
International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.15, September 2015

11

Smart Coding using New Code Optimization Techniques

in Java to Reduce Runtime Overhead of Java Compiler

Prajakta Gotarane

M. Tech Scholar
UMIT, SNDT Womens University, Santacruz,

Mumbai

Sumedh Pundkar
Asst. Prof. In Comp.Sci. &Tech

UMIT, SNDT Womens University, Santacruz,
Mumbai

ABSTRACT
Java is a popular object oriented programming language

suitable for writing Java programs. Sometimes programmers

spend most of the time to increase the execution time of the

program, but simultaneously its effect on code size. Therefor

the code become more complex and unreliable, so this leads

to reduce the efficiency of code.

Today so many compilers are exist like c,

javac,c++,cobol,etc.we studied the code optimization

techniques for java compiler separately and that time we come

across some new code optimization strategies which is the

smart way to do the coding in java. In this paper we applied

some new java code optimization techniques on existing code.

We verify the code optimization, performance using our

executor. These code optimization strategies indirectly help to

reduce the work of garbage collection, data structure and also

work on loop optimization. So the results which we found

after doing experimentations are quite satisfactory as compare

to original results. so these techniques are help to improve the

code quality.

Keywords
Code optimization, code efficiency, execution time, code

quality, readability. Garbage Collection, Loop optimization,

Data Structure.

1. INTRODUCTION
In compiler design, Optimization is the process of

.transforming a piece of code (un-optimized code) to make

more efficient without changing its output. The optimized

programmer is simply defined as a program is smaller in size

,which consume less memory also which required less

execution time. Most of the time while writing a java

program the programmer can easily make simple mistakes

that are harmless for small application. but as the application

grows the performance of java application become slowler.so

to improve the performance of an java application code

optimization is the important factor. On using different

optimization techniques, the code can be optimized without

affecting the original (actual) algorithm and final output with

the intent of high performance. When performance is to be

considered, then there is need to choose an algorithm which

runs quickly and the available computing resources are being

used.

Basically, Code optimization involves the employment rules

and algorithms to the program segment with the goal, such

that the code becomes efficient ,requires less memory and

execute faster and so on. Optimization is classified as high

level optimization and low level optimization. High level

optimization are usually performed by those programmers

who handles abstract entities and also keeps in mind the

general framework of the task to optimize design of a system.

On the other hand, low level optimization is performed at the

stage when source code is compiled into a set of machine

instructions.

 Fig 1: Code optimization process

In the above fig shows how the optimization works in any

compiler. The source code which is written in any

programming language .

The major part of code optimization includes the output does

not changes after applying the techniques. The semantic of the

code optimization should be preserved.

The structure of the paper is as follows: section 2 contains

literature survey of the existing code optimization techniques.

section 3 contains proposed techniques which are working on

java language. Section 4 contains results and analysis also this

paper ended with conclusion and feature scope.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.15, September 2015

12

2. LITERATURE REIVIEW
 Table 1: Existing Code Optimization Techniques

S.N Code Optimization

Techniques

Extract of the paper How code optimization works

1 Constant Folding

Optimization is done by

replacing all expressions with

constant result computed at

compile time

 public void CP() {

 int c= 4+1;//the value of c is always 5 so compiler

replace the value of c by 5 directly

 System.out.println(c);

 }

2 Constant Propagation Compute as many possible

values at compile time for

optimization of code

 int b = 6;

 System.out.println(b);//b will always be 6,

 So the statement b=6 has no meaning in the program

3 Useless Expression

Elimination

Done by eliminating

unnecessary expressions

Sometimes we assign a value to the variable like s=2; bt

this variable is not used in the program so there is no

need to assign the extra variables

4 Copy Propagation Done by replacing one

variable by another when they

are equal

 public void CP1(int x) {

 int y = x;

 System.out.println(y); // y=x therefore optimization

replace x by y

 }

5 Common SubExpression
Elimination

 This optimization uses the

concept of temporary

variables. temp variable help

to store the intermediate

result.so the common

subexpressions are eliminated

 public void CSE(int x,int y) {

 int p= x*y;
 int q = x*y;

 System.out.println(p); //so p==q

 System.out.println(q);

 }

6 Reduce Mathematical

Strength

This optimization is done by

changing the mathematical

expression, which requires a

longer time for computation

are replaced by the expression

which require less time for

computing the same .

