
International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.3, September 2015

20

Evolution of Software Reliability Growth Models: A

Comparison of Auto-Regression and Genetic

Programming Models

Mohammed Alweshah
Al-Balqa Applied University

Salt, Jordan

Walid Ahmed
Arab Academy for Science
Tech. & Maritime Transport

Alexandria, Egypt

Hamza Aldabbas
Al-Balqa Applied University

Salt, Jordan

ABSTRACT

Building reliability growth models to predict software

reliability and identify and remove errors is both a necessity

and a challenge for software testing engineers and project

managers. Being able to predict the number of faults in

software helps significantly in determining the software

release date and in effectively managing project resources.

Most of the growth models consider two or three parameters

to estimate the accumulated faults in the testing process.

Interest in using evolutionary computation to solve prediction

and modeling problems has grown in recent years. In this

paper, we explore the use of genetic programming (GP) as a

tool to help in building growth models that can accurately

predict the number of faults in software early on in the testing

process. The proposed GP model is based on a recursive

relation derived from the history of measured faults. The

developed model is tested on real-time control, military, and

operating system applications. The dataset was developed by

John Musa of Bell Telephone Laboratories. The results of a

comparison of the GP model with the traditional and simpler

auto-regression model are presented.

Keywords

Software reliability, genetic programming, evolutionary

Computation

1. INTRODUCTION
For many software companies, building software that can

cope with various changes and different working

environments is vital to software development and

maintenance. This is why huge investment is needed to

carefully test software and thus provide fault-free software.

To illustrate how failures in software can have serious effects

on people’s lives, we give a few examples here. First, in 1985

and 1986, the Therac-25 radiation therapy machine suffered

from a failure in machine design and a software failure in its

control systems. This serious situation affected several

patients’ lives. Second, in the UK in 1992, the computer-aided

dispatch system of London Ambulance Service broke down

immediately after its installation. This is one of the largest

ambulance services in the world and also put lives at risk.

Third, on 4 June 1996, the Ariane 5 launcher failed on its

maiden flight due to a software failure that occurred when an

attempt to convert a 64-bit floating point number to a signed

16-bit integer caused the number to overflow. Unfortunately,

the backup software was a copy and behaved in exactly the

same way. Thus total system failure was a direct result of

software failure [1]. The primary reason for the failure of

Ariane 5 was its improper reuse of a subsystem from Ariane 4

that was adopted in order to reduce development and

deployment costs. Thus, adequate testing of software to avoid

such failures is an absolute necessity.

Many software techniques have been developed to assist in

testing software before its release for public use. Most of

these techniques are simply based on building prediction

models that have the ability to predict future faults under

different testing conditions [2-7]. These models are normally

called software reliability growth models or SRGMs. The

issue of building growth models has been the subject of many

articles [8-12]. Serious applications for SRGMs such as

testing software for weapon systems and NASA space shuttle

applications have also been explored [13-15].

In 2001, [16], Aljahdali, et al. presented the initial idea of

building an artificial neural network (ANN) model to predict

software reliability. The proposed ANN model considered the

historical measurements of faults as input and the predicted

faults as output. The developed model successfully predicted

the expected faults based on the history of four previous

faults. The dataset used in the experiments was that developed

by John Musa of Bell Telephone Laboratories (which can be

accessed at http://johnmusa.com/ARTweb.htm. We also use

this dataset to test our proposed model on real-time control,

military, and operating system applications later in the paper.

Aljahdali et al. (2001) have made contributions to software

reliability growth prediction using neural networks and have

obtained better results compared to existing approaches with

respect to predictive performance. The author have also made

contributions to software reliability prediction using neural

networks and have gained better results compared to the

traditional analytical models with respect to predictive

performance [17].

Research work on evolutionary computation (EC) and

software reliability expanded in the following years. For

instance, the particle swarm optimization (PSO) algorithm has

been used to estimate the parameters of SRGMs and was

found to have significant advantages in handling a variety of

modeling problems such as the exponential model (EXPM),

power model (POWM) and Delayed S-Shaped model (DSSM)

[18].

