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ABSTRACT 

The present paper considers modified extension of the 

exponential distribution with three parameters. The main 

properties of this new distribution is studied, with special 

emphasis on its median, mode and moments function and 

some characteristics related to reliability studies. For 

Modified- extension exponential distribution (MEXED) have 

been obtained the Bayes Estimators of scale and shape 

parameters using Lindley's approximation (L-approximation) 

under squared error loss function. But, through this 

approximation technique it is not possible to compute the 

interval estimates of the parameters. Therefore, Gibbs 

sampling method is developed to generate sample from the 

posterior distribution. On the basis of generated posterior 

sample, the Bayes estimate of the unknown parameters is 

computed and constructed 95 % highest posterior density 

credible intervals. A Monte Carlo simulation study is carried 

out to compare the performance of Bayes estimators with the 

corresponding classical estimators in terms of their simulated 

risk. A real data set has been considered for illustrative 

purpose of the study. 
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1. INTRODUCTION 
In the field of lifetime modelling exponential distribution 

(ED) has greater importance to study the reliability 

characteristics of any lifetime phenomenon. The popularity of 

this model has been discussed by several authors. Although it 

became most popular due to its constant failure rate pattern, 

but in many practical situation this distribution is not suited to 

study the phenomenon where failure rate is not constant. In 

recent years, several new classes of models were introduced 

based on modification of exponential distribution. For 

example, Gupta and Kundu (1999) and Gupta and Kundu 

(2001) introduced an extension of the exponential distribution 

typically called the generalized exponential (GE) distribution. 

Therefore, it is said that the random variable x follows the GE 

distribution if its density function is given by 

g1 x; α, β = αβ e−αx(1 − e−αx)β−1 , 
(1) 

where x > 0, 𝛼 > 0 and β > 0 with notation is used 

X~GE(α, β) for a random variable with such distribution. 

More recently, Nadarajah and Haghighi (2011) introduced 

another extension of the exponential model, so that a random 

variable X follows the Nadarajah and Haghighi’s exponential 

distribution (NHE) if its density function is given by 

g2 x; α, β = αβ 1 + αx2 β−1e 1− 1+αx2 β  , 

(2) 

where x > 0, 𝛼 > 0 and β > 0 with notation is used 

  X~NHE α, β . Sanjay et al. (2014) explained the classical 

and Bayesian estimation of unknown parameters and 

reliability characteristics in extension of exponential 

distribution. 

Both distributions have the exponential distribution (E) with 

scale parameter α, as a special case when β = 1, that is, 

g1 x; α, β = 1 = g2 x; α, β = 1 = α e−αx , 
(3) 

where x > 0 and α > 0 with the notation X~E α . Other 

extensions of the exponential model in the survival analysis 

context are considered in the Marshall and Olkin’s (2007) 

book. 

The main object of this paper is to present yet another 

extension for the exponential distribution that can be used as 

an alternative to the ones mentioned above. Some properties 

are discussed for this new distribution. The classical and 

Bayesian estimation of the unknown parameters and 

reliability characteristics of a new extension of exponential 

distribution is developed. It is observed that the MLEs of the 

unknown parameters cannot be obtained in nice closed form, 

as expected, and they have to obtain by solving two nonlinear 

equations simultaneously. It is remarkable that most of the 

Bayesian inference procedures have been developed with the 

usual squared-error loss function, which is symmetrical and 

associates equal importance to the losses due to 

overestimation and underestimation of equal magnitude. 

However, such a restriction may be impractical in most 

situations of practical importance. For example, in the 

estimation of reliability and failure rate functions, an 

overestimation is usually much more serious than an 

underestimation. In this case, the use of symmetrical loss 

function might be inappropriate as also emphasized by Basu 

and Ebrahimi (1991). Further, the Bayesian inference of the 

unknown parameters is considered under the assumption that 

both parameters have independent gamma priors. It is 

observed that the Bayes estimators have not been obtained in 

explicit form. Therefore, Lindley’s approximation method is 

used. Unfortunately, by using Lindley’s approximation 

method it is not possible to construct the highest posterior 

density (HPD) credible intervals. Therefore, Monte Carlo 

Markov Chain method (Gibbs sampling procedure) is used to 

construct the 95% HPD credible intervals for the parameters 

and estimates are also coded on the basis of MCMC samples. 

Monte Carlo simulations are conducted to compare the 

performances of the classical estimators with corresponding 

Bayes estimators obtained under squared error loss function in 

both informative and non-informative set-up for complete 

sample. Further, confidence intervals is constructed 95% 

approximate and highest posterior density (HPD) credible 

intervals for the parameters.  
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2. DENSITY AND PROPERTIES  
A random variable X is distributed according to the modified 

extended exponential distribution (MExED) with parameters 

α, λ and β if its density function and the cumulative 

distribution function of this new family of distribution can be 

given as 

f x = α λ + 2βx  1 + λx + βx2 α−1e 1− 1+λx+βx2 α      
(4) 

where  x ≥ 0, α ≥ 0, λ ≥ 0 and β ≥ 0 with the 

notation  X~MExED α, λ, β . 

