
International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.5, September 2015

36

A Comprehensive Survey on Centroid Selection

Strategies for Distributed K-means Clustering Algorithm

Poonam Ghuli
Assistant Professor, Department

of CSE,R.V. College of Engineering,
Bangalore, India

Maanas Prabhakar
Department of CSE,RVCE,

Bangalore, India

Rajashree Shettar
Professor & Asso. Dean,

Department of CSE,
 R.V. College of Engineering,

Bangalore, India

ABSTRACT
Extremely large data sets often known as „Big Data‟ are

analyzed for interesting patterns, trends, and associations,

especially those relating to human behavior and interactions.

Extraction of meaningful and useful information needs to be

done in parallel using advanced clustering algorithms. In this

paper, effort has been made to tweak in changes to the

existing K-means algorithm so as to work in parallel using

MapReduce paradigm. K-means due to its gradient descent

nature is highly sensitive to the initial placement of the cluster

centers. This random initialization of cluster centers results in

empty clusters and slower convergence. In this paper, an

overview of existing methods with emphasis on

computational efficiency is presented. Comparison of three

well known linear time complexity initialization methods has

been presented here. These methods are analyzed on two

different data sets. The experimental results are recorded and

presented with insights on different initialization methods for

practitioners.

General Terms

BigData, Unsupervised Clustering, Distributed Computing,

Data Mining, Machine Learning.

Keywords

K-means Clustering Algorithm, Hadoop, MapReduce, PCA,

HDFS.

1. INTRODUCTION
With the advent of modern techniques for scientific data

collection, large quantities of data are getting accumulated at

various databases. Systematic data analysis methods are

necessary to extract useful information from this rapidly

growing big data [1]. Cluster analysis is one of the major data

mining methods available today. Cluster analysis seeks to

partition a given data-set into groups based on specified

features so that the data points within a group are more similar

to each other than the points in different groups. Clustering is

a crucial area of research, which finds applications in many

fields, including bioinformatics, pattern recognition, image

processing, marketing, data mining, and economics.

Numerous methods have been proposed to solve the clustering

problem. The k-means is one of the most popular clustering

algorithms which is widely used for many practical

applications. This paper tries to explore two important issues

encountered while implementation of this popular algorithm.

First, the original k-means algorithm is computationally very

expensive. In addition to this, the size of modern data-sets is

growing rapidly, which far exceeds the amount of memory

available on even the most powerful servers. As a result, the

input to massive data-set computations often cannot be stored

in the memory of a single machine. To reveal the insights

hidden into this huge amount of data the algorithm has to be

parallelized in distributed environment. To solve these kinds

of parallelizable problems involving large data-sets, the best

choice is to make use of MapReduce [2-3] framework. This

requires slight modification in existing algorithms to fit into

MapReduce paradigm. Second, due to its gradient descent

nature, it often converges to a local minimum of the criterion

function. For the same reason the quality of the resulting

clusters substantially relies on the choice of initial centroids.

Adverse effects of improper initialization include empty

clusters, slower convergence, and a higher chance of getting

stuck in bad local minima. The above mentioned problems

can be resolved by using adaptive initialization methods.

Several methods have been proposed in the literature for

improving the performance of the k-means algorithm.

This paper compares and investigates three initialization

strategies which are improvement on the classic k-means

algorithm to produce more accurate clusters. The three

initialization methods explored are K-means with weighted

average method [4], Principal component analysis [5-7] and a

heuristic method [8] based on sorting and partitioning of the

input data for finding better initial centroids. Experimental

results show that the proposed algorithms produce better

clusters in less computational time by parallelizing the tasks

using Hadoop cluster setup.

The study in this paper differs from earlier studies of a similar

nature [9-10] in several respects: (i) a completely different set

of initialization methods are discussed and reviewed (ii) the

experiments involve distributed implementation of these

methods using MapReduce paradigm on a totally diverse

collection of data sets, (iii) computational efficiency is used as

a performance criterion, and (iv) the experimental results are

analyzed more thoroughly to determine which initialization

method provide better results for a given dataset. The data sets

used to carry out different experiments are Temperature and

Electrical dataset.

