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ABSTRACT

In this paper, the concept of minimum hub distance energy
Erq(G) of a connected graph G is introduced and minimum hub
distance energies of some standard graphs and a number of well-
known families of graphs are computed. Upper and lower bounds
for Errq(G) are also established.
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1. INTRODUCTION

In this paper, a simple graph G = (V, E), that is nonempty, finite,
having no loops, no multiple and directed edges are considered. Let
p and g be the number of its vertices and edges, respectively. The
symbols A(G) and §(G) denote the maximum degree and the min-
imum degree of G, respectively. For graph theoretic terminology,
we refer to [[12]].

M. Walsh [[18]] introduced the theory of hub numbers in the year
2006. Suppose that H C V(G) and let 2,y € V(G). An H-path
between x and y is a path where all intermediate vertices are from
H. (This includes the degenerate cases where the path consists of
the single edge xy or a single vertex x if x = y, call such an H-path
trivial). A set H C V(G) is a hub set of G if it has the property
that, for any =,y € V(G) — H, there is an H-path in G between x
and y. The smallest size of a hub set in G is called the hub number
of G, and is denoted by h(G) [18]]. For more details on the hub
number see [7]]. A set S C V(G) is called a dominating set of G
if each vertex of V' — S is adjacent to at least one vertex of .S. The
domination number of a graph G denoted as v(G) is the minimum
cardinality of a dominating set in G [13].

The concept of energy of a graph was introduced by 1. Gutman [9]
in the year 1978. Let GG be a graph with p vertices and g edges and
let A = (a;;) be the adjacency matrix of the graph. The eigenval-
ues A1, Az, ..., Ap of A, assumed in non increasing order, are the
eigenvalues of the graph G. As A is real symmetric, the eigenval-
ues of G are real with sum equal to zero. The energy E(G) of G
is defined to be the sum of the absolute values of the eigenvalues
of G,ie. E(G) = XP_, |\;|. For more details on the mathematical
aspects of the theory of graph energy see [2,[10L[16].
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The distance matrix of G is the square matrix A,4(G) of order p
whose (4, j) - entry is the distance between the vertices v; and v; .
Let p1, pa2, ..., pp be the eigenvalues of the distance matrix A4(G)
of G. The distance energy DE(QG) of a graph G is defined by

DE(G) =Y _|pil.

More detailed studies on distance energy can be found in [5} 16} [11}
141 [17]. Motivated by this definition, we introduce the concept of
minimum hub distance energy Frr4(G) of a graph G and compute
minimum hub energies of some standard graphs. Upper and lower
bounds for E'4(G) are also established. It is possible that the min-
imum hub distance energy considered in this paper may have some
applications in Chemistry as well as in other areas.

2. THE MINIMUM HUB DISTANCE ENERGY OF
A GRAPH

Let G be a graph of order p with vertex set V' = {v1, va, ..., v, } and
edge set E. Any hub set H of a graph G with minimum cardinality
is called a minimum hub set. Let H be a minimum hub set of a
graph GG. The minimum hub distance matrix of G is the p x p matrix
AHd(G) = (CLZ']'), where

) ift=j andv; € H;
Gij = d(v;,v;), otherwise.

The characteristic polynomial of Ay 4(G) denoted by f,(G, p), is
defined as

£2(Gp) = det (pI — Aa(G)).

The minimum hub distance eigenvalues of the graph G are the
eigenvalues of Ag4(G). Since Ay q(G) is real and symmetric, its
eigenvalues are real numbers and we label them in non-increasing
order p; > py > ... > p,. The minimum hub distance energy of G
is defined as:

P

Era(G) =) _ ol

i=1

EXAMPLE 1. Let G be a graph in Figure 1 with vertices
{v1,v2,v3,v4,v5} and consider its minimum hub set be H, =
{’02,?)3}
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The characteristic polynomial of Ay, 4(G) is f,(G,p) = p° —
2p*—21p3—20p%+11p+6, the minimum hub distance eigenvalues
are p1 ~ 6, po ~ 0.61803, p3 ~ —0.38197, ps =~ —1.618, ps =~
—2.618. Therefore the minimum hub distance energy of G is

En,a(G) ~ 11.236.