 

and 

 

Fig 1: Density plot for various choice for α, β and λ 

F x = 1 − e 1− 1+λx+βx2 α   
(5) 

where  x ≥ 0, α ≥ 0, λ ≥ 0 and β ≥ 0. 

The modified extended exponential distribution (MExED) can 

be a useful characterization of life time data analysis. The 

reliability function (R) of the modified extended exponential 

distribution (MExED) is denoted by R(t) also known as the 

survivor function and is defined as 

R t = e 1− 1+λt+βt2 α  ;      t, α, λ, β ≥ 0 

(6) 

 

Fig 2: Reliability plot for various choice for α, β and λ 

One of the characteristic in reliability analysis is the hazard 

rate function (HRF) defined by 

h t =
f(t)

R(t)
= α λ + 2βt  1 + λt + βt2 α−1;  t, α, λ, β ≥ 0. 

(7) 

 

Fig 3: Failure Rate for various choice for α, β and λ 

It is important to note that the units for h t  is the probability 

of failure per unit of time, distance or cycles. These failure 

rates are defined with different choices of parameters. The 

cumulative hazard function of the modified extended 

exponential distribution is denoted by H t and is defined as 

H t =  h x dt

t

0

=  α λ + 2βx  1 + λx + βx2 α−1dx

t

0

 

                                     =  1 + λt + βt2 α − 1. 
(8) 

3. STATISTICAL ANALYSIS 

3.1 Median and mode  

It is observed as expected that the mean of MExED(α, λ, β) 

cannot be obtained in explicit forms. It can be obtained as 

infinite series expansion so, in general different moments of 

MExED(α, λ, β). Also, cannot get the quantile xq  of 

MExED(α, λ, β) in a closed form by using the 

equation FX xq ; α, λ, β − q = 0.Thus, by using Equation (5), 

find that 

 λxq + βxq
2 =  1 − ln 1 − q  1 α − 1 , 0 < 𝑞 < 1. 

(9) 

The median m X of MExED(α, λ, β) can be obtained from 

(9), when q = 0.5 , as follows        

 λx0.5 + βx0.5
2  =  1 − ln 0.5  1 α − 1. 

 (10) 

Moreover, the mode of MExED(α, λ, β) can be obtained as a 

solution of the following nonlinear equation. 

d

dx
fX x; α, λ, β = 0, 

d

dx
 α λ + 2βx  1 + λx + βx2 α−1e 1− 1+λx+βx2 α   = 0. 

(11) 

3.2 Moment 
The rth moments of the MExED is denoted by  μr

′  and it is 

given by 

 μr
′ =   

r
n
   

r−n

2
m

 

∞

n=m =0

(−1)n  e1 22m−r  λn  βm−r(λ2

− 4β)
r−n−2m

2  Γ  
m

α
+1, 1 , 
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(12) 

The mean and variance of MExED are 

E(x) =   
1
n
   

1−n

2
m

 

∞

n=m=0

(−1)n  e1 22m−1 λn  βm−1(λ2

− 4β)
−n−2m +1

2  Γ  
m

α
+1, 1  

(13) 

and  

Var x 

=   
2
n
   

2−n

2
m

 

∞

n=m =0

 −1 n  e1 4m−1 λn  βm−2 λ2

− 4β 
−n−2m +2

2  Γ 
m

α
+1, 1 

−    
1
n
   

1−n

2
m

 

∞

n=m=0

(−1)n  e1 22m−1  λn  βm−1(λ2

− 4β)
−n−2m +1

2  Γ 
m

α
+1, 1  

2

. 

(14) 

4. CLASSICAL ESTIMATION 
In this section, the maximum likelihood estimates (MLEs) of 

the parameters have been obtained, reliability function and 

hazard function for the considered model. Let us suppose that 

n units are put on a test with corresponding life times being 

identically distributed with probability density function (4) 

and cumulative distribution function (5). Then, the likelihood 

function can be written as  

L x\α, λ, β =  𝑓 𝑥𝑖 ; 𝛼, 𝜆, 𝛽 

𝑛

𝑖=1

 

     = 𝛼𝑛  𝑒 (1−(1+𝜆𝑥𝑖+𝛽𝑥𝑖
2)𝛼 )𝑛

𝑖=1    𝜆 + 2𝛽𝑥𝑖 

𝑛

𝑖=1

 1

+ 𝜆𝑥𝑖 + 𝛽𝑥𝑖
2 𝛼−1 , 

(15) 

ln 𝐿  α, λ, β = 𝑛 ln 𝛼 +  ln 𝜆 + 2𝛽𝑥𝑖 

𝑛

𝑖=1

+  𝛼 − 1  ln 1 + 𝜆𝑥𝑖 + 𝛽𝑥𝑖
2 

𝑛

𝑖=1

+   1 −  1 + 𝜆𝑥𝑖 + 𝛽𝑥𝑖
2 

𝛼
 

𝑛

𝑖=1

, 

(16) 