If the expression is p=f*2 then for optimization you can
replace above expression by p=f+f.

For optimization replaces multiplication by addition,

And exponentional by multiplication.

7 Global Constant Propagation Optimization is done

throughout in program by

replacing the constant

expression by constant values

at compile time.

 public void GCP(boolean P) {

 int X= 5;

 int R;

 if(P) {

 R = X; }

 else {

 R= X; }

 int d = R;

System.out.println(d);

 }

8 Global Common
Subexpression Elimination

AS we know common

subexpressions use the

concept of temporary

variables. So in this

optimization the temporary

values are computed at once

during runtime

 Here, if x=p*q;

 Y=p*q; // so x=y;

 G=p*q; // so here once the compiler computes

value of p*q, so no need to compute the value of p* q

again and again at this stage we can use the concept of

temporary variable to store the result.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.15, September 2015

13

9 Dead Code Elimination The optimization is done by

removing the byte code which

is generated at output that

should not be executed.

 Some conditions or statements which never be true

,should be eliminated for optimization

10 Code Hoisting

The optimization is done by

computing busy expressions

as early as possible. So this

will help to reduce the size of

code

Code hoisting is performed in java to reduce the size of

code .

3. PROPOSED TECHNIQUE:
In this section we proposed new code optimization techniques

which help to reduce runtime overhead on java compiler. So

by using the below techniques the programmer can speed up

the execution time as well as code quality will improve too.

the implementation part is done on following:

Section 1. the Controller control the input file and generation

of output file call the patterns.

Section 2.both input and output files goes through the

executor which compile both file and calculate the execution

time of both the files. The executor creates. .class file and .jar

file fot both the inputs while compilation

Section 3 Report generator will display the runtime and

difference between both the files.

Fig 2: Java Code Optimization framework

A) String append pattern:

This technique helps to reduce the work of garbage collection.

Garbage collection is automatic in java programs. When the

object is no longer more useful than it will available for GC.so

disposing a java object is called as garbage collection. The

two techniques can apply which can help reduce the work of

GC.

In the first technique, applications can use the existing object

so there will be no need to create and destroy the object again

and again, but in this case the programmer has to do the extra

work .Because the value of the object is needed to be

reinitialized.

The 2nd technique which can reduce the work of GC is use the

appropriate object only which can meet the exact requirement.

We all know the fact that concatenation of Two stings is

expensive because of the immutable property of the

string.immutable means the value of the string can not be

change. So whenever we performed the string concatenation

the intermediate result is created which is string object so each

of the string object is needed to be GC.

1. Sample code(un optimized and optimized code)

Above code shows the un-optimized and optimized code. in

this experimentation we gave un optimized file as input to our

controller which check all the pattern related to + operator and

then produced a new optimized code which new function in

place of + operator is .append().

2. Executor

Process both unoptimized and optimized files on executor so

it will process both files. this executor will generate .class and

.jar file for both the input and output file.

Fig 2: Executor working

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.15, September 2015

14

3. Result Formation

After executing both the files on executor. the executor

compilers both the files and find out the how much time is

required for both files for execution and the difference

between them .also this result will displayed in html page.

Fig 3: Final Report Generation

Other optimization Techniques are as follows:

Table 2: Proposed code optimization techniques

S.N OPTIMIZA

TION

TECHNIQ

UES

CODE BEFORE OPTIMIZATION EXECUTI

ON TIME

IN MILE

SECONDS

CODE AFTER OPTIMIZATION EXECUTI

ON TIME

IN MILE

SECONDS

1 Avoid new

with string

to reduce

stack pool

size

String str = new String("string");

String str1 = new String();

 String str2 = new String(str1);

995 String str = "string";

String str1 = "";

String str2 = str1;

20

2 Use

stringbuffer

append

pattern.