If we take another minimum hub set of G, namely Hy = {v1,v2},
then

11122
11121
22101
21210

5

The characteristic polynomial of Ap,q(G) is fp(G,p) = p° —
2p* — 21p® — 23p? + 6p + 3, the minimum hub distance eigen-
values are p; ~ 6.0614, po ~ 0.41421, p3 ~ —0.27744, ps =
—1.7840, ps ~ —2.4142. Therefore the minimum hub distance
energy of G is

The above example illustrates that the minimum hub distance en-
ergy of a graph GG depends on the choice of the minimum hub set.
i.e., the minimum hub distance energy is not a graph invariant. We
need the following to prove main results.

THEOREM 1. [I5)] For any (p,q) graph G, p — q¢ < ~v(Q).
Furthermore, v(G) = p — q if and only if each component of G is
a star.

LEMMA 2. [I8] For any graph G, v(G) < h(G) + 1

THEOREM 3. [[I8] If G is a connected graph then h(G) <
|V (G)| — A(G), and the inequality is sharp.

3. SOME BASIC PROPERTICES OF MINIMUM
HUB DISTANCE ENERGY

THEOREM 4. Let G be a graph of order p, size q , and hub
number h(G). Let f,(G, p) = cop? + c1pP L+ cop?P 2 + ...+ ¢,
be the characteristic polynomial of minimum hub distance matrix
of a graph G. Then

() co=1.
) ¢ = —h(G.

(h( > Zl<2<]<p (vi, v5).

3 e
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PROOF. (1) Follows by the definition of f,(G, p).

(2) Since the sum of diagonal elements of Axy(G) is equal to
|H| = h(G), where H is a minimum hub set of a graph G.
The sum of determinants of all 1 x 1 principal submatrices of
Apgq(G) is the trace of Ay 4(G) , which evidently is equal to
h(QG). Thus, (—1)te; = h(G).

(3) (—1)%c; is equal to the sum of determinants of all 2 x 2 prin-
cipal submatrices of Agq(G) , that is

Gis Qi
S DR P
— gt Yig
1<i<j<p
= E (asiaj; — aija;)
1<i<j<p
2
= § GiiGjj — E @ij
1<i<j<p 1<i<j<p
hG) Yo
= ( 2 - d (’Ui,’Uj).
1<i<j<p

O

THEOREM 5. Let G be a graph of order p. Let p1, pa, ..., pp be
the eigenvalues of Apq(G). Then

(i) Y0, p? = h(G) + 2q + 2D, where D =
i<j, d(vi,vj)#1 d?(vs, vj).

PROOE. (%) Since the sum of eigenvalues of A g 4(G) is the trace
of AHd (G), then

Zpl = Zaii = |H| = h(G), where H is a minimum hub set of G.

i=1

(42) Similarly, the sum of squares of the eigenvalues of Ax4(G) is
the trace of (Amq(G))?. Then

P P P

2
E Pi E E AijQji
i=1

i=1 j=1

P P
— 2 + s
= Az Qi Aji

i=1 i£j

SICEE 3

1<J

= |H|+2 Z 2 (vs,v5)

1<i<j<p
= K@) +2 Y (v,
1<i<j<p
= h(G)+2q¢+ 2D, where D = Z
i<g, d(vi,v;)#1

d2(’l)z',’l)j).

O

LEMMA 6. Let G be a graph with a minimum hub set H. If the
minimum hub distance energy Er4(G) of G is a rational number,



then
Enqa(G) =|H| (mod2).

PROOF. Let p1, pa, ..., pp be minimum hub distance eigenval-
ues of a graph G of which pq, pa, ..., p,- are positive and the re-
maining are non-positive, then

P
Z lpil = (pr+p2+ .+ pr) = (Pri1+ praz+ .+ pp)
i=1

=2(prtp2t . tp)—(pr+p2+t .. +pp)
= 2m — |H|. Wherem = py + p2 + ... + ps.