𝜕 ln 𝐿

𝜕𝜆
=  

1

𝜆 + 2𝛽𝑥𝑖

𝑛

𝑖=1

+  𝛼 − 1  
𝑥𝑖

1 + 𝜆𝑥𝑖 + 𝛽𝑥𝑖
2

𝑛

𝑖=1

−  𝛼𝑥𝑖 1 + 𝜆𝑥𝑖 + 𝛽𝑥𝑖
2 

𝛼−1
𝑛

𝑖=1

, 

(17) 

𝜕 ln 𝐿

𝜕𝛽
=  

2𝑥𝑖

𝜆 + 2𝛽𝑥𝑖

𝑛

𝑖=1

+  𝛼 − 1  
𝑥𝑖

2

1 + 𝜆𝑥𝑖 + 𝛽𝑥𝑖
2

𝑛

𝑖=1

−  𝛼𝑥𝑖
2 1 + 𝜆𝑥𝑖 + 𝛽𝑥𝑖

2 
𝛼−1

𝑛

𝑖=1

, 

(18) 

𝜕 ln 𝐿

𝜕𝛼
=

𝑛

𝛼
+  ln 1 + 𝜆𝑥𝑖 + 𝛽𝑥𝑖

2 

𝑛

𝑖=1

−   1 + 𝜆𝑥𝑖 + 𝛽𝑥𝑖
2 

𝛼
𝑛

𝑖=1

ln 1 + 𝜆𝑥𝑖

+ 𝛽𝑥𝑖
2 , 

(19) 

Maximum likelihood estimates can be obtained by solving the 

above two equations simultaneously, but these equations 

cannot be expressed in explicit form. Therefore, Nonlinear 

maximization technique (in built command in R software) has 

been used to compute the MLEs of the parameters. Further, let 

 α  , 𝜆  , 𝛽   are the MLEs of α, λ and β respectively. Therefore, 

using invariance property of MLEs, the Bayes estimators of 

reliability function 𝑅  and hazard function ℎ  for any specified 

time t are given by following equations. 

𝑅  𝑡 = 𝑒
 1− 1+𝜆 𝑡+𝛽 𝑡2 

𝛼 
 
 

(20) 

and 

ℎ  𝑡 = 𝛼  𝜆 + 2𝛽 𝑡  1 + 𝜆 𝑡 + 𝛽 𝑡2 
𝛼 −1

. 
(21) 

4.1  Asymptotic intervals for the 

parameters 
In this subsection, the Fisher information matrix is obtained to 

compute 95% asymptotic confidence intervals for the 

parameters based on maximum likelihood estimators (MLEs). 

The Fisher information matrix can be obtained by using log-

likelihood function (16). Thus we have 

I(α  , λ  , β ) =

 

 
 
 
 

−
∂2 ln L

∂λ2 −
∂2 ln L

∂λ ∂β
−

∂2 ln L

∂λ ∂α

−
∂2 ln L

∂β ∂λ
−

∂2 ln L

∂β2 −
∂2 ln L

∂β ∂α

−
∂2 ln L

∂α ∂λ
−

∂2 ln L

∂α ∂β
−

∂2 ln L

∂α2  

 
 
 
 

 

(22) 

where, 

∂2 ln L

∂λ2
=  

−1

 λ + 2βxi 
2

n

i=1

−  α − 1  
xi

2

 1 + λxi + βxi
2 2

n

i=1

−   α2 − α xi
2 1 + λxi + βxi

2 
α−2

n

i=1

, 

(23) 

∂2 ln L

∂λ ∂β
=  

−2xi

 λ + 2βxi 
2

n

i=1

−  α − 1  
xi

3

 1 + λxi + βxi
2 2

n

i=1

−   α2 − α xi
3 1 + λxi + βxi

2 
α−2

n

i=1

, 

(24) 

∂2 ln L

∂λ ∂α
=  

xi

1 + λxi + βxi
2

n

i=1

−  xi 1 + λxi + βxi
2 

α−1
 1

n

i=1

+ α ln 1 + λxi + βxi
2  , 

(25) 
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∂2 ln L

∂β2 =  
−4xi

2

 λ + 2βxi 
2

n

i=1

−  α − 1  
xi

4

 1 + λxi + βxi
2 2

n

i=1

−   α2 − α xi
4 1 + λxi + βxi

2 
α−2

n

i=1

, 

(26) 

∂2 ln L

∂β ∂α
=  

xi
2

1 + λxi + βxi
2

n

i=1

−  xi
2 1 + λxi + βxi

2 
α−1

 1

n

i=1

+ α ln 1 + λxi + βxi
2  , 

(27) 

∂2 ln L

∂α2 =
−n

α2 −   1 + λxi + βxi
2 

α
 ln 1 + λxi + βxi

2  
2

n

i=1

. 