The use of fuzzy logic to build a SRGM has also been

explored in [6], who proposed a fuzzy model which consists

of a collection of linear sub-models joined together smoothly

using fuzzy membership functions to represent the fuzzy

model. A comparison of various SRGMs, which included

Yamada S-shaped, generalized Poisson, non-homogeneous

Poisson process (NHPP), and Schneidewind reliability models

was presented in [19].

The most well-known SRGMs are the logarithmic,

exponential, power, S-shaped and inverse polynomial models

[20-24]. However, one of the most famous models, which has

been extremely well studied, is the hyper geometric

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.3, September 2015

21

distribution model. This model was proposed to estimate the

number of faults/failures initially resident in a program at the

start of the testing process. This model structure among other

known models has three tuning parameters [25].

The fault prediction process in SRGMs depends on

representing the relationship between execution time (or

calendar time) and the failure count [19]. A number of

unknown parameters such as the expected number of failures

and the failure intensity are estimated using either the least-

square or maximum likelihood estimation techniques. The

model parameters are normally in nonlinear relationships.

This means that traditional parameter estimation techniques

suffer from many problems in finding the best set of

parameters to tune the model for better prediction.

Therefore in this paper, we explore the use of genetic

programming (GP) to predict the faults observed during the

software testing process based on the historical data of

software faults. The basic idea is to predict the next expected

fault by using arbitrary measurements of previous measured

faults. This is the basic idea in all regression models. Genetic

programming is used here to build a suitable dynamic model

structure that can better predict the faults in software.

The remainder of the paper is structured as follows: first we

provide some background on EC and GP and explore the

advantages of using GP in solving this problem. Second

provides details of the software reliability dataset used in this

paper. Finally we evaluation the developed results and

conclusion.

2. EVOLUTIONARY COMPUTATION
EC is a class of adaptive stochastic search algorithms,
which includes genetic algorithms (GAs) [26], evolutionary

programming (EP) [27], evolution strategies (ESs) [28] and

genetic programming (GP) [29]. Evolutionary computation

algorithms normally operate on a population of candidate

solutions. They search the space of all possible solutions till

the optimal one is reached. Evolutionary computation

techniques have been used successfully to solve various

software reliability problems. Genetic algorithms have been

used to estimate the parameters of the hyper geometric

distribution model [30]. Genetic programming has also been

explored in relation to its potential to solve software testing

and reliability problems. [31] present some results related to

software testing based on GP for medical applications. In their

work, they present an automation process, where the method

counts on building as intelligent systems that can be used to

identify potentially dangerous software modules. However,

[32] claim that predicting the exact number of faults in

software is difficult and unnecessary. This viewpoint

motivated them to apply GP to build a software quality

classification model based on the metrics of software

modules. Their GP-based model was used to distinguish fault-

prone modules from non-fault-prone modules. They

demonstrated their proposed model by using two case studies

and showed that that GP technique can achieve good results.

They also compared GP modeling and regression modeling to

verify the usefulness of GP.

2.1 Genetic Programming
GP is an EC technique in which a population of candidate

solutions evolves toward having a structural expression that

minimizes or maximizes some evaluation function. Genetic

programming has been applied to solve a variety of

optimization problems including the identification of

nonlinear systems [33]; [34] and in the identification of

chemical processes [35]. It has also been used in the

development of signal processing algorithms [36].

Genetic programming starts with a population in a tree

structure, each node of which represents a computer program.

Each node in the tree has a number of children which each

represent a defined operation, such as plus or minus. The

children of a node are evaluated and the results are directed to

the next higher level of the tree. The advantage of GP is that

the evolved model structure can be represented graphically in

a tree structure format or in LISP format. This structure

represents the best possible solution the GP can evolve.