String variable=”abc”;

Variable=”india”+variable;

949 public StringAppendPattern() {

 StringBuffer variable = new

StringBuffer(“abc");

 for (int i = 0; i < 1000; i++) {

 variable.append("India");

 variable.append(variable);

29

3. Avoid

creating

thread

without run

method

public class TR { public

void method() throws Exception{

new Thread().start();

456 public class TR{

public void method(Runnable r)

throws Exception {

new Thread(r).start();

43

4 Thread

sleep

pattern

 public void ThreadSleep() throws

Exception{

this.wait(1000);

System.out.println("nnnnnnnnnnnn

n");

Thread.sleep(10000);

System.out.println("hiiiiiiiiiiiiiiii");

 }

1926 public void ThreadSleep() throws

Exception {

 this.wait(1000);

System.out.println("nnnnnnnnnnnnn")

;

 this.wait(10000);

System.out.println("hiiiiiiiiiiiiiiii"); }

55

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.15, September 2015

15

5 Avoid using

java lang

Class

forName.

Class.forname(java.lang.Integer).ge

tName());

968

System.out.println(java.lang.Integer.cl

ass.getName()); // CORRECTION }

62

6. Use

arraylist

instead of

Linked

Lists

LinkedList<Object> list = new

LinkedList<Object>();LinkedList<

Object> list1 = new

LinkedList<Object>();

LinkedList<Object> list2 = new

LinkedList<Object>();

15 ArrayList<Object> list = new

ArrayList<Object>();

 ArrayList<Object> list1 = new

ArrayList<Object>();

 ArrayList<Object> list2 = new

ArrayList<Object>();

13

7 Do not use

empty static

initialize.

public class SI{

static // VIOLATION

{

// empty

} }

33

public class SI{

// ...

} }

27

8 Use short

circuit

Boolean

operator

instead Of

BinaryOper

ator.

String sValue = "binary";

if(sValue.equals("true") |

sValue.equals("false")) //

unoptimize code

{System.out.println("valid

boolean");}

931 String sValue = "binary"; if

(sValue.equals("true") ||

sValue.equals("false"))

// optimize

{

 System.out.println("valid

boolean");

 }

23

9 For

optimizatio

n Avoid

empty if

if (n<0)

// without optimization

{

}

n =0;

} }

867 if (n<0) // optimization

{

}

*/

N=0;;

} }

24

10 String equal

pattern

String str = new String();

 if(str.equals(""))

939 public void stringEqualPattern() {

 String str = "";

 if (str.length() == 0) {}

 }

23

11 Optimize

array size

public static void main(String[]

args) {

ArrayList<String> list = new

ArrayList<String>();

for(int index = 0 ; index < 200 ;

index++){

list.add(index +"")}

for(int index = 0 ; index < list.size()

; index++){

ArrayList<Integer> integerlist =

new ArrayList<Integer>();

integerlist.add(index);

28 ArrayList<String> list = new

ArrayList<String>();

for(int index = 0 ; index < 200 ;

index++){

list.add(index +"");}

int size = 10;

ArrayList<Integer> integerlist = new

ArrayList<Integer>();

for(int index = 0 ; index < list.size() ;

index++){

integerlist.add(index);

integerlist.clear();

16

12 Avoid input

output

try{ 1906 try { 1021

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.15, September 2015

16

operations

in loop

FileWriter fileWriter = new

FileWriter(new File("temp.txt"));

for(int i = 0 ; i < 500000000 ; i++){

fileWriter.write(i +"");

fileWriter.flush();

}}

 FileWriter fileWriter = new

FileWriter(new File("temp.txt"))\

 StringBuffer var = new

StringBuffer();

 for (int i = 0; i < 500000000; i++)