(28) 

All the above derivatives are evaluated at (α  , λ  , β ). The 

above matrix can be inverted to obtain the estimate of the 

asymptotic variance-covariance matrix of the MLEs and 

diagonal elements of I−1(α  , λ  , β ) provides asymptotic 

variance of α, λ and β respectively. The above approach is 

used to derive the 100(1 − γ)% confidence intervals of the 

parameters α, λ, β as in the following forms 

α ± Zγ 2  Var α   , λ ± Zγ 2  Var λ   and  β ± Zγ 2  Var β  . 

(29) 

5. BAYESIAN ESTIMATION OF THE 

PARAMETERS 
In this section, the expression posterior distributions have 

been derived for the considered model. Let 

X = (x1 , x2 , x3 , … , xn ) be a random sample of size n observed 

from (4), and then the likelihood function is given as in (15). 

So, this model is a good alternative of the several 

exponentiated family and reduces in exponential family for a 

α = 1 and β = 0. Since for this distribution not a single 

conjugate prior is known till date. Therefore, we consider 

independent gamma priors for shape i.e. α ~ gamma(a, b) as 

well as scale parameter i.e 

 λ ~ gamma c, d  and β ~ gamma(g, f). Therefore, the joint 

prior of (α, λ, β) is given as  

π α, λ, β ∝  αa−1λc−1βg−1e−bα−dλ  −fβ   
(30) 

where a,b,c,d,g and f are the hyper parameters. Therefore, the 

joint posterior distribution can written as, 

P α, λ, β X 

∝ αn+a−1λn+c−1βg−1e−bα−dλ  −fβe
  1− 1+λx i +βx i

2 
α
 n

i=1    1

n

i=1

+
2β

λ
xi  1 + λxi + βxi

2 
α−1

. 

(31) 

Under squared error loss function (SELF) the Bayes estimate 

is the posterior mean of the distribution. Therefore, the Bayes 

estimate of (α, λ, β), Reliability function R(t)and Hazard 

function h(t)can be expressed in following equations. 

α 

= K−1    αn+aλn+c−1βg−1e−bα−dλ  −fβe
  1− 1+λx i +βx i

2 
α
 n

i=1

∞

0

∞

0

∞

0

 

   1 +
2β

λ
xi 

n

i=1

 1 + λxi + βxi
2 

α−1
 dβ dλ dα, 

(32) 

λ 

= K−1    αn+a−1λn+cβg−1e−bα−dλ  −fβe
  1− 1+λx i +βx i

2 
α
 n

i=1

∞

0

 

∞

0

∞

0

 

  1 +
2β

λ
xi   1 + λxi + βxi

2 
α−1

dβ dλ dα

n

i=1

, 

(33) 

β 

= K−1    αn+a−1λn+c−1βge−bα−dλ  −fβe
  1− 1+λx i +βx i

2 
α
 n

i=1  

∞

0

∞

0

∞

0

 

  1 +
2β

λ
xi   1 + λxi + βxi

2 
α−1

dβ dλ dα

n

i=1

, 

(34) 

R  t 

= K−1    αn+a−1λn+c−1βg−1e 1−bα−dλ  −fβ− 1+λt+βt2 α  

∞

0

 

∞

0

∞

0

 

    e
  1− 1+λx i +βx i

2 
α
 n

i=1   1 +
2β

λ
xi   1 + λxi + βxi

2 
α−1

n

i=1

 

dβ dλ dα, 
(35) 

and 

h  t = K−1    αn+aλn+cβg−1  1

∞

0

∞

0

∞

0

+
2β

λ
t  1 + λt + βt2 α−1   

e
  1− 1+λx i +βx i

2 
α
 n

i=1 e−bα−dλ  −fβ  

  1 +
2β

λ
xi 

n

i=1

  1 + λxi + βxi
2 

α−1
dβ dλ dα. 

(36) 

where 

K

=    αn+a−1λn+c−1βg−1e−bα−dλ  −fβe
  1− 1+λx i +βx i

2 
α
 n

i=1

∞

0

 

∞

0

∞

0

 

  1 +
2β

λ
xi   1 + λxi + βxi

2 
α−1

n

i=1

dβ dλ dα. 

(37) 

From the above, it is easy to observed that the analytical 

solution of the Bayes estimators are not possible. Therefore, 

the Lindley’s approximation methods and Markov Chain 

Monte Carlo method have been used to obtain the 

approximate solutions of the above Eqs. (32– 36). 