As discussed above this paper aims to demonstrate which

algorithm is best suited for given dataset. In the experimental

analysis it was found that K-Means Clustering using Heuristic

Method and PCA gave almost similar results. These were

most suited for the Year Temperature dataset. Further

K-means clustering using Weighted Average is most suited

for the Electrical dataset. The execution speed of Heuristic

and PCA methods were found to be 9.53% and 8.85%

respectively better than that of Weighted Average method for

Year Temperature dataset. For the Electrical dataset,

Weighted Average was found to give better execution time

that was 11.11% and 4.49% faster than PCA and Heuristic

method respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.5, September 2015

37

2. RELATED WORK

Today many large-scale data processing mechanisms that

have been implemented based on the original idea of the

MapReduce framework are currently gaining a lot of

momentum in both research and industrial communities. On

top of it scalable clustering on distributed framework is

considered as one of the best analysis tools for data mining

applications. As a consequence, cluster analysis faces new

challenges to process tremendously large and complex

datasets that are stored and analyzed across large clusters of

computers. To support the distributed analysis, the recent

trend is to move computations (algorithms which are few KB

in size) closer to data instead of moving large amount of data

across machines. These algorithms process chunks of local

data independently on each machine in a computing cluster.

This also urged the development of new abstractions that hide

system-level details from the application developer. These

abstractions allow developers to concentrate on design and

development of scalable algorithm that can perform large

scale parallel computations without being distracted by fine

grained details like concurrency management, fault tolerance,

error recovery, and a host of other issues in distributed

computing. For solving a problem in distributed environment

the MapReduce approach is a seamless solution; however, it

requires slight modification in existing algorithms to fit into

MapReduce paradigm.

K-Means is the most widely used partitional clustering

algorithm [11-12] which has applications in many areas such

as information retrieval, computer vision, big data analytics,

bioinformatics and pattern recognition to name a few. There

are several reasons that make this algorithm stand out from

the rest. First, it is conceptually simple and easy to implement.

It's easily scalable and parallelizable. Its open source

implementation is readily available in every data-mining

software like WEKA, apache Mahaout (parallel

implementation), scikit-learn, MS azure machine learning

studio and many more. Second, it is adaptable, i.e. almost

every aspect of the algorithm (initialization, distance function,

termination criterion, etc.) can be modified. Third, it has a

time complexity that is linear in N, D, and K (in general,

D <<< N and K <<< N). Here, N represents number of data

points in a data set, D is dimensionality and K is number of

clusters. Fourth, it is guaranteed to converge [13] at quadratic

rate [14]. Finally, it is invariant to data ordering, i.e. random

shuffling of the data points. On the other hand there are many

significant limitations of this popular algorithm [15]. First,

k-means requires specifying k value (number of clusters) a

priori and the output can vary drastically based on the number

of clusters chosen. Second, Due to its gradient descent nature,

it often converges to a local minimum of the criterion

function. Third, presence of outliers greatly affects the means

of their respective clusters due to utilization of squared

Euclidean distance. This can be alleviated by using a more

robust distance function. Fourth, resultant clusters formed are

significantly influenced by selection of initial centroid points.

Adverse effects of improper initialization include empty

clusters, slower convergence and have a higher probability of

getting stuck in bad local minima. All of these drawbacks

except the first one can be resolved by using adaptive

initialization methods.

Thus, this paper aims to compare and investigate three

initialization methods in a distributed environment. This

distributed implementation of initialization strategies

increases the computational efficiency. Also it provides

improvement on the classical k-means algorithm to produce

more accurate clusters. The three initialization methods

explored here are K-means with weighted average method [4],

Principal component analysis [5-6] and a heuristic method [7].

The novelty in the presented work comes from the

involvement of distributed implementation of initialization

methods using MapReduce paradigm on a totally diverse

collection of data sets. Each of the algorithms chosen has been

modeled as a series of MapReduce jobs on clusters of

commodity machines. Then a distributed K-Means clustering

is applied onto the datasets using the carefully generated

centroids. This eliminates most significant disadvantages of

popular clustering algorithm. Further the experimental results

are analyzed more thoroughly to determine which

initialization methods provide better results for a given

dataset.

In the Weighted Average algorithm, a new method is explored

to find a weighted average score of dataset. In [4] Mahmud M

S et al employed a uniform method to find rank score by

averaging the attribute of each data point, which generated

initial centroids that follow the data distribution of the given

set. A sorting algorithm is applied to the computed score and

divided into „k‟ subsets, where k is the number of desired

clusters. Finally, the nearest value of mean from each subset is

taken as initial centroid. The initial centroids are calculated in

a strategic way rather than randomly.