Normally, there exists a population of these solutions (i.e. tree

structures) that evolves by using crossover and mutation

operators [37]. Figure 1 below provides a flow chart that

describes the GP technique as presented in [38].

Fig. 1. Flow chart of GP technique [38].

Genetic programming can be used to produce mathematical

expressions from a database of nonlinear mathematical

functions [39]. It allows the optimization of a tree structure by

using a set of tuning parameters (i.e. crossover and mutation)

to develop a mathematical expression. This tree structure has

the advantages of having variable depth and a number of

nodes. There are two types of nodes: (i) terminal nodes, which

represent the input variables or a constant and (ii) function

nodes, which perform some operation on the terminal nodes.

Crossover is the process where branches from two parent

structures are swapped simultaneously. Mutation is the

process of mutating a tree terminal or an internal swap of the

parents. For each generation, the population of solutions (i.e.

trees) undergoes crossover, mutation and selection. The trees

are evaluated based on their fitness. The fittest solutions are

kept for the next generation while the others are allowed to

die. Thus, the next generation is iteratively created, and the

process continues until the best structure is reached.

3. SOFTWARE RELIABILITY DATA
The software reliability dataset used in this paper was

compiled by John Musa of Bell Telephone Laboratories [40].

J. Musa collected failure interval data to help software project

managers in monitoring the test process, predicting project

duration. The dataset contains software failure data for 16

projects. They include projects in real-time command and

control, real-time commercial, military, operating systems,

time sharing systems and word processing.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.3, September 2015

22

The dataset is available at the Data Analysis Center for

Software (DACS) web page [41]. The data was collected

throughout the middle 1970s. It represents projects from a

variety of applications including real time command and

control, word processing, commercial, and military

applications. In our case, we used data from three different

projects given in Table 1.

Table 1: Software Reliability Data

Application Type

Size No. of

Failures

Real-Time Command &

Control

21,700 136

Military Applications 180,000 101

Operating System Hundreds of

Thousands

277

Auto-Regression Model: AR model can be presented as

follows:

0

1

)(aikyay
n

i

ik 


where y(k–i) is the previous observed number of faults and (i

=1, 2, .., n). The value of n is referred to as the “order” of the

model. a0 and ai, (i =1, 2, .., n) are the model parameters.

In the following sections, for the sake of simplicity, we will

substitute y(k−1), y(k− 2), y(k−3) and y(k−4) by x1, x2, x3

and x4 respectively. We used least square estimation to

estimate various model parameters. We will introduce various

model structures developed based regression model.

An AR model of order four was developed to predict the

expected number of faults for the test/debug data of a program

for the three software application of concern. The model

structure and estimated parameters using least-square

estimation is given in Table 2.

Table 2: Auto-Regression Models

Software Application
AR Model

Real-Time Control

Applications

y(k)=0.8898x1 +0.0730x2 −

0.1549x3 +0.1612x4+2.3977

Military Applications y(k) = 1.0087x1 − 0.0181x2 −

0.2301x3+ 0.2249x4 + 3.7427

Operating Systems

Applications
y(k) = 1.0621x1 − 0.0841x2 +

0.2673x3− 0.2392x4 + 0.4034

3.1 Genetic Programming Models
We run GP with the tuning parameters presented in Table 3.

They include population size, maximum number of

generation, crossover and mutation parameters. The evolved

model structures were presented in LISP expression based on

the GP tool presented in [38].

We developed GP model structures to predict the values of the

expected number of faults for the real time control, military

and operating systems applications. The model structures are

given by the following equations in LISP expression.