Therefore, Epq(G) = 2m — |H

, and hence the proof. [

4. MINIMUM HUB DISTANCE ENERGY OF
SOME STANDARD GRAPHS

THEOREM 7. For the complete graph K, p > 2,
EHd(Kp) = 2p — 2.

PROOF. Let K, be the complete graph with vertex set V'
{v1,v2, -+, vp}. Then the minimum hub number is h(K,) =
Then

0.

Apg(K)=| 1110111

[Er

111---11---0
111.--11---10

pXPp
The respective characteristic polynomial is

p =1 —1 oo =1 —1 -+ —1 —1

-1 p -1+ =-1-1--1-1

1 -1 p =1 =1 -+ =1 -1

fo(Kp,p)=|-1-1-1--- p =1 .- =1 -1

-1 -1-1---=1p - =1 -1

-1 -1-1---1-1-- p -1

-1 -1-1.:+-=1-=1:+=1 p

=(p-(@-1)p+1) "

Hence, minimum hub distance eigenvalues are p = p —
1 [one time], p=—1 [p—1 time].

Therefore, the minimum hub distance energy of a complete graph
is

EHd(Kp) = 2p — 2.
O

THEOREM 8. For the complete bipartite graph K,, ,,, n > 3,
the minimum hub distance energy is (4n — 8) +vn? —2n+ 5+
VOn? —6n + 13.
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PROOF. For the complete bipartite graph K, ,,, n > 3 with ver-
tex set V- = {uy, ua, -, Upn, v1, V2, -, vy}, consider a minimum
hub set H = {uy, v }. Then

122..-.2111---1

202 ---2111 1
220---2111 1
2929201111
Ana(Knn)=17771 ... 1122 ... 2
111---1202---2
111---1220-.--2
L1l 1222-0/ 40000
The characteristic polynomial of Az 4(Kp ),
p—1 -2 -2 ... =2 -1 —1 -1 ... —1
2 p -2 =2 -1 -1 —-1---—1
-2 -2 p - =2 -1 -1 -1 -1
B ,'2 ,'2 ,2 p ,.1 ,.1 ,1,1
fonBonmp) =1 1 ] 1 .21 p1 -2 —2 ... —2
1 =1 -1 - =1 =2 p —2 ... =2
-1 -1 -1-+-1 =2 -2 p - =2
1 -1 -1 -1 =2 =2 -2 p

= (p+2)*" 1 [p* = (n=3)p— (n—1)][p* — (3n—3)p— (3n+1)].

Hence, minimum hub distance eigenvalues are p = —2 [2n —

(n—3)+4y/n2-2n+5

4 times], p = 5

B8ty 3"2767&13 [one time each].

Therefore, the minimum hub distance energy of a complete bi-
partite graph is Epq(K,,.) = (4n — 8) + vVn2—2n+5 +
V9n? — 6n + 13.

O

[one time each], p =

THEOREM 9. Forn > 2, the minimum hub distance energy of
a star graph K, ,,_1 is equal to 4p — 7.

PROOF. Let K, 1 be a star graph with vertex set V' =
{vo,v1, V2, -+, Vp_1}, Vg is the center, and the minimum hub set
is H = {vo}. Then

111---1
102 .--2
Aga(Ky ) = 120---2
122.---0

pXp

The characteristic polynomial of Agq(K7 1) is

p—1 -1 -1 .-+ —1
“1 p -2 =2

fp(Kl,pfhp) = . . p .
-1 -2 -2 ... p

=(p+2)"%(p* - (2p—3)p+ (p—3)).




Hence, minimum hub distance eigenvalues are p = —2 [p —
. — \/4p2— .
2 times], p = Cp )2y ap? 10p+21 [one time each]. There-

2
fore, the minimum distance energy of a star graph is

EHd(Kl,pfl) = 4p — 7

O

DEFINITION 10. [I8] The double star graph Sy, ., is the graph
constructed from K ,,_1 and K ,,_1 by joining their centers vy
and Uug. V(Sn,m) = V(Kl,nfl) U V(Kl,mfl) and E(Sn,m) =
{vouo, vovs, uou; : 1 <i<nm—1,1<j<m—1}. Therefore,
double star graph is bipartite graph.