5.1 Lindley’s approximation  

 It may be noted here that the posterior distribution of (α, λ, β) 

takes a ratio form that involves an integration in the 

denominator and cannot be reduced to a closed form. Hence, 

the evaluation of the posterior expectation for obtaining the 

Bayes estimator of α, λ and β will be tedious. Among the 

various methods suggested to approximate the ratio of 

integrals of the above form, perhaps the simplest one is 

Lindley's (1980) approximation method, which approaches 

the ratio of the integrals as a whole and produces a single 

numerical result. Many authors have used this approximation 

for obtaining the Bayes estimators for some lifetime 

distributions; see among others, Howlader and Hossain (2002) 

and Jaheen (2005). 
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Thus,  the use of Lindley's (1980) approximation is proposed 

for obtaining the Bayes estimator of α, λ and β by considering 

the function I(x), defined as follows;  

I x = E u α, λ, β  =
 u α, λ, β eL α ,λ ,β +G α ,λ ,β  d α, λ, β 

 eL α ,λ ,β +G α ,λ ,β  d α, λ, β 
, 

(38) 

where 

u α, λ, β   is a function of α, λ  and β only 

L α, λ, β   is log of likelihood 

G α, λ, β   is log joint prior of α, λ  and β , 

According to Lindley (1980), if ML estimates of the 

parameters are available and n is sufficiently large then the 

above ratio of the integral can be approximated as: 

I x 

= u α , λ , β  +  u1a1 + u2a2 + u3a3 + a4 + a5 

+
1

2
  A  u1ς11 +u2ς12 +u3ς13 +B u1ς21 +u2ς22 +u3ς23 +C u1ς31 +u2ς32 +u3ς33   

(39) 

where 

ai = ρ1ςi1+ρ2ςi2+ρ3ςi3, i = 1,2,3 

a4 = u12ς12 + u13ς13 + u23ς23  

a5 =
1

2
(u11ς11 + u22ς22 + u33ς33) 

A = ς11L111 + 2ς12L121 + 2ς13L131 +2ς23L231 + ς22L221

+ ς33L331  

B = ς11L112 + 2ς12L122 + 2ς13L132 +2ς23L232 + ς22L222

+ ς33L332  

C = ς11L113 + 2ς12L123 + 2ς13L133 +2ς23L233 + ς22L223

+ ς33L333  

and subscripts 1, 2, 3 on the right-hand sides refer to α, λ, β 

respectively and let θ1 = α, θ2 = β and θ3 = λ  

ρi =
∂ρ

∂θi
 , ui =

∂u θ1 , θ2, θ3 

∂θi
 , i = 1,2,3 , 

uij =
∂2u θ1, θ2 , θ3 

∂θi  ∂θj
 , i, j = 1,2,3 ,  

Lij =
∂2L θ1 , θ2, θ3 

∂θi  ∂θj
 , i, j = 1,2,3 , 

Lijk =
∂3L θ1 , θ2, θ3 

∂θi  ∂θj  ∂θk
 , i, j, k = 1,2,3 . 

and ςij  is the  i, j −th element of the inverse of the matrix 

 Lij  , all evaluated at the MLE of parameters. 

For the prior distribution (30) we have 

ρ = ln π α, λ, β =  a − 1 ln α +  c − 1 ln λ +  g − 1 ln β
−  bα + dλ + fβ  

and then we get  

ρ1 =
a − 1

α
− b , ρ2 =

c − 1

λ
− d , ρ3 =

g − 1

β
− f 

Also, the values of Lij  can be obtained as follows for i, j =

1,2,3 

L11 =
−n

α2
−   1 + λxi + βxi

2 
α
 ln 1 + λxi + βxi

2  
2

n

i=1

, 

L12 = L21 =  
xi

1 + λxi + βxi
2

n

i=1

−  xi 1 + λxi + βxi
2 

α−1
 1

n

i=1

+ α ln 1 + λxi + βxi
2  , 

L13 = L31 =  
xi

2

1 + λxi + βxi
2

n

i=1

−  xi
2 1 + λxi + βxi

2 
α−1

 1

n

i=1

+ α ln 1 + λxi + βxi
2  , 

L22 =  
−1

 λ + 2βxi 
2

n

i=1

−  α − 1  
xi

2

 1 + λxi + βxi
2 2

n

i=1

−   α2 − α xi
2 1 + λxi + βxi

2 
α−2

n

i=1

, 

L23 = L32 =  
−2xi

 λ + 2βxi 
2

n

i=1

−  α − 1  
xi

3

 1 + λxi + βxi
2 2

n

i=1

−   α2 − α xi
3 1 + λxi + βxi

2 
α−2

n

i=1

, 

L33 =  
−4xi

2

 λ + 2βxi 
2

n

i=1

−  α − 1  
xi

4

 1 + λxi + βxi
2 2

n

i=1

−   α2 − α xi
4 1 + λxi + βxi

2 
α−2

n

i=1

. 

