τ^* - g λ - Closed Sets in Topological Spaces

N. Murugavalli Department of Mathematics, Sri Eshwar College of Engineering, Coimbatore-641 202, Tamil Nadu, India,

ABSTRACT

In this paper, we introduce the new notions τ^* - $g\lambda$ - closed sets and τ^* - $g\lambda$ - open sets τ^* - $g\lambda$ - continuous maps in Topological spaces. Also we introduce a new space called T τ^* - $g\lambda$ - space. We study some of its properties in Topological spaces.

General Terms

2000 Mathematics Subject Classification: 54A05

Keywords

 τ^* - g λ - closed sets , τ^* - g λ - open sets , τ^* - g λ - continuous maps, T $_{\tau^* - g\lambda}$ - space.

1. INTRODUCTION

In 1970, Levine[9] introduced the concept of generalized closed sets as a generalization of closed sets in topological spaces. Using generalized closed sets, Dunham[8] introduced the concept of the closure operator cl* and a new topology τ^* properties. and studied some of their P.Arya[3], P.Bhattacharyya and B.K.Lahiri[5], J.Dontchev[7], H.Maki, R.Devi and K.Balachandran[12], [13], P.Sundaram and A.Pushpalatha[19] introduced and investigated generalized semi closed sets, semi generalized closed sets, generalized semi preclosed sets, α - generalized closed sets, generalized-a closed sets, strongly generalized closed sets, $g\lambda$ - closed sets respectively.

In this paper, we obtain a new generalization of closed sets in the weaker topological space (X, τ *). Throughout this paper X and Y are topological spaces on which no separation axioms are assumed unless otherwise explicitly stated. For a subset A of a topological space X, int(A), cl(A), cl*(A), scl(A), spcl(A), cl α (A) and A^c denote the interior, closure, closure*, semi-closure, semipreclosure, α -closure and complement of A respectively.

2. PRELIMINARIES

Definition 2.1

A subset A of X is called

 (a) semi open [8] if there exists an open set G such that G ⊆ A ⊆ cl(G) and semi closed if there exists an closed set F such that int(F) ⊆ A ⊆ F.

Equivalently, a subset A of X is called semi-open

if $A \subseteq cl(int(A))$ and semi closed if $A \supseteq int(cl(A))$

(b) α -closed if cl(int(cl(A))) \subseteq A and an α -open if $A \subseteq int(cl(int(A)))$ [17].

A. Pushpalatha, PhD Department of Mathematics Government Arts College, Udumalpet- 642 126, Tamil Nadu, India,

(c) pre-closed if cl (int(A)) \subseteq A and pre-open if $A \subseteq int(cl(A))$ [14].

Definition 2.2

A subset A of X is called a

- (a)generalized closed(g-closed) set if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X and generalized open if A^c is g-closed set in X [9].
- (b) generalized semi closed (gs-closed) if $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X and generalized semi open if A^c is gs-closed set in X[3].
- (c)generalized α -closed (g α -closed) if α cl(A) \subseteq G whenever A \subseteq G and G is α -open in X and generalized α -open if A^c is g α -closed set in X[13].
- (d) generalized semi-preclosed set (gsp-closed) if $spcl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X [7].
- (e) b-closed if $int(cl(A)) \cap cl(int(A)) \subseteq A[2]$
- (f) $g^* \alpha$ -closed set if $\alpha cl(A) \subseteq \Box U$ whenever $A \subseteq \Box U$ and U is $g\alpha$ -open in X [16]
- (g) strongly $g^* \alpha$ -closed set if $\alpha cl(A) \subseteq \Box U$ whenever $A \subseteq \Box U$ and $U isg^* \alpha$ -open in X. [15]
- (h) \hat{g} -closed if cl(A) \subseteq G whenever A \subseteq G and G is semi-open in X [20]

Definition 2.3

A subset A of a topological space X is called a λ -closed set in X if A \supseteq cl(G) whenever A \supseteq G and G is open in X. [14]

Remark 2.4

- (i) Every closed set is \hat{g} -closed [20]
- (ii) Every \hat{g} -closed is g-closed [20]