{var.append(i + ""

fileWriter.flush(); }

 fileWriter.write(var.toString());

fileWriter.flush(); }

13 Avoid use

of integer

to tostring

pattern in

program

String str="goods"

System.out.println(str.toString());

String s ="abc "+str.substring(0);

System.out.println(s.toString());

System.out.println(s.substring(0));

AvoidTostring a = new

AvoidTostring();

a.xyz (s)

946 String str = "goods”

 System.out.println(str);

 String s = "abc " + str

System.out.println(s);

 Systzem.out.println(s);

 AvoidTostring a = new

AvoidTostring();

 a.xyz(s);

72

4. CONCLUSION AND FUTURE SCOPE
In this paper the experimentation shows our approach for code

optimization using above techniques. These techniques are

use to speed up the program execution without affecting the

final output. So this tool provides a way to optimize the

unoptimized code and reduce complexity of code. One more

benefit of this tool is this will increase the quality of the code.

In future work we will incorporate the other techniques which

will suggest the programmer how to do the smart coding. This

will also helpful for the beginner of the programmer.

5. REFERENCES
[1] Michael Dorf, (2012), "5 Easy Java Optimization Tips",

http://www.learncomputer.com/java-optimization-tips .

[2] IBM, (2009) , "Optimizing C code atoptimization level 2

", Copyright International Business Machines

Corporation 2009.

[3] Maggie Johnson,(2008) ,"Code Optimization",Handout

20.

[4] Kevin Williams1,Albert Noll2,Andreas Gal3 and David

Gregg1 ,(2008) , "Optimization Strategies for a Java

Virtual Machine Interpreter on the Cell Broadband

Engine"1Trinity College Dublin, Dublin, Ireland,2ETH

Zurich, Zurich, Switzerland. 3University of California,

Irvine, CA, USA.

[5] Huib van den Brink, (2008), "The current and future

optimizations performed by the Java HotSpotCompiler" ,

Institute of information and Computing Sciences, Utrecht

University P.O. Box 80.089, 3508 TB Utrecht, The

Netherlands.

[6] Pawan Nagar1,Nitasha Soni2, (2012)," Optimizing

Program-States using Exception-Handling Constructerin

Java ",1M.Tech.Scholar, CSE Department, Lingaya’s

University ,Haryana, India ,2Lecturer, CSE Department,

Lingaya’s University, Haryana, India, International

Journal of Engineering Science &Advanced Technology.

[7] Hiroshi Inoue and Toshio Nakatani ,(2012) ,"Identifying

the Sources of Cache Misses in Java Programs Without

Relying on Hardware Counters ",© ACM, 2012. This is

the author's version of the work.

[8] Peter Sestoft ,(2010) ,"Numeric performance in C, C#

and Java",IT University of CopenhagenDenmark,Version

0.9.1 of 2010-02- 19.

[9] http://www.onjava.com/pub/a/onjava/2002/03/20/optimiz

ation.html?page=4http://www.javaperformancetuning.co

m/tips/rawtips. shtml.

[10] http://www.appperfect.com/support/java-coding-

rules/optimization.html.

[11] Tony Sintes , (2002) ,"The String class's strange behavior

explained",http://www.javaworld.com/article/2077355/c

ore-java/don-tbe- strung-along.html.

[12] Ont Community ,(2012),"About .class operator ",Oracle.

[13] Technology Specialist, (2012), "One 4 All",

http://www.javaperformancetuning.com/tips/rawtips.sht

ml, ,http://www.glenmccl.com/jperf/.

[14] Felix Hernandez-Campos ,(2002) ,"COMP 144

Programming Language Concepts" ,The University of

North Carolina at Chapel Hill.Ben Van Vliet

,(2008),"C++FA 3.1 OPTIMIZING C++",

http://www.benvanvliet.net/Downloads/CFA3.1_Optimiz

ing%20CPP.

[15] Guihot, H. (2012). Optimizing Java Code. Pro Android

Apps Performance Optimization, Springer: 1-31.

IJCATM : www.ijcaonline.org