In their recent work [8] K A Abdul Nazeer and et al. proposed

heuristic based method. The basic idea of this algorithm is to

determine the initial centroids of the clusters in a heuristic

manner, so as to ensure that the centroids are chosen in

accordance with the distribution of data. The method involves

sorting the input data set and partition the sorted data set into

„k‟ number of sets where „k‟ is the number of clusters to be

formed. Mean values of each of these sets are taken as the

initial centroids. Moreover, to deal with multidimensional

data they utilized an idea to determine the column with

maximum range, where range is the difference between the

maximum and the minimum element for each column. After

identifying the attribute (column) having maximum range, the

entire set of data values are then sorted in a non-decreasing

order, using the Heap Sort algorithm, based on the attribute

with maximum range. The sorted list of data points are then

divided into „k‟ equal sets. Finally, the arithmetic means of

each of these „k‟ sets are computed. These means become the

initial centroids of the clusters to be formed. After

determining the initial centroids as described above, the data

points are assigned to various clusters by using the original

K-means algorithm.

Principal Component Analysis [5-7] is a widely used

statistical technique for unsupervised dimension reduction. It

is a common technique for finding patterns in high

dimensional data. The distributed PCA algorithm

implemented gives the theoretical guarantee for any good

approximation solution on the projected data for K-Means

clustering which is a good approximation on the original data

too, while the projected dimension required is independent of

the original dimension [6]. The main basis of PCA-based

dimension reduction is that PCA picks up the dimensions with

the largest variances [7]. The first principal component is

chosen as the principal axis for partitioning and sorted in

ascending order. Then, dividing the set into „k‟ subsets where

k is the number of clusters. Find the median of each subset

and then use the corresponding data points for each median to

initialize the cluster centers.

Further, this paper presents how slight modifications in the

existing algorithms to adapt to MapReduce paradigm can

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.5, September 2015

38

make many applications capable of tackling large-scale data

problems. The capabilities necessary to embark upon large

scale distributed data processing are already within reach by

many and will continue to become more accessible over time.

This large scale processing has been feasible by scaling out

with clusters of commodity machines to withstand on

problems of interest. By making MapReduce accessible to

everyone through the open source Hadoop project had built

the vibrant software ecosystem that flourishes today. Recently

many improvisations are proposed of this well accepted

framework in literature [16-19]. In the last decade, the

MapReduce framework has emerged as a highly successful

framework that has created a lot of momentum in the area of

distributed computing research such that it has become the

de-facto standard of big data processing platforms.

3. CENTROID INITIALIZATION

MODULE

The paper explores the realization of the initial centroid

selection methods for K-Means clustering algorithm on

Hadoop, an open source implementation of Mapreduce

paradigm. The implementation is provided for all the three

initialization methods which commonly include four major

modules as listed:

 Weighted Average / Heuristic / PCA Sorting Module

 Initial Centroid Selection Module

 Iterative Clustering Module

 Cluster Assignment Module

Thus, this section talk about the algorithms involved in

selecting the initial centroids which provides better accuracy,

before performing the K-Means Clustering. Sorting module is

the first MapReduce (M/R) module to be executed in the

series of three M/R jobs. This is the only module which is

explicit for different initialization methods. Remaining three

modules are common for the clustering process which may

use one of the initialization methods. K-means clustering is

implemented as a series of two M/R jobs namely Iterative

Clustering Module and Cluster Assignment Module.

3.1 Sorting Module
Sorting module is required to process the dataset in such a

way that it facilitates the selection of initial centroids based on

any measure for selecting the central value in a given set. As

mentioned above we discuss three different sorting M/R

module specific for each initialization method. A generalized

block diagram for the sorting module is shown below in the

figure 1.

3.1.1 Weighted Average Sorting Module
The purpose of this module is to sort the data points based on

the score generated by assigning weights to each attribute of

the data points. This process of assigning weights enables the

programmer to enhance a particular feature of the dataset,

which directly affects the clustering results. A uniform rank

score is assigned to each attribute by averaging over the

attribute values. This module's map function is responsible for

assigning weights to the attributes of a dataset, multiplies

these weights with each data point, and calculates average and

passes (average, datapoint) to reducer. The reducer sort the

data points based upon average value and write the result to

an output file. The output of this module is a text file

containing the sorted data points. The output file is written to

the HDFS in the predetermined folder.