Definition 2.5

A function f: $X \rightarrow Y$ is called

- (i) semi continuous (s-continuous) if $f^{-1}(V)$ is semi-closed in X for each closed set V in Y [10].
- $\begin{array}{ll} \text{(ii)} & \quad \text{generalized continuous} (g\text{-continuous}) \text{ if} \\ & \quad f^{-1}(V) \ \text{is g-open in } X \ \text{for each open set } V \ \text{ in} \\ & \quad Y \ [18]. \end{array}$
- $\begin{array}{ll} (iii) & \mbox{generalized semi continuous (gs-continuous) if} \\ f^{-1}(V) \mbox{ is gs-closed in } X \mbox{ for each closed set } V \\ & \mbox{ in } Y \mbox{ [3]}. \end{array}$

(iv) \hat{g} - continuous if $f^{-1}(V)$ is \hat{g} - closed in X for each closed set V in Y [21].

Definition 2.6

For the subset A of a topological X, the generalized closure operator cl*[5] is defined by the intersection of all g-closed sets containing A.[8]

Definition 2.7

For the subset A of a topological X, the topology τ^* is defined by $\tau^* = \{G : cl^*(G^C) = G^C\}[8]$

Definition 2.8

A subset A of a topological space X is called a τ^* - g - closed set in X if $cl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is τ^* - open in X. [18]

Remark 2.9

- (i) Every closed set in X is g -closed [9]
- (ii) Every closed set in X is τ *-g-closed.[18]

(iii) Every g-closed set in X is a τ^* -g-closed set but not conversely.[18]

3. τ^* - g λ – CLOSED SET IN TOPOLOGICAL SPACES

In this section, we introduce the concept of τ^* - $g\lambda$ -closed sets in topological spaces and study some of its properties.

Definition 3.1

A subset A of a topological space X is called a τ^* - $g\lambda$ - closed set in X if $A \supseteq cl^*(G)$ whenever $A \supseteq G$ and G is τ^* -open in X.

Theorem 3.2

Every closed in X is τ^* - g λ -closed in X but not conversely.

Proof

Assume that A be a closed set in X. Let G be an τ^* - open set in X such that A \supseteq G. Then cl^{*}(A) \supseteq cl^{*}(G). But cl^{*}(A) = A. Therefore A \supseteq cl^{*}(G) and hence A is τ^* - g λ -closed in X.

Example 3.3

Let X = {a, b, c} be a topological space with topology $\tau = \{\phi, X, \{a\}\}$. The sets {a},{b},{c},{a,b}and {a,c} are τ^* - $g\lambda$ - closed, but it is not closed in X.

Theorem 3.4

Every $\tau^*\mathchar`$ closed set in X is $\tau^*\mathchar`$ glametric distance of the set in X but not conversely.

Proof: Assume that A be a τ^* - closed set in X. Let G be an τ^* - open set in X such that A \supseteq G. Then $cl^*(A) \supseteq cl^*(G)$. Since A is τ^* - closed set, $cl^*(A) = A$.Hence A is τ^* - $g\lambda$ - closed in X.

Example 3.5

Let $X = \{a, b, c\}$ be a topological space with topology $\tau = \{\phi, X, \{a, b\}\}$. The sets $\{a\}$ and $\{b\}$ are τ^* - $g\lambda$ - closed, but it is not τ^* - closed in X.

Theorem 3.6

Every $\tau^*\text{-}$ g- closed set in X is $\tau^*\text{-}$ g $\lambda\text{-}$ closed set in X but not conversely.

Proof: Assume that A be a τ^* -g-closed set in X. Let G be an τ^* - open set in X such that A \supseteq G. Then $cl^*(A) \supseteq cl^*(G)$. Since A is τ^* -g - closed set , $cl^*(A) \subseteq \Box$ G.Hence A is τ^* -g- closed in X.

Example 3.7

Let $X = \{a, b, c\}$ be a topological space with topology $\tau = \{\phi, X, \{b, c\}\}$. The sets $\{c\}$ and $\{b\}$ are τ^* - $g\lambda$ - closed, but it is not τ^* -g - closed in X.

Theorem 3.8

If A and B are τ^* - g λ - closed sets in a topological space X,

then $A \cap B$ is τ^* - $g\lambda$ - closed in X.