THEOREM 11. Forn > 3, the minimum hub distance energy of
the double star graph S,, ,, is equal to (9n—13)++v/n? + 6n — 3.

PROOF. For the double star graph S, ,, with vertex set V' =
{0, V1, +ery Up—1, U, U1y ..oy Up—1 } the minimum hub set is H =
{vo, uo}. Then

111---1122 2
102--2233 3
120--2233 3
122-.--0233---3

Ana(Snn) = 195 ...9711 ... 1
233.---3102---2
233---3120---2

23331220

2nx2n

The characteristic polynomial of Ag4(Sy, ) is
p—1 -1 -1-- -1 -1 -2 -2 ... -2
1 p -2 -2 -2 -3 -3 ... -3
-1 -2 p -+ -2 -2 -3 -3...-3
I I S A A
Fan(SnmP) =\ 1 9 9.0 9 p-1 21 -1 --r -1
2 -3 -3 ... -3 -1 p -2 -2
2 -3 -3 ... -3 -1 -2 p - -2
—2 -3 -3 ... -3 -1 -2-2-- p
= (p+2)>" [P+ (n+1)p— (n = 1] [p* = (50 = 5)p+ (n —
Hence, minimum hub distance eigenvalues are p = —2 [2n —
4 times], p = —lEVnTHons3d ”;2"'6"_3 [one time each|, p =

5n—5)+4/25n2—54n+24 .
(5n=5) n= 52 one time each).

2
Therefore, the minimum hub distance energy of a double star graph

is
Euq(Snn) =9n—13) +/n?+6n—3.

O

DEFINITION 12. [ll] The cocktail party graph, denoted by
Kap, is a graph having vertex set V(G) = |J7_, {us,v;} and
edge set E(G) = {u;uj,v;vj,u05,vu; © 1 <4< j<p}ie.
V(@) = 2p, |E(G)| = 22522 and for every v € V(G), d(v) =
2p — 2.
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THEOREM 13. For the cocktail party graph Ko, the mini-
mum hub distance energy is

Erna(Kaxp) > (dp—3) +24/2p + 2.

PROOF. Let Ky, be the cocktail party graph, having vertex
set V(Kzxp) = U5 {us,v;} . Then the hub number of Ks,,
is h(Kaxp) = 1. Therefore, H = {u} . Then

1211---11
2011 ---11
1102 -.---11
Apa(Fpy) = | 112011
1111---02
111120/, .
The characteristic polynomial of A 4(Kaxp) is
p—1 -2 -1 -1 -+ -1 -1
2 p -1 -1 - -1 -1
1 -1 p -2 -1 -1
1 -1 -2 S -1
Jop(Kaxp, p) = P
I
1 -1 -1 -1 - =2 p

p—1)p* +

(2p+2)p+ (2p - 2)) — (4p* + 2p — 2)]
>pP2(p+2P  p?(p—(2p—1)) — (2p+2)(p— (2p — 1))]
=" 2 (p+2)P  p—2p—1))(p* — (2p+2)].

Therefore, minimum hub distance eigenvalues are p = —2 [p —
1times], p~=0 [p—2times], p~2p—1 [onetime], p=~
+1/2p +2 [one time each|. Where = represents approximately
equal. Hence,

Era(Kaxp) > (4p—3) +24/2p + 2.

O

DEFINITION 14. A Friendship graph F,, is a one point union
of n copies of cycle Cs. V(F,) = 2n + 1.

THEOREM 15. For the A Friendship graph F,,, n > 2, the min-
imum hub distance energy is

EHd(Fn) =8n — 5.