and the values of  Lijk  for i, j, k = 1,2,3 

L111 =
2n

α3 −   1 + λxi + βxi
2 

α
ln 1 + λxi + βxi

2 
3

n

i=1

, 

L112 == L121 = L211

= − xi 1 + λxi + βxi
2 

α−1
ln 1 + λxi

n

i=1

+ βxi
2  α ln 1 + λxi + βxi

2 + 2 , 

L113 = L131 = L311

= − xi
2 1 + λxi + βxi

2 
α−1

ln 1 + λxi

n

i=1

+ βxi
2  α ln 1 + λxi + βxi

2 + 2 , 

L122 = L212 = L221

=  
−xi

2

 1 + λxi + βxi
2 2

n

i=1

−  xi
2 1 + λxi + βxi

2 
α−2

  2α − 1 

n

i=1

+ α α − 1 ln 1 + λxi + βxi
2  , 

L133 = L313 = L331

=  
−xi

4

 1 + λxi + βxi
2 2

n

i=1

−  xi
4 1 + λxi + βxi

2 
α−2

  2α − 1 

n

i=1

+ α α − 1 ln 1 + λxi + βxi
2  , 

L123 = L213 = L132 = L312 = L231 = L321

=  
−xi

3

 1 + λxi + βxi
2 2

n

i=1

−  xi
3 1 + λxi + βxi

2 
α−2

  2α − 1 

n

i=1

+ α α − 1 ln 1 + λxi + βxi
2  , 
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L222 =  
2

 λ + 2βxi 
3

n

i=1

+  α − 1  
2xi

3

 1 + λxi + βxi
2 3

n

i=1

−  α α − 1  α − 2 xi
3 1 + λxi

n

i=1

+ βxi
2 α−3, 

L223 = L232 = L322 =

=  
4xi

 λ + 2βxi 
3

n

i=1

+  α − 1  
2xi

4

 1 + λxi + βxi
2 3

n

i=1

−  α α − 1  α − 2 xi
4 1 + λxi

n

i=1

+ βxi
2 α−3, 

L233 = L323 = L332 =

=  
8xi

2

 λ + 2βxi 
3

n

i=1

+  α − 1  
2xi

5

 1 + λxi + βxi
2 3

n

i=1

−  α α − 1  α − 2 xi
5 1 + λxi

n

i=1

+ βxi
2 α−3, 

L333 =  
16 xi

3

 λ + 2βxi 
3

n

i=1

+  α − 1  
2xi

6

 1 + λxi + βxi
2 3

n

i=1

−  α α − 1  α − 2 xi
6 1 + λxi

n

i=1

+ βxi
2 α−3. 

After substitution, the Eqs. (32-36) reduces like Lindleys 

integral, therefore, for the Bayes estimates of the parameter  α, 

        If u α , λ , β  = α   then 

α BS = α +
a−1−b α 

α 
 ς11 +

c−1−d λ 

λ 
 ς12 +

e−1−f β 

β 
 ς13 + 1

2
 Aς11 +Bς21 +Cς31  . 

(40)  

and similarly the Bayes estimate for λ under SELF is, 

If u α , λ , β  =  λ   then 

λ BS = λ +
a − 1 − b α 

α 
 ς21 +

c − 1 − d λ 

λ 
 ς22

+
e − 1 − f β 

β 
 ς23

+
1

2
 Aς12 +Bς22 +Cς32  . 

(41)  

and similarly the Bayes estimate β for under SELF is, 

          If u α , λ , β  = β  then 

β BS = β +
a − 1 − b α 

α 
 ς31 +

c − 1 − d λ 

λ 
 ς32

+
e − 1 − f β 

β 
 ς33

+
1

2
 Aς13 +Bς23 +Cς33  . 

 (42) 

Further, the Bayes estimates of the reliability function and 

hazard function under SELF are given by  

Reliability: 

           If u α , λ , β  = e
 1− 1+λ t+β t2 

α 
 
,  

then the corresponding derivatives are 

u1 = −e 1− 1+λt+βt2 α    1 + λt + βt2 α  ln 1 + λt + βt2 , 

u11 = e 1− 1+λt+βt2 α    1 + λt
+ βt2 α   ln 1 + λt + βt2  2   1 + λt
+ βt2 α − 1 , 

u12 = te 1− 1+λt+βt2 α    1 + λt
+ βt2 α−1 α ln 1 + λt
+ βt2   1 + λt + βt2 α − 1 − 1 , 

u13 = t2e 1− 1+λt+βt2 α    1 + λt
+ βt2 α−1 α ln 1 + λt
+ βt2   1 + λt + βt2 α − 1 − 1 , 

u2 = −αte 1− 1+λt+βt2 α    1 + λt + βt2 α−1  , 

u22 = e 1− 1+λt+βt2 α     αt 1 + λt + βt2 α−1 2

− α α − 1 t2 1 + λt + βt2 α−2  , 

u23 = t3e 1− 1+λt+βt2 α    1 + λt + βt2 α−2 α 1 − α 
+ α2 1 + λt + βt2 α  , 

u3 = −αt2e 1− 1+λt+βt2 α    1 + λt + βt2 α−1 , 

u33 = e 1− 1+λt+βt2 α     αt2 1 + λt + βt2 α−1 2 −
α α − 1 t4 1 + λt + βt2 α−2 ,  
remaining L and (a1, a2 , a3, a4 , a5) terms are same as above. 