3.1.2 Heuristic Sorting Module
This module reads the dataset and selects the attribute with the

greatest range. The mapper then reads the selected attribute

and sends the data-points to the reducer in increasing order of

the attribute value. The job of the reducer is to output the

sorted dataset into a text file. The output of this module is a

text file containing the sorted data points. The output file is

written to the HDFS in the predetermined folder.

3.1.3 Principal Component Analysis
This module reads the dataset and selects the attribute with the

greatest variance. The map function then reads the selected

attribute with greatest variance and sends the data-points to

the reducer in increasing order of the attribute value. The job

of the reducer is to output the sorted dataset into a text file.

The output file containing sorted data points is written to the

HDFS in the predetermined folder.

3.2 Initial Centroid Selection Module
Once the sorted data points are written to HDFS, the next step

is to partition the dataset and select the k initial centroids. This

is simple Java module (non MapReduce function). This

module is responsible to split the dataset into k subsets. Then

the median of the data points in a given subset is selected as

an initial centroid, thereby obtaining k centroids that are

written to an output file. This output text file is used as input

to the K-means clustering algorithm along with the input data

set. Block diagram for this module is as shown in Figure 2.

Fig 2: Diagram for the Initial Centroid Selection Module

3.3 Iterative Clustering Module

This module is a second MapReduce job in the series that

accepts a split of the dataset as input as shown in the figure 3.

A setup function is used on each mapper to read the centroids

and the dataset. As each data point is read, the distance

between these centroids and the data point is calculated and

the data point is assigned to the closet centroid. The reducer

receives a pair of (K-Means centroid, list of all data points

assigned in this cluster). The list is iterated to get the average

data point. This is set as one of the new centroids. This is

repeated for all such key, value pairs on the reducer. Finally,

the centroids produced are compared to the centroids

produced in the previous step to see if they have converged. If

the centroids have not converged, the module is iterated with

the new centroids.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.5, September 2015

39

Fig 1: Generalized Block Diagram for Sorting Module

Fig 3: Block Diagram for the Iterative Clustering Module

3.4 Cluster Assignment Module
This is the third MapReduce module in the series to

implement distributed K-means clustering using initial

centroid selection methods. This module accepts a split of the

original data set as input and the path to the final K-Means

centroid as a parameter. On each mapper, a setup function is

used to read the K-Means centroids and construct a list of

centroids. The distance between each data point and each

K-Means centroid is calculated using a distance metric such as

Euclidean distance. The data point is assigned to the cluster

centroid with the least distance measure. The reducer is

identity – its output is the same as its input. The final

clustering file is written into the HDFS in the designated

output directory.

4. EXPERIMENTAL DATASET
The implementation of the project was tested on two datasets

Temperature and Electrical. The Year Temperature dataset

contains 10,000 instances of different attribute values. The

data set consists of two attributes, year and temperature,

which specifies the average temperature for a given year. The

electrical dataset consisted of around 100,000,000 instances of

different attribute values. This data-set is based on recordings

originating from smart plugs deployed in households. The

smart plugs have sensors which are used to measure power

consumption values. The value is collected roughly every

second by each smart plug. The attributes of the Electrical

dataset include house ID, timestamp, value (voltage), plug ID

and household ID.

5. EXPERIMENTAL RESULTS AND

 DISCUSSION
This section presents the experimental setup for the

performance evaluation of initialization methods used with

k-means clustering on Hadoop framework. The algorithms

were designed as a series of MapReduce jobs executed on a

Hadoop cluster of 3 nodes, each with a 2.5 GHz processor and

8 GB RAM. The performance evaluated is based on time taken

for the selection of the centroids by the algorithms and time

taken to cluster around these centroids. Table 1 and Figure 4

analyzes the time taken in seconds by each algorithm to

generate the initial centroids for K-Means Clustering with

varying k values for Year Temperature dataset containing

10,000 data points. The graphs indicate that Weighted

Average with 7 Clusters (k=7) is most suited for this dataset as

it takes minimum time, compared to the other two algorithms.