Table 3: GP Tuning Parameters

Tuning Parameters Values

Set of Nodes x1, x2, x3, x4

Population Size 100

Max. no. of Generations 50

No. of Training Samples 70%

No. of Testing Samples 100%

Crossover Percentage 30%

Mutation Percentage 60%

Reproduction Percentage 10%

A. Real-Time Control Applications

y(k) = (+x1(/(+(+(/(+x1(/(+x1(∗(+(/(∗x4(+x1 59))

(+(∗x1x2)(∗ − 18 x4)))(∗12 x1))(+x2x4)))

x2))x1)(/(∗x141)(+(∗x1x2)(∗ − 18 62))))

(/(∗x1x1)(+(∗x1x2)(∗(+ − 16 14) 59))))x1))

B. Military Applications

y(k) = (+(+(+(+(+(+(+(/x1(Cos 19))

(Exp(−(+(∗x1(Sqrt(Sin x2)))

(Sin(Sqrt x2)))(∗x1(Cos 19)))))

(Sinx1))(Cos 19))(Sin(Sqrt x2)))

(Sinx3))(Cos(+(+(/x1(Cos 19))(Cos x3))

(Ln(/x1(Cos x3))))))(Cos(+(+(/x1(Cos x3))

(Lnx1))(Lnx1))))

C. Operating Systems Applications

y(k) = (+(Ln(Sin(Sin(Ln(Sqrt(+(+(Sin(Sin x3))

x2)x2))))))(+(Ln(Sin(+(+(Sin(Cos(+(+(Cos

(Sqrt x1))(+(Sin(Sin x1))x2))x2)))

4. MODEL EVALUATION
In order to check the performance of the developed AR and

GP models, the variance-accounted-for (VAF) performance

criterion is used. The VAF measures the closeness between

two curves or two arrays. The VAF is computed as:

VAF = [1- var(actual-estimated)/var(actual)]x100%

var represents the variance of the signal or array defined.

4.1 Evaluation of the Developed Results
Time series forecasting depends on using past measurements

to build some model structure that can provide an estimates of

future measurements using prediction. Principally, this

approach attempts to model a nonlinear function based a

recurrence relation derived from past measurements. The

recurrence relation is then used to provide an approximate

new measurement of the time series, which expectantly will

be a good approximation of the actual measurements.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.3, September 2015

23

It can be seen that the developed models based the recursive

concept outperform traditional models know in the literature.

The computed performance criterion, the VAF is quite high.

The actual and estimated responses are very close in figures.

Regarding GP, there was little improvement over the

recursive models. This means that GP can be used as an

alternative technique to the recursive mode

Table 4: Computed VAF for both Regression and GP

Models

Model Military

Application

Real-Time

Application

Operating

Systems

Application

AR Model 99.5% 99.5% 99.96%

GP Model 99.7% 99.8% 99.97%

Figures 1, 2 and 3 show the actual measurement software

faults versus the estimated regression model and the GP

model faults for the three software application of concern. The

computed VAF in each case is presented in Table 4.

Fig. 1. Actual and estimated responses in Real-Time

Control Applications

Fig. 2. Actual and estimated responses in Military

Applications

Fig. 3. Actual and estimated responses in Operating

Systems Applications

Please use a 9-point Times Roman font, or other Roman font

with serifs, as close as possible in appearance to Times

Roman in which these guidelines have been set. The goal is to

have a 9-point text, as you see here. Please use sans-serif or

non-proportional fonts only for special purposes, such as

distinguishing source code text. If Times Roman is not

available, try the font named Computer Modern Roman. On a

Macintosh, use the font named Times. Right margins should

be justified, not ragged.

5. A CONCLUSION AND FUTURE

WORK
In this paper we explored the development of SRGM using

two techniques; the traditional Auto-Regression simple linear

model and genetic programming evolutionary models. The

models were used to predict the expected number of faults at

the current instance of time based on the previous measured

faults. This type of software research helps in predicting the

software reliability in various applications and helps software

manager to plan its resources and the release day of the

product. The developed models were tested on real measured

dataset collected from John Musa of Bell Telephone

laboratories. Three applications of software produce in real-

time control, military and operating systems applications. We

plan to expand our research to enhance the developed

mathematical model complexity and explore alternative soft

computing techniques.

6. REFERENCES
[1] F. H. Allen, et al., "The Cambridge Crystallographic

Data Centre: computer-based search, retrieval, analysis

and display of information," Acta Crystallographica

Section B: Structural Crystallography and Crystal

Chemistry, vol. 35, pp. 2331-2339, 1979.