Therefore, reliability estimate is; 

R BS  t 

= e
 1− 1+λ t+β t2 

α 
 

+  u1a1 + u2a2 + u3a3 + a4 + a5 

+
1

2
  A  u1ς11 +u2ς12 +u3ς13 +B u1ς21 +u2ς22 +u3ς23 +C u1ς31 +u2ς32 +u3ς33  . 

(43) 

Hazard: In the case of hazard function, 

      If u α , λ , β  = α  λ + 2β t  1 + λ t + β t2 
α −1

,  
then the corresponding derivatives are  

u1 =  λ + 2βt  1 + λt + βt2 α−1 1 + α ln 1 + λt + βt2  , 
u11 =  λ + 2βt  1 + λt + βt2 α−1 ln 1 + λt + βt2  2

+ α ln 1 + λt + βt2  , 
u12 =  1 + λt + βt2 α−1 1 + α ln 1 + λt + βt2  +
t λ + 2βt  1 + λt + βt2 α−2  2α − 1 + α(α −
1) ln 1 + λt + βt2  ,  
u13 = 2t 1 + λt + βt2 α−1 1 + α ln 1 + λt + βt2  +
t2 λ + 2βt  1 + λt + βt2 α−2  2α − 1 + α(α −
1) ln 1 + λt + βt2  ,  
u2 = α 1 + λt + βt2 α−1 + α(α

− 1)t λ + 2βt  1 + λt + βt2 α−2 , 
u22 = α α − 1  2t 1 + λt + βt2 α−2

+  α − 2 t2 λ + 2βt  1 + λt + βt2 α−3 , 
u23 = α α − 1  3t2 1 + λt + βt2 α−2

+  α − 2 t3 λ + 2βt  1 + λt + βt2 α−3 , 
u3 = 2αt 1 + λt + βt2 α−1 + α(α

− 1)t2 λ + 2βt  1 + λt + βt2 α−2, 
u33 = α α − 1  4t3 1 + λt + βt2 α−2

+  α − 2 t4 λ + 2βt  1 + λt + βt2 α−3 , 
remaining L and (a1, a2 , a3, a4 , a5) terms are same as above. 

Therefore, reliability estimate is; 

h BS  t 

= α  λ + 2β t  1 + λ t + β t2 
α −1

+  u1a1 + u2a2 + u3a3 + a4 + a5 

+
1

2
  A  u1ς11 +u2ς12 +u3ς13 +B u1ς21 +u2ς22 +u3ς23 +C u1ς31 +u2ς32 +u3ς33  . 

(44) 

5.2  Markov chain monte carlo method  

In this subsection, Gibbs sampling procedure is discussed to 

generate sample from posterior distribution. For more details 

about Markov Chain Monte Carlo Method (MCMC) see 

Smith and Roberts (1993), Hastings (1970) and Singh et al. 

(2013). Chen and Shao (2000) developed a Monte Carlo 

method for using importance sampling to compute HPD 

(highest probability density) intervals for the parameters of 
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interest or any function of them. Thus utilizing the concept of 

Metropolis Hastings (M-H) under Gibbs sampling procedure 

generate sample from the posterior density function (31) 

under the assumption that parameters α, λ and β have 

independent gamma density function with hyper have 

independent gamma density function with hyper parameters 

(a, b) , (c, d) and (g, f) respectively. To implement this 

technique we consider full conditional posterior densities of 

α, λ and β as; parameters (a, b), (c, d) and (g, f) respectively. 

To implement this technique we consider full conditional 

posterior densities of α, λ and β as; 

π α λ, β, X ∝ αn+a−1e−bαe
  1− 1+λx i +βx i

2 
α
 n

i=1    1

n

i=1

+
2β

λ
xi  1 + λxi + βxi

2 
α−1

, 

(45) 

π λ α, β, X ∝ λn+c−1e−dλ  e
  1− 1+λx i +βx i

2 
α
 n

i=1    1

n

i=1

+
2β

λ
xi  1 + λxi + βxi

2 
α−1

, 

(46) 

π β α, λ, X ∝ βg−1e −fβe
  1− 1+λx i +βx i

2 
α
 n

i=1    1

n

i=1

+
2β

λ
xi  1 + λxi + βxi

2 
α−1

. 