Table 1 Analysis of Time Taken for Initial Centroids

Generation (Year Temperature)

 Algorithm

 K value

Weighted

Average
(Time in Sec)

Heuristic

Method
(Time in Sec)

Principal

Component

Analysis
(Time in Sec)

3 Clusters 24 26 26

5 Clusters 24 27 27

7 Clusters 23 27 27

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.5, September 2015

40

Fig 4: Analysis of Time Taken for Initial Centroids

Generation (Year Temperature)

Table 2 and Figure 5 analyze the time taken by each algorithm

to generate the initial centroids for K-Means Clustering with

varying K values for Electrical dataset. It indicates that

Weighted Average with 3 Clusters (k=3) and 7 Clusters (k=7)

is most suited for this dataset as it is faster than other two

methods.

Table 2 Analysis of Time Taken for Initial Centroids

Generation (Electrical)

Algorithm

 K value

Weighted

Average
(Time in Sec)

Heuristic

Method
(Time in Sec)

Principal

Component

Analysis
(Time in Sec)

3 Clusters 22 25 26

5 Clusters 23 26 34

7 Clusters 22 25 26

Fig 5: Analysis of Time Taken for Initial Centroids

Generation (Electrical)

The previous figures indicate the time taken to find initial

centroids in a systematic way. Next, the given dataset must be

clustered using these generated centroids. Thus, Table 3 and

Figure 6 analyze the time taken by each algorithm to perform

the clustering part of the algorithm on Year Temperature

dataset. It must be noted here that the time taken by simple

K-Means Clustering varies based on the random selection of

initial centroids and hence shouldn‟t be considered. The

tabulated values in Table 3 demonstrate that K-Means

Clustering using Heuristic Method for 5 Clusters (k=5) is most

suited.

Table 3 Analysis of Time Taken for Clustering

(Year Temperature)

 Algorithm

K value

K-Means

Clustering

(sec)

 Weighted

Average

(sec)

Heuristic

Method

(sec)

Principal

Componen

t Analysis

(sec)
3 Clusters 67 123 107 108

5 Clusters 52 94 65 66

7 Clusters 78 88 79 77

Fig 6: Analysis of Time Taken for Clustering

(Year Temperature)

Table 4 and Figure 7 analyze the time taken by each algorithm

to perform Clustering part for Electrical dataset. It indicates

that K-Means Clustering using Weighted Average for 3

Clusters (k=3) and K-Means Clustering using Heuristic

Method for 5 Clusters (k=5) perform identically and are most

suited for this dataset as they perform clustering faster than

weighted average method.

Table 4 Analysis of Time Taken for Clustering (Electrical)

Algorithm

 K-value

K-Means

Clustering

(sec)

Weighted

Average

(sec)

Heuristic

Method

(sec)

Principal

Component

Analysis

(sec)

3 Clusters 86 63 64 64

5 Clusters 97 65 63 65

7 Clusters 95 66 64 64

Fig 7: Analysis of Time Taken for Clustering (Electrical)

Table 5 and Figure 8 analyze the total time taken to perform

Initial Centroid Generation and k-means Clustering for each

algorithm on Year Temperature dataset. It indicates that

K-Means Clustering using Heuristic Method for 5 Clusters

(k=5) is most suited for this dataset as indicated in Table 5.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.5, September 2015

41

Table 5 Analysis of Total Time taken including Initial

Centroid Generation and Clustering (Year Temperature)

Algorithm

 K-value

K-Means

Clustering

(sec)

Weighted

Average

(sec)

Heuristic

Method

(sec)

Principal

Component

Analysis

(sec)

3 Clusters 67 147 133 134

5 Clusters 52 118 92 93

7 Clusters 78 111 106 104

Fig: 8 Analysis of Total Time Taken taken including Initial

Centroid Generation and Clustering (Year Temperature)

Table 6 and Figure 9 analyze the total time taken to perform

Initial Centroid Generation and k-means clustering for each

algorithm on Electrical dataset. It indicates that K-Means

clustering using Weighted Average for 3 Clusters (k=3) is

most suited for this dataset.

Table 6 Analysis of Total Time taken including Initial

Centroid Generation and Clustering (Electrical)

Algorithm

 K-value

K-Means

Clustering

(sec)

Weighted

Average

(sec)

Heuristic

Method

(sec)

Principal

Component

Analysis

(sec)

3 Clusters 85 85 89 90

5 Clusters 97 88 89 99

7 Clusters 95 88 89 90

Fig 9: Analysis of Total Time Taken including Initial

Centroid Generation and Clustering (Electrical)

Visualization is a crucial component of data mining.