Proof: Let $A \cap B \supseteq G$, where G is τ^* - open.

$$\Rightarrow A \supseteq G, B \supseteq G$$
$$\Rightarrow A \supseteq cl^{*}(G), B \supseteq cl^{*}(G), \text{ since } A \text{ and } B$$
$$\text{ are } \tau^{*}\text{- } g\lambda \text{ - closed.}$$
$$\Rightarrow A \cap B \supseteq cl^{*}(G)$$
$$\Rightarrow A \cap B \text{ is } \tau^{*}\text{- } g\lambda \text{ - closed.}$$

Remark 3.9

If A and B are τ^* - $g\lambda$ - closed in X, then their union need not be τ^* - $g\lambda$ - closed in X as seen from the following example.

Example 3.10

Let $X = \{a, b, c\}$ be a topological space with topology $\tau = \{\phi, X, \{a, b\}\}$. The sets $\{a\}$ and $\{b\}$ are τ^* - $g\lambda$ - closed, but their union $\{a, b\}$ is not τ^* - $g\lambda$ - closed in X.

Theorem 3.11: Every g - closed set in X is τ^* - $g\lambda$ -

closed set in X but not conversely

Proof: Assume that A be a g-closed set in X. Let G be an

 τ^* - open set in X such that A \supseteq G. Then $cl^*(A) \supseteq cl^*(G)$. Since

A is g - closed set, $cl^*(A) = A$. Therefore $A \supseteq cl^*(G)$ and hence A is τ^* - $g\lambda$ - closed in X.

Example 3.12

Let X = {a, b, c} be a topological space with topology $\tau = \{\phi, X, \{a\}\}$. The set {a} τ^* - g λ - closed, but it is not g - closed in X.

Theorem 3.13

Every \hat{g} - closed set in X is τ^* - $g\lambda$ - closed set in X but not conversely.

Proof: By Theorem 3.11 and by Remark 2.4, it follows the proof

Example 3.14

Let X = {a, b, c} be a topological space with topology $\tau = \{ \phi, X, \{b\} \}$. The set {b} is τ^* - $g\lambda$ - closed, but it is not \hat{g} - closed in X.

Example 3.15

- Let X={a,b,c}
 - (i) The concepts of gs-closed sets and τ^* $g\lambda$ closed are independent as seen from the following examples. Consider the topology $\tau = \{ \emptyset, X, \{a\} \}$. Then the set $\{a\}$ is τ^* - $g\lambda$ closed but not gs-closed In the topology $\sigma = \{ \emptyset, X, \{a\}, \{b\}, \{a, b\} \}$, the sets $\{a\}$ and $\{b\}$ are gs-closed but not τ^* - $g\lambda$ - closed.
 - (ii) The concepts of λ -closed sets and τ^* $g\lambda$ closed are independent as seen from the following examples. Consider the topology $\tau = \{ \emptyset, X, \{a\} \}$. Then the set $\{a\}, \{a,b\}, \{b,c\}$ are τ^* - $g\lambda$ - closed but not λ -closed. In the topology $\sigma = \{ \emptyset, X, \{a\}, \{a,b\} \}$, the sets $\{b\}$ and $\{c\}$ are λ -closed but not τ^* - $g\lambda$ - closed.
 - (iii) The concepts of w λ -closed sets and τ^* $g\lambda$ closed are independent as seen from the following examples. Consider the topology $\tau = \{ \emptyset, X, \{a\}, \{a, b\} \}$. Then the set $\{c\}$, is τ^* $g\lambda$ - closed but not w λ -closed. In the topology $\sigma = \{ \emptyset, X, \{a\}, \{a, b\} \}$, the set $\{a, c\}$ are w λ closed but not τ^* - $g\lambda$ - closed.
 - (iv) The concepts of $g^*\alpha$ -closed sets and τ^* $g\lambda$ closed are independent as seen from the following examples. Consider the topology $\tau = \{ \emptyset, X, \{a\} \}$. Then the set $\{a\}, \{a,b\}, \{b,c\}$ are τ^* - $g\lambda$ - closed but not $g^*\alpha$ - closed . In the topology $\sigma = \{ \emptyset, X, \{a\}, \{a, b\} \}$, the set $\{b\}$ is $g^*\alpha$ - closed but not τ^* - $g\lambda$ - closed.
 - (v) The concepts of strongly $g^*\alpha$ -closed sets and τ^* $g\lambda$ closed are independent as seen from the following examples. Consider the topology $\tau = \{ \emptyset, X, \{a\} \}$. Then the set $\{a\}, \{a,b\}, \{a,c\}$ are τ^* $g\lambda$ -closed but not strongly $g^*\alpha$ closed. In the topology $\sigma = \{ \emptyset, X, \{b\}, \{a, b\} \}$, the sets $\{a\}$ is strongly $g^*\alpha$ - closed but not τ^* - $g\lambda$ - closed.
 - (vi) The concepts of semi-closed sets and τ^* $g\lambda$ closed are independent as seen from the following examples. Consider the topology $\tau = \{ \emptyset, X, \{a\} \}$. Then the set $\{a\}, \{a,b\}, \{a,c\}$ are τ^* - $g\lambda$ - closed but not semi- closed . In the topology $\sigma = \{ \emptyset, X, \{a\}, \{a, b\} \}$, the set $\{b\}$ is semi - closed but not τ^* - $g\lambda$ - closed.
 - (vii) The concepts of pre closed sets and τ^* $g\lambda$ closed are independent as seen from the following examples. Consider the topology $\tau = \{ \emptyset, X, \{a\} \}$. Then the set $\{a\}, \{a,b\}, \{a,c\}$ are τ^* - $g\lambda$ - closed but not pre - closed . In the topology $\sigma = \{ \emptyset, X, \{a\}, \{a, c\} \}$, the set $\{b\}$ is pre - closed but not τ^* - $g\lambda$ - closed.
 - (viii) The concepts of α closed sets and τ^* $g\lambda$ closed are independent as seen from the

