figure 4:    is a local induced field and    is an 

intercept at
kV . From equation 5, 

k kV b at 0kU                    

Thus 0,k kb V is intercepted at positive value, 0,kb                   

kV is intercepted at negative value and 0,kb 
kV is 

intercepted at origin.  

Having shown both graphical and mathematical models of 

neuron, it is easy to see that Neural Network is a collection of 

different artificial neurons working together to form a 

predictor or classifier. Perhaps no other better way to prove 

the modeling capability of ANNs than to describe and prove 

the perceptron convergence theorem which was the first 

algorithmically description of ANNs as invented by 

Rosenblatt in 1958. The theorem stated that: 
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 “If there is a set of weights that correctly classify the (linearly 

separable) training patterns, then the learning algorithm will 

find one such weight set, w* in a finite number of iterations.” 

Suppose the input vectors for perceptron (built around 

nonlinear neuron) originated from linearly separable classes. 

Let X1 be the training subspace of training vectors

1 1(1), (2),....x x , and belongs to class    (class 1). And let 

X2 be the training subspace of training vector

2(1), (2),....sx x , and belongs to       class (class 2). 

So, given a set of training vectors X1 & X2, the training 

process involve adjusting the weight   vector so that 
1 and 

2 are linearly separable stated as follows:  

Let     a weight vector    such that: 

0T x  , for x        

0T x  , for x   

 In case of adapting the weight vector in perceptron during 

training: 

Case 1: )()1( nn    if  0)( nxT  &

1)( nx .  And )()1( nn   ; if 0)( nxT  & 

2)( nx are the cases of correct classification, in which 

there are no need for weight update.  

Case 2:   )()1( nn , if 0)( nxT  &

2)( nx . And   )()1( nn , if 

0)( nxT & 1)( nx  are the cases of 

misclassification, in which the weight need to be updated. On 

these bases, perceptron convergence theorem is proved as 

follows:  

 Assuming that )(nx


 ; for n =1, 2… n, 0)0(   

and 1  is the learning rate. Also, the input vector belongs 

to two linearly separable. 

Using the 2nd line of case 2 and update the weight of 

misclassification in which 0)( nxT , and 1)( nx .  

)1( n  =  (n) + x(n)                                                    (10) 

From equation (10) it can be deduced that:  

 (1) =  (0) + x(0) = x(0);    n = 0. 

 (2) =  (1) + x(1) = x(1);  n = 1. 

 (3) =  (2) + x(2) =  x(1) + x(2);   n=2. 

  

)1( n  = x(1) + x(2) + …. + x(n)                                  (11) 

For n = n+1. The objective is to find weight      such that: 

( ) 0T x n   & x(n) ϵ      . For a fixed solution, s let: 

)(min
1)(

nxT

s
nx




                                            (12) 

Where     is positive. Multiplying both sides of equation (11) 

with        to arrive at equation (13): 

)(...)2()1()1( nxxxn T

s

T

s

T

s

T

s                 (13)                                                                 

It is easy to see that equation (14) holds with reference to 

equation (12). 

T

s )1( n    n                                                        (14) 

According to Cauchy-Schwarz inequality, given two vectors 

s  and )1( n : 

 22
)1()1(  nn T

ss                            (15) 

 Where ||.|| is Euclidean norms and inner product 

)1( nT

s  is scalar qualities. Equation (16) relates 

equation (14) and equation (15): 

222
)1(  nns                                           (16) 

It implies that: 
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22
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                                                  (17) 

Following another development route by rewriting equation 

(10) in terms of k as: 

)()1( )( kxk k                                                  (18) 

For k = 1, 2… n. and 1)( kx . Taking squared Euclidian 

norms of both sides of equation (18):    

)()(2)()()1(
222

kxkkxkk T                       (19) 

But 0)()( kxk T based on condition of the second line of 

equation (9).Thus, equation (19) is deduced to:  

222
)()()1( kxkk   , or equivalently  

222
)()()1( kxkk                                 (20) 

Given the initial condition 0)0(  and recall                             

that                                     the following inequality is 

obtained: 





n

k

kxn
1

22
)()1(

                                           (21) 

Now, let there be 
2
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)(max

1
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For sufficiently large value of n: 
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However, equation (23) is in conflict with the eqn. (17) for a 

large value of n. So, to reconcile the two equations,           is 

considered, under which: 

 





max

2

2

22

max )1( nn
n

s


                             (24) 

From equation (24), it is shown that the solution vector
s  

exists and it is guaranteed to be obtained after         iterations:  

2

max 2

|| ||sn
 


   

3.1  ANN Modeling For Localizing 

Lightning Strike 

The basic idea of the proposed method is to have an adaptive 

risk analysis & management system that will proactively 

protect power apparatus from overvoltage surge due to 

lightning strike. And for this reason ANN is used to model or 

predict: (1) the intensity of lightening (that is high, medium or 

low) and (2) to map the lightning strike to a specific 

region/area of station, so that appropriate action could be 

taken (e.g. to break the circuit). 

However, in order to achieve this aim an archive of data for 

regions with lightning density and for a long period of time 

was sought for. For this reason lightening data were acquired 

from the national Lightning Detection Network (NLDN) 

which covers the United State and has been on operation for 

30 years. The NLDN remained the most reliable source of 

lightning data. Data are collected at very high spatial accuracy 

and high detection efficiency.  