Scatterplots is the visualization tool used for presenting the

clustered results. These visualizations also assist to open up

some facts and observations about the underlying data which

may not be possible from statistical analysis.

Figure 10 shows the clusters generated by K-Means clustering

using Weighted average for 5 Clusters (k=5) on Year

Temperature dataset. The clusters are not evenly spaced out as

the centroid selection is dependent on the sorted average

score.

Fig 10: Clusters Generated (Year Temperature): Weighted

Average

Figure 11 shows the clusters generated by K-Means Clustering

using Heuristic Method for 5 Clusters (k=5) on Year

Temperature dataset. The clusters are evenly spaced out as the

centroids have been selected after sorting the dataset based on

the range of the attributes.

Fig 11: Clusters Generated (Year Temperature): Heuristic

Method

The experimental analysis reveals that K-Means Clustering

using Heuristic Method with 5 Clusters (k=5) is most suited

for the Year Temperature dataset. The experimental analysis

also reveals that K-Means Clustering using Weighted Average

with 3 Clusters (k=3) is most suited for the Electrical dataset.

Since, K-Means Clustering randomly chooses centroids, hence

the time required for clustering is not constant each time it is

executed. Thus, it may not be fair to consider the execution of

this random clustering algorithm. The analyses disclose that

K-Means clustering using Heuristic Method and Principal

Component Analysis give similar performance for a given

number of clusters.

6. CONCLUSION AND FUTURE WORK
This paper presents a comprehensive review of different

initialization methods for carefully selecting centroids for

k-means clustering in a distributed environment using

MapReduce framework. Further, the experiments conducted

are analyzed more thoroughly to determine which

initialization method provides better results for a given

dataset. The computational efficiency is used as the

performance criteria for selecting appropriate initialization

method for a given dataset.

For the Temperature dataset, Heuristic method and PCA have

shown execution speeds of 9.53% and 8.85% respectively,

better than that of Weighted Average method. Performance of

K-means for weighted average method with respect to

temperature dataset creates an overhead when weights are

added to attributes resulting in increased clustering time and

also the centroids are not evenly spaced. Thus, making it

unsuitable for clustering on such dataset.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.5, September 2015

42

K-Means Clustering using Heuristic Method and Principal

Component Analysis considers all dimensions of a given data

set and thus selects the best possible attribute that is employed

to choose initial centroids. This results in selection of evenly

spaced centroids. Hence, these two algorithms give similar

performance on the temperature dataset.

It was found that for the Electrical dataset, Weighted Average

was found to give improved overall execution time that is

11.11% and 4.49% faster than PCA and Heuristic method

respectively. This happens due to the fact that experiments

were conducted on relatively small sample of the Electrical

dataset and the computational time involved in working with

large timestamp values.

The results obtained from the experiments clearly show that

the process of clustering depends upon several factors. These

factors include the type of data, number of dimensions, the

size of the dataset, the attributes on which clustering is

performed and the number of clusters chosen („k‟).

Future work can be focused on trying different initialization

methods on more diverse collection of datasets to gain further

insights into the data. One can even use methods to automate

the process of determining appropriate value of k based on

input data. For example Silhouette Coefficient can be used for

this. An attempt can be made to evaluate the performance of

clustering using internal and external indexes. External index

is used to measure the extent to which resultant cluster labels

match to the externally supplied ground truth set of classes.

This includes Adjusted Rand Index, V-Measure, Mutual

Information based scores etc. Internal index is used to

measure the goodness of a clustering structure without the

requirement of external information or truth values. Internal

index includes score based on Silhouette Coefficient value.

Further, iterative MapReduce frameworks like Twister [19]

can be used to yield better performance boost for iterative

algorithms.

7. REFERENCES
[1] Min Chen, Shiwen Mao, Yunhao Liu, "Big Data: A

Survey", Mobile Networks and Applications, Springer

publication, Volume 19, (2), April 2014, pp 171-209

[2] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:

simplified data processing on large clusters."

Communications of the ACM, Vol 51, no. 1 (2008):

107-113.