following examples. Consider the topology $\tau = \{\emptyset, X, \{a\}\}$. Then the set $\{a\}$, $\{b\}, \{c\}, \{a,b\}, \{a,c\}$ are τ^* - $g\lambda$ - closed but not α -closed. In the to $\sigma = \{\emptyset, X, \{c\}, \{a,c\}\}$, the set $\{a\}$ is α - closed but not τ^* - $g\lambda$ - closed.

- (ix) The concepts of b closed sets and $\tau^* g\lambda$ closed are independent as seen from the following examples. Consider the topology $\tau = \{ \emptyset, X, \{b\} \}$. Then the set $\{b\}, \{a,b\}, \{b,c\}$ are $\tau^* - g\lambda$ - closed but not b - closed . In the topology $\sigma = \{ \emptyset, X, \{b\}, \{c\}, \{b, c\} \}$, the sets $\{b\}$ and $\{c\}$ are b- closed but not $\tau^* - g\lambda$ closed
- (x) The concepts of semi pre closed sets and τ^* $g\lambda$ closed are independent as seen from the following examples. Consider the topology $\tau = \{ \emptyset, X, \{b\} \}$. Then the sets $\{b\}, \{a, b\}$ and $\{b, c\}$ are τ^* $g\lambda$ closed but not semi pre-closed . In the topology $\sigma = \{ \emptyset, X, \{b\}, \{c\}, \{b, c\} \}$, the sets $\{b\}$ and $\{c\}$ are semi pre closed but not τ^* $g\lambda$ closed.

Remark 3.16

4. τ^* - g λ – CONTINUOUS FUNCTION IN TOPOLOGICAL SPACES

In this section, we introduce the concept of τ^* - $g\lambda$ - continuous maps in topological spaces and study some of its properties.

Definition 4.1

A function f: $X \to Y$ is called $\tau^* - g\lambda$ - continuous if f⁻¹(V) is $\tau^* - g\lambda$ - closed in X for every closed set V of Y.

Theorem 4.2

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be g-continuous. Then f is τ^* -g λ - continuous but not conversely.

Proof: Let V be a closed set in Y . then $f^{-1}(V)$ is gclosed set in (X, τ^*) since f is g-continuous. By theorem "Every g- closed set is $\tau^* - g\lambda$ - closed", $f^{-1}(V)$ is $\tau^* - g\lambda$ closed set in X. Then f is $\tau^* - g\lambda$ - continuous.