This study used lightning flash dataset collected for 5 years 

and covered a region of approximately 25km by 25 km square 

area within the latitude/longitude bounds 37.15N – 37.375N 

and 95.95W – 95.667W. The data consist of the following 

fields (1) Date (in UTC), (2) Time (in UTC), (3) Latitude (in 

decimal degrees), (4) longitude (in decimal degrees), (5) 

Polarity and peak current (KA).  Based on the description of 

this region, the satellite view of the area covered is captured 

and divided into smaller regional units based on the latitude 

and longitude bounds as in figure5. And it is assumed that 

these smaller regional unit areas consist of different type of 

power system equipment. 

  

Fig. 5: Division of the study area into smaller regional 

units 

R1 to R9 refer to sub-region 1 to sub-region 9, each of which 

is within decimal values of latitude/longitude bounds. For 

example R1 is between 37.15N – 37.225N, 95.761W – 

95.667W. Through this predefined division, localized labels 

are obtained for the case study locations. Also, using domain 

expert knowledge the peak current range of values are labeled 

into three classes namely, low, medium and high. Both the 

location labels and the lightning strike intensity labels 

combined to serves as targeted classes.  

4. DESCRIPTION OF THE DESIGN OF 

ARAM 
The proposed study considered that there is various power 

system installations at the case study substation location and 

these installed equipment have different resistance to voltage 

surge and could be found in different regional units. That is, it 

was assumed that there are documented inventory of all the 

installed equipment in the location handled by control system. 

This control system is linked to ARAM in one hand and to 

Circuit breaker system in the other hands. The ARAM 

receives relevant input from device for capturing the strike 

information (like GLLS) and produces strike level and the 

targeted location (sub-region), based on the output produced 

by ARAM a trigger will be initiated to alert control system for 

action, to remove fault. Table 1 is the outline of the steps 

involved, and the figure 6 provides the design of the proposed 

system.  

Table 1. The ARAM steps for power substation system 

1. Lightning strike occurrence 

2. Device for capturing the strike information 

 (like GLLs) captured the event 

3. ARAM predicts and triggers control system. 

4. Control system takes action to remove the fault. 

5. Fault removal (such as circuit breaker)   
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Fig. 6: Design of the proposed method 

5. EXPERIMENTAL STUDIES 
This section presents various experiment carried out to ensure 

that the predicting model work well and corresponding results 

achieved indicates that the proposed method is promising. 

The dataset for this study was acquired from NLDN as stated 

earlier on, the dataset consist of 5 features and 31,703 data 

points created from dataset for 2008 through 2012. However, 

for this experiment, only 3 features were considered as an 

input for the experiment due to their direct correlation with 

expected target attributes. This dataset is divided into training 

set, validation set and test set in the ratio of 3:1:1 respectively. 

5.1 Experimental Setup  
Based on the input dataset two attributes were generated, the 

location attribute was generated from location labels as 

explained in section 3.1. Also, strike intensity attribute for the 

data points from the lightening intensity label from section 3.1  

were generated. Finally, the two attributes were combined into 

27 multiclass labels for the neural network architecture.     

The Neural Network implementation was evaluated to ensure 

that the learning process during training stage descent as 

expected. Figure 7 is generated to ensure that the learning 

curve algorithm is working fine. The cross validation errors 

decreases for different subset of the training set sizes. High 

variance problem can be observed in figure 7 as cross 

validation sets errors remains relatively high as the number of 

examples increase, while the training errors are relatively very 

small, as such is likely that the model will not generalized 

well. To resolve this over fitting problem, regularization 

parameters were included to the learning algorithm and the 

optimal regularization parameter (using cross-validation 

method) suitable for both training and cross validation sets is 

obtained.  

 

 

Fig. 7: Neural networks learning curve with zero regularization parameter 
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Fig. 8: Neural networks performance evaluation 

 

5.2 Experimental Results and Discussion 
After training the model, the performance of the resulted 

classifier is evaluated on the test set. Prediction accuracy of 

99.668 is recorded with 0.302 RMSE. Also, the RMSE of 

each example in training, validation and test set samples of 

first 100 examples is presented in figure 8. Out of 100 first 

examples samples for each of the three subsets of the dataset, 

only one test example (unknown sample) was wrongly 

predicted, the remaining 99 unknown samples from the test 

set were predicted correctly. 

6. CONCLUSION 
In this study an adaptive risk analysis & management 

(ARAM) for the lightning strike on power substation system 

is proposed. The proposed design was illustrated 

hypothetically. Based on the real life lightning strike dataset 

obtained from NLDN the adaptive unit of the ARAM was 

implemented and the result obtained has shown that the 

choice of neural network is suitable for this study.  

The key contribution of this study is to proactively reduce the 

effects of the lightning strike on power substation by isolating 

targeted substation equipment from damage due to strike. In 

addition, this study will serves as an additional protection 

level that aimed at enhance lightning shielding performance 

and will play a crucial role in the lightning protection of 

transmission systems. 

Future work will focus on the simulation of the remaining part 

of the proposed ARAM as presented in this study, in 

particular the control system and fault removal sections.  
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