[3] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:

Simplified Data Processing on Large Clusters." In Sixth

Symposium on Operating System Design and

Implementation (OSDI 2004), Dec 2004, pp. 137-150.

[4] Mahmud, M. S., Rahman, M. M., & Akhtar, M. N.

(2012, December). Improvement of K-means clustering

algorithm with better initial centroids based on weighted

average. In Electrical & Computer Engineering

(ICECE), 2012 7th International Conference on (pp.

647-650). IEEE.

[5] Ding, C., & He, X. (2004, July). K-means clustering via

principal component analysis. In Proceedings of the

twenty-first international conference on Machine

learning (p. 29). ACM.

[6] Ding, C. H., & He, X. (2004, April). Principal

Component Analysis and Effective K-Means Clustering.

In SDM (pp. 497-501).

[7] D.Napoleon, S.Pavalakodi “A New Method for

Dimensionality Reduction using KMeans Clustering

Algorithm for High Dimensional Data Set” International

Journal of Computer Applications , Vol. 13, (7), January

2011

[8] Nazeer, K., Kumar, S. M., & Sebastian, M. P. (2011,

February). Enhancing the k-means clustering algorithm

by using a O (n logn) heuristic method for finding better

initial centroids. In Emerging Applications of

Information Technology (EAIT), 2011 Second

International Conference on (pp. 261-264). IEEE.

[9] J. M. Pena, J. A. Lozano, P. Larranaga, 1999, An

Empirical Comparison of Four Initialization Methods for

the K-Means Algorithm, Pattern Recognition Letters 20

(10) (1999) 1027–1040.

[10] J. He, M. Lan, C. L. Tan, S. Y. Sung, H. B. Low 2004

Initialization of Cluster Refinement Algorithms: A

Review and Comparative Study, in: Proc. of the 2004

IEEE Int. Joint Conf. on Neural Networks, pp. 297–302.

[11] A. K. Jain, M. N. Murty, P. J. Flynn 1999 Data

Clustering: A Review, ACM Computing Surveys, 31 (3),

pp 264–323.

[12] A. K. Jain 2010 Data Clustering: 50 Years Beyond K-

means, Pattern Recognition Letters 31 (8) 651–666.

[13] S. Z. Selim, M. A. Ismail, K-Means-Type Algorithms: A

Generalized Convergence Theorem and Characterization

of Local Optimality, IEEE Trans. on Pattern Analysis

and Machine Intelligence 6 (1) (1984) 81–87.

[14] L. Bottou, Y. Bengio, Advances in Neural Information

Processing Systems 7, MIT Press, 1995, Ch.

Convergence Properties of the K-Means Algorithms, pp.

585–592.

[15] Celebi, M. Emre, Hassan A. Kingravi, and Patricio A.

Vela. "A comparative study of efficient initialization

methods for the k-means clustering algorithm." Elsevier,

Expert Systems with Applications, 40, no. 1 (2013): 200-

210.

[16] E. Dede, Z. Fadika, M. Govindaraju, and L.

Ramakrishnan, “Benchmarking MapReduce

implementations under different application scenarios,”

in Future Generation Computer Systems, Special

Section: eScience Infrastructure and Applications, Vol.

36. IEEE Computer Society Washington, DC: Elsevier,

2014, pp. 389-399.

[17] S. Sakr, A. Liu, and A. G. Fayoumi. “The family of

MapReduce and large-scale data processing systems,”

ACM Comput. Surv. (CSUR), Vol. 46, no. 1, Oct. 2013,

Article no. 11.

[18] M. Yoon, H.-il Kim, D. H. Choi, H. Jo, and J.-w. Chang,

“Performance analysis of MapReduce-based distributed

systems for iterative data processing applications,”

Mobile Ubiquit. Intell. Comput., Vol. 274, no. 1, pp.

293_299, Mar. 2014.

[19] Ghuli, P., Shukla, A., Kiran, R., Jason, S., & Shettar, R.

(2015). Multidimensional Canopy Clustering on Iterative

MapReduce Framework Using Elefig Tool. IETE Journal

of Research, 61(1), 14-21.

IJCATM : www.ijcaonline.org

http://link.springer.com/search?facet-author=%22Min+Chen%22
http://link.springer.com/search?facet-author=%22Shiwen+Mao%22
http://link.springer.com/search?facet-author=%22Yunhao+Liu%22
http://link.springer.com/journal/11036