Example 4.3

Let (X, τ) and (Y, σ) be topological spaces where $X=Y=\{a, b, c\}$ with topology $\tau = \{\phi, X, \{a\}\}$ and $\sigma = \{\phi, X, \{a\}, \{b,c\}\}$. Let $f: X \to Y$ be the identity function Then f is $\tau^* - g\lambda$ - continuous. But f is not g-continuous. Since the closed set $\{a\}$ in Y, $f^1(\{a\})$ is not g-closed in X.

Theorem 4.4

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be \hat{g} -continuous. Then f is τ^* - $g\lambda$ - continuous but not conversely.

Proof: Let V be a closed set in (Y, σ) . then $f^{-1}(V)$ is gclosed set in (X, τ) since f is \hat{g} -continuous. By theorem " Every \hat{g} - closed set is $\tau^* - g\lambda$ - closed", $f^{-1}(V)$ is $\tau^* - g\lambda$ closed set in (X, τ) . Then f is $\tau^* - g\lambda$ - continuous.

Example 4.5

Let (X, τ) and (Y, σ) be topological spaces where $X=Y=\{a, b, c\}$ with topology $\tau = \{\phi, X, \{b\}\}$ and $\sigma = \{\phi, X, \{b\}, \{a,c\}\}$. Let f: $X \to Y$ be the identity function. Then f is $\tau^* - g\lambda$ - continuous. But f is not \hat{g} -continuous. Since the closed set $\{b\}$ in Y, $f^1(\{b\})$ is not \hat{g} -closed in X.

Theorem 4.6

Let f: $(X, \tau) \to (Y, \sigma)$ and g: $(Y, \sigma) \to (Z, \gamma)$ be two functions. Then g. f in τ^* -g λ - continuous if g is continuous and f is τ^* -g λ - continuous

Proof: Let V be the closed set in Z. Then $g^{-1}(V)$ is closed in Y. Since g is continuous. since f is $\tau^* - g\lambda$ - continuous f ${}^{1}(g^{-1}(V))$ is $\tau^* - g\lambda^*$ - closed in X. But $f^{-1}(g^{-1}(V)) = (g \cdot f)^{-1}(V)$. Thus g f is $\tau^* - g\lambda$ - continuous.

Theorem 4.7

Let f: (X, τ) \rightarrow (Y, $\sigma)~$ be a map. The following statement are equivalent

- (a) f is τ^* $g\lambda$ continuous
- (b) The inverse image of each open- set in Y is τ^* $g\lambda$ open in X.

Proof: (a) \Rightarrow (b). Let G be a open set in Y. Then G^c is closed in Y. Since f is τ^* - $g\lambda$ - continuous $f^1(G^c)$ is τ^* - $g\lambda$ continuous in X. But $f^1(G^c) = [f^1(G)]^c$. Thus $f^1(G)$ is τ^* - $g\lambda$ -open in X.

(b) \Rightarrow (a) Let V be a closed set of Y. Then V^c is open in Y. By assumption (b) $f^{-1}(V^{c})$ is τ^{*} - $g\lambda$ - open in X. Thus $f^{-1}(V)$ is τ^{*} - $g\lambda$ - closed in X. Therefore f is τ^{*} - $g\lambda$ - continuous.

Remark 4.8

The concepts of τ^* - g λ - continuity and semi – continuity are independent, as seen from the following examples.

Example 4.9

Example 4.10

Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{\phi, X, \{b,c\}\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is semi – continuous but not $\tau^* - g\lambda$ - continuous, since the inverse image of the closed set $\{a\}$ in Y is not $\tau^* - g\lambda$ - continuous.

Remark 4.11

The concepts of τ^* - $g\lambda$ - continuity and gs – continuity are independent, as seen from the following examples.

Example 4.12

Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{b, c\}\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is τ^* - $g\lambda$ - continuous but not gs- continuous, since the inverse image of the closed set $\{a\}$ in Y is not gs-closed in X.

Example 4.13

Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{b, c\}\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is gs-continuous but not $\tau^* - g\lambda$ - continuous, since the inverse image of the closed set $\{a\}$ in Y is not λ -closed in X.