(47) 

M-H under Gibbs sampling algorithm consist the following 

steps: 

Step  1:  Generate α, λ and β from (45 ), (46) and (47) 

respectively. 

Step 2: Obtain the posterior sample 
 α1 , λ1, β1 ,  α2, λ2, β2 , … . ,  αM , λM , βM  by repeating step 1, 

M times. 

Step  3:   The Bayes estimates of the parameters i.e. α, λ, β, 

Reliability function R(t) and Hazard function h(t) with respect 

to the SELF are given as; 

α s
MC =  Eπ α\X  ≈   

1

M
 αk

M

k=1

 , 

(48) 

λ s
MC =  Eπ λ\X  ≈   

1

M
 λk

M

k=1

 , 

(49) 

β s
MC =  Eπ β\X  ≈   

1

M
 βk

M

k=1

 , 

(50) 

R (t)s
MC =  Eπ R t \α, λ, β, X  

≈   
1

M
 e 1− 1+λk t+βk t2 αk  

M

k=1

  

(51) 

and 

h  t s
MC =  Eπ h t \α, λ, β, X  

≈   
1

M
 αk λk

M

k=1

+ 2βkt  1 + λkt + βkt2 αk −1  

(52) 

respectively. 

Step   4:    After extracting the posterior samples we can easily 

construct the 95% HPD credible intervals for α, λ and β. 

Therefore for this purpose order α1 , α2, … , αN  as α 1 <

α 2 < ⋯ < α N , λ1 , λ2, … , λN  as λ 1 < λ 2 < ⋯ < λ N  and 

β1, β2, … , βN  as β 1 < β 2 < ⋯ < β N . Then 100 1 − ϑ % 

credible intervals of  α, λ and β are 

  α 1 , α N 1−ϑ +1  , … ,  α Nϑ , α N   ,   λ 1 , λ N 1−ϑ +1  , . . ,  λ Nϑ , λ N     

and  β(1), β N 1−ϑ +1  , … ,  β Nϑ , β N   . 

      Here  x  denotes the greatest integer less than or equal 

to X. Then the HPD credible interval which has the shortest 

length. 

6. REAL DATA ANALYSIS 
In this section, a real data set is studied to illustrate how the 

proposed methodology can be applied in real life 

phenomenon. To check the validity of proposed model, 

Akaike information criterion (AIC) and Bayesian information 

criterion (BIC) have been discussed see Table 1. Further, we 

have also provided empirical cumulative distribution function 

(ECDF) plot and theoretical cumulative distribution function 

(CDF) plots for maximum likelihood estimator (MLE) as well 

as Bayes estimator of the parameters see figure of ECDF. 

After all, it is observed that proposed model works quite well. 

The considered data are the failure times of the air 

conditioning system of an air-plane taken from of size  n= 30 

see Linhart and Zucchini (1986). 

In this case the four distributions namely exponential, 

exponentiated exponential, gamma and Weibull have been 

fitted. Both estimation procedures have been taken into 

account for the considered real data set. The considered 

methodology can be illustrated as follows; 

AIC = −2 ln L X, θ − 2k 

BIC = −2 ln L X, θ − k ln(n) 

where, L X, θ  is the likelihood function, k is the number of 

parameters associated with model . 

 

Table 1: Table shows the values of various adaptive 

measures for different models regarding fitting of the 

considered real data 

Model −𝐥𝐨𝐠 𝐋 𝐀𝐈𝐂 𝐁𝐈𝐂 

ED(θ) 152.629 307.259 308.661 

EED(α, β) 152.205 308.411 311.213 

Gamma(α, β) 152.167 308.334 311.137 

Weibull(α, β) 151.949 307.878 310.681 

ExED(α, β) 151.582 307.163 309.965 

MExED(α, λ, β) 151.349 296.698 292.494 

In classical set-up the maximum likelihood estimates (MLEs) 

of α, λ, β, reliability function and hazard function (R(t), h(t)) 

are calculated as (0.22, 0.048, 0.01) , (8.086×10-14, 0.572) 

respectively. The 95% asymptotic confidence intervals of α, λ 

and β based on fisher information matrix are obtained as (0, 

75.24), (0, 32.005) and (0, 392.695) respectively.  

7. CONCLUSION 
This paper introduces a comprehensive account of 

mathematical properties of the new distribution. The scale-

exponential distribution can be seen as a particular case of the 
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new model. It is shown that the distribution function, hazard 

function and moment function can be obtained in closed form. 

We have considered the classical and Bayesian estimation of 

unknown parameters and reliability characteristics in modified 

extension of exponential distribution. From the simulation we 

can obtains that the Bayes estimates with non-informative 

prior behave like the maximum likelihood estimates, but for 

informative prior, the Bayes estimates behave much better 

than the maximum likelihood estimates. 
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