[2] K. Okumoto and A. L. Goel, "Optimum release time for

software systems based on reliability and cost criteria,"

Journal of Systems and Software, vol. 1, pp. 315-318,

1980.

[3] S. Yamada and S. Osaki, "Optimal software release

policies with simultaneous cost and reliability

requirements," European Journal of Operational

Research, vol. 31, pp. 46-51, 1987.

[4] S.-Y. Kuo, et al., "Framework for modeling software

reliability, using various testing-efforts and fault-

detection rates," Reliability, IEEE Transactions on, vol.

50, pp. 310-320, 2001.

[5] S. Yamada, Software reliability modeling: fundamentals

and applications: Springer, 2014.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.3, September 2015

24

[6] S. Aljahdali and A. F. Sheta, "Predicting the Reliability

of Software Systems Using Fuzzy Logic," in Information

Technology: New Generations (ITNG), 2011 Eighth

International Conference on, 2011, pp. 36-40.

[7] M. Alweshah, "Firefly Algorithm with Artificial Neural

Network for Time Series Problems," Research Journal of

Applied Sciences, Engineering and Technology, vol. 7,

pp. 3978-3982, 2014.

[8] A. L. Goel, "Software reliability models: Assumptions,

limitations, and applicability," Software Engineering,

IEEE Transactions on, pp. 1411-1423, 1985.

[9] S. Brocklehurst, et al., "Recalibrating software reliability

models," Software Engineering, IEEE Transactions on,

vol. 16, pp. 458-470, 1990.

[10] M. R. Lyu, Handbook of software reliability engineering

vol. 222: IEEE computer society press CA, 1996.

[11] A. Sheta, "Reliability growth modeling for software fault

detection using particle swarm optimization," in

Evolutionary Computation, 2006. CEC 2006. IEEE

Congress on, 2006, pp. 3071-3078.

[12] E. A. El-Sebakhy, "Software reliability identification

using functional networks: A comparative study," Expert

systems with applications, vol. 36, pp. 4013-4020, 2009.

[13] N. F. Schneidewind and T. W. Keller, "Applying

reliability models to the space shuttle," Software, IEEE,

vol. 9, pp. 28-33, 1992.

[14] P. Carnes, "Software reliability in weapon systems," in

Software Reliability Engineering-Case Studies, 1997.

Proceedings., The Eighth International Symposium on,

1997, pp. 95-100.

[15] T. Keller and N. F. Schneidewind, "Successful

application of software reliability engineering for the

NASA space shuttle," Computer Standards & Interfaces,

vol. 21, pp. 169-170, 1999.

[16] S. H. Aljahdali, et al., "Prediction of software reliability:

A comparison between regression and neural network

non-parametric models," in Computer Systems and

Applications, ACS/IEEE International Conference on.

2001, 2001, pp. 470-473.

[17] L. Tian and A. Noore, "Evolutionary neural network

modeling for software cumulative failure time

prediction," Reliability Engineering & system safety, vol.

87, pp. 45-51, 2005.

[18] A. Sheta and J. Al-Salt, "Parameter estimation of

software reliability growth models by particle swarm

optimization," management, vol. 7, p. 14, 2007.

[19] Z. ALRahamneh, et al., "A New Software Reliability

Growth Model: Genetic-Programming-Based Approach,"

Journal of Software Engineering and Applications, vol.

4, p. 476, 2011.

[20] B. Littlewood and J. L. Verrall, "A Bayesian reliability

model with a stochastically monotone failure rate,"

Reliability, IEEE Transactions on, vol. 23, pp. 108-114,

1974.

[21] J. D. Musa, "A theory of software reliability and its

application," Software Engineering, IEEE Transactions

on, pp. 312-327, 1975.