PROOF. Let F),, n > 2 be the Friendship graph, having vertex
set V(Fp) = {vo, 01, cueen. ,Uan} , Vg is the center, and the hub
number of F), is h(F,,) = 1. Therefore, the minimum hub set H =
{vo} . Then

1111111
10122 ---22
11022 22
1220122

Apga(Fr)=112210 -2 2

s
\V]
\V]
\V]

— o

(2n+1)x(2n+1)



The characteristic polynomial of Az 4(F,) is

p—1 -1 -1 -1 -1--- -1 —1
“1 p -1 -2 -2 -2 -2
1 —1 p -2 -2 ... =2 -2
—1 =2 -2 p —1 - -2 -2
f2n+1(Fnap): -1 -2 -2 -1 14 =2 =2
1 -2 -2-2-2. p -1
~1 -2 -2 -2 -2 -1 p

=(p+3)" ' (p+1)"[p* — (4n —2)p+ (2n - 3].

Hence, minimum hub distance eigenvalues are p
-3 [n — 1 times], p = =1 [n times], p

An— 2i\/16n2 24n+16
[one time each].

Therefore, the minimum hub distance energy of a friendship graph
is

EHd( ) (871 - 5)

5.  BOUNDS FOR MINIMUM HUB DISTANCE
ENERGY OF A GRAPH

THEOREM 16. Let G be a graph of order p and size q. Then
\/h(G) +204 23 sy @ 000) < Bna(G) <

\/p [h(G) F20+ 220505, agwme1 E (00 “j)} '

PROOF. Consider the Cauchy-Schwartz inequality

() =(57) (%)

By choosing a; = 1 and b = |p;i|, we get
2
(Brna(G))” = (Zleal)” < (0, 1) (C.0) <

D [h(G) 4 2q + 2Zi<j d(vs0)£1 d2(vi,vj)} Therefore, the
s d(vi,v;
upper bound holds.
Now, since
p 2 p
Soleil | 2> e
i=1 i=1
we have
EHd >Zp2 —h +2q+2 Z dQ(Ui,’l}j).
i<j, d(vi,vj)#1
Therefore.
Epa(G) > \/h(G) +2042 Y (v,

i<g, d(vq,v;)#1
O
THEOREM 17. Let G be a connected graph of order p and

size q. Then \/Qp—q—1+2zi<j7 d(vi,vj)#ldQ(Ui’Uj) <

Bna(G) < \J1* = A0+ 205 e, 010 (01,03).
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PROOF. By Lemma[2]and Theorem 3] we have
v(G)-1<h(G)<p-A e
Since for any graph, 2¢ < p? — p, it follows by Theoremthat

Ena(G) < \/p [h(G) +2q+2 Zi<j, d(vi,v;)#1 d2(vi, v]-)} <

\/p |:(p2 *p) +p—A+ 22i<j, d(vi,vj)#1 dQ('Ui:'Uj)} =

\/{(pg —Ap)++2p) d(vs,05)21 d2(v¢,vj)}. For the

lower bound, since for any connected graph p < 2q , by
Theorem [T6] Equation []] and Theorem [I] that it follows

Era(G) \/Zq +H(G) T2 oy P0105) >
\/p+7(G)71+22i<j7 d(v“vj)#ldQ(vi,vj) =

\/21’ —q-1423 d(vi 21 (Vi v5). O

THEOREM 18. Let G be a graph of order and size p and q,
respectively. If K = det(Apq(G)), then

Eqa(G) 2 [h(G)+2q+2 Y
i1<j, d(vq,v5)#1
PROOF. Since (Exa(G))® = (X0, lnl)® =

(o) (o) = S lel® + X lellosl-
using the inequality between the arithmetic and geometric means,
we get

1/[p(p—1)]
Zmum > (Hmm) :

z;&j i#]
Thus
1/[p(p-1)]
(Brna(G))* > Zwﬂ» - 1) <H mm)
£
1/[p(p-1)]
> Z\pzl2+p -1) <H|P 2P~ ”)
2/p
= Z‘pz|2+p 71 sz
£
= h(G)+2+2 Y P, +p0
i<g, d(vq,v5)#1
O

6. CONCLUSION

In this paper, we obtain the bounds for minimum hub distance en-
ergy of graphs and present its exact value for complete graph, com-
plete bipartite graph, star graph, double star graph, cocktail party
graph and a friendship graph. The minimum hub distance energy
of several other families of graphs is an open problem.

d?(vi,v;) + p(p — 1) K2/7,

1K?/P,
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