Remark 4.14

From the above discussions, we obtain the following implications

gs-continuous

semi-continuous

Definition 4.15

A topological space (X, τ) is called $T_{\tau^* - g\lambda}$ - space if every τ^* - $g\lambda$ - closed set is closed in X.

Theorem 4.16

 $\begin{array}{l} \text{If } X \text{ is } T_{\tau^* \text{-} g\lambda} \text{-} \text{space and} & f: (X, \tau \,) \mathop{\rightarrow} (\, Y, \sigma) \text{ is} \\ \tau^* \text{-} g\lambda \text{-} \text{continuous} \text{, then } f \text{ is continuous.} \end{array}$

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be $\tau^* - g\lambda$ - continuous and let V be any closed set in (Y, σ^*) . Then $f^1(V)$ is $\tau^* - g\lambda$ - closed set in X, since f is $\tau^* - g\lambda$ - continuous. Since X is $T_{\tau^* - g\lambda}$ - space $f^1(V)$ is closed in X. Hence f is continuous.

5. CONCLUSION

In this paper we have introduced τ^* - $g\lambda$ - closed sets, τ^* - $g\lambda$ - open sets and studied some of its basic properties. Also we have studied the relationship between τ^* - $g\lambda$ - continuous maps and some of the mappings already exist.

6. **REFERENCES**

- [1] Andrijevic.D, Semi-preopen sets, Mat.Vesnik, 38(1986),24-32.
- [2] Andrijevic.D, On b-open sets, Mat.Vesnik ,48(1996),64-69.
- [3] Arya S.P. and Nour.T, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21 (1990), 717-719.
- [4] Balachandran.K,Sundaram.P and Maki.H, On generalized continuous maps in topological Spaces, Mem. Fac.Sci. Kochi Uni.Ser A, Math.,12 (1991), 5-13.
- [5] Bhattacharyya P.and Lahiri B.K., Semi generalized closed sets in topology, Indian J. Math., 29 (1987), 375-382.
- [6] Biswas, N., On characterization of semi-continuous functions, Atti. Accad. Naz. Lincei Rend, Cl. Sci. Fis. Mat. Natur., (8) 48(1970), 399-402.
- [7] Dontchev.J, On generalizing semipreopen sets, Mem. Fac. Sci. Kochi Uni.Ser A, Math., 16 (1995), 35-48.
- [8] Dunham W, A new closure operator for non-T₁ topologies, Kyungpook Math.J. 22 (1982), 55-60
- [9] Levine N , Generalized closed sets in topology, Rend.Circ. Mat.Palermo, 19, (2) (1970), 89-96.
- [10] Levine N, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly; 70 (1963), 36 - 41

- [11] Maheshwari S.N. and P.C.Jain, Some new mappings, Mathematica, Vol.24 (47) (1-2) (1982), 53-55.
- [12] Maki H.,Devi R and Balachandran.K., Assiciated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ.(Math.) 15(1994),51-63.
- [13] Maki H.,Devi R and Balachandran.K, Generalized αclosed sets in topology, Bull . Fukuoka Uni.. Ed. Part III, 42 (1993), 13-21.
- [14] Mashhour A .S M.E.Abd El-Monsef and S.N.El-Deeb ,On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [15] Murugavalli.N and Pushpalatha. A, "Strongly g^*a closed sets in Topological Spaces" Proceedings of NCMSA 2013, organized by Karunya University, Coimbatore.
- [16] Navalagi G.B., "Definition Bank in General Topology" in Topology Atlas
- [17] Njastad, O., On some classes of nearly open sets, Pacific J.Math., 15(1965), 961-970.
- [18] Pushpalatha A., Eswaran.S and Rajarubi.P, τ *generalized closed sets in topological spaces, Proceedings of World Congress on Engineering 2009 Vol II WCE 2009, July 1 – 3, 2009, London, U.K., 1115 – 1117
- [19] Sundaram P, Pushpalatha.A, Strongly generalized closed sets in topological spaces, Far East J. Math. Sci.(FJMS) 3(4) (2001), 563-575
- [20] Veera Kumar. M.K.R.S ., On \hat{g} -closed sets in topological spaces
- [21] Veera Kumar. M.K.R.S., *ĝ*-closed sets and GLCfunctions, Indian J.Math.,43(2)(2001), 231-247.