[22] J. D. Musa and K. Okumoto, "A logarithmic Poisson

execution time model for software reliability

measurement," in Proceedings of the 7th international

conference on Software engineering, 1984, pp. 230-238.

[23] S. Yamada, et al., "S-shaped software reliability growth

models and their applications," Reliability, IEEE

Transactions on, vol. 33, pp. 289-292, 1984.

[24] N. F. Schneidewind, "Measuring and evaluating

maintenance process using reliability, risk, and test

metrics," Software Engineering, IEEE Transactions on,

vol. 25, pp. 769-781, 1999.

[25] Y. Tohma, et al., "Structural approach to the estimation

of the number of residual software faults based on the

hyper-geometric distribution," Software Engineering,

IEEE Transactions on, vol. 15, pp. 345-355, 1989.

[26] J. Holland, "Adaptation in Natural and Artificial

Systems, Ann Arbor: University of Michigan Press,

1975," 1992.

[27] L. J. Fogel, et al., "Artificial intelligence through

simulated evolution," 1966.

[28] I. Rechenberg, "Evolutionsstrategie-optimierung

technischer systems nach prinzipien der biologischen

evolution, stuttgart: Frommannholzboog, 1973," ed: New

York: John Wiley, 1981.

[29] J. R. Koza, "Evolving a Computer Program to Generate

Random Numbers Using the Genetic Programming

Paradigm," in ICGA, 1991, pp. 37-44.

[30] T. Minohara and Y. Tohma, "Parameter estimation of

hyper-geometric distribution software reliability growth

model by genetic algorithms," in Software Reliability

Engineering, 1995. Proceedings., Sixth International

Symposium on, 1995, pp. 324-329.

[31] V. Podgorelec, et al., "Testing reliability of medical

software," in Computer-Based Medical Systems,

2002.(CBMS 2002). Proceedings of the 15th IEEE

Symposium on, 2002, pp. 185-190.

[32] Y. Liu and T. M. Khoshgoftaar, "Genetic programming

model for software quality classification," in High

Assurance Systems Engineering, 2001. Sixth IEEE

International Symposium on, 2001, pp. 127-136.

[33] G. J. Gray, et al., "Structural system identification using

genetic programming and a block diagram oriented

simulation tool," Electronics Letters, vol. 32, pp. 1422-

1424, 1996.

[34] A. Sheta, et al., "Development of software effort and

schedule estimation models using soft computing

techniques," in Evolutionary Computation, 2008. CEC

2008.(IEEE World Congress on Computational

Intelligence). IEEE Congress on, 2008, pp. 1283-1289.

[35] K. D. Bettenhausen, et al., "Self-organizing structured

modelling of a biotechnological fed-batch fermentation

by means of genetic programming," in Genetic

Algorithms in Engineering Systems: Innovations and

Applications, 1995. GALESIA. First International

Conference on (Conf. Publ. No. 414), 1995, pp. 481-486.

[36] K. C. Sharman, et al., "Evolving signal processing

algorithms by genetic programming," in Genetic

Algorithms in Engineering Systems: Innovations and

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.3, September 2015

25

Applications, 1995. GALESIA. First International

Conference on (Conf. Publ. No. 414), 1995, pp. 473-480.

[37] E. O. Costa, et al., "A genetic programming approach for

software reliability modeling," Reliability, IEEE

Transactions on, vol. 59, pp. 222-230, 2010.

[38] H. Faris, et al., "Modelling hot rolling manufacturing

process using soft computing techniques," International

Journal of Computer Integrated Manufacturing, vol. 26,

pp. 762-771, 2013.

[39] J. R. Koza, Genetic programming: on the programming

of computers by means of natural selection vol. 1: MIT

press, 1992.

[40] J. Musa, "Data analysis center for software: An

information analysis center," Western Michigan

University Library, Kalamazoo, Michigan, 1980.

[41] T. McGibbon, "A business case for software process

improvement revised," DoD Data Analysis Center for

Software (DACS), 1999.

IJCATM : www.ijcaonline.org

