
International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.6, September 2015

19

AR2SPARQL: An Arabic Natural Language Interface for

the Semantic Web

Iyad AlAgha
Faculty of Information Technology, The Islamic

University of Gaza
Gaza Strip, Palestine

Alaa Abu-Taha
Faculty of Information Technology, The Islamic

University of Gaza
Gaza Strip, Palestine

ABSTRACT
With the growing interest in supporting the Arabic language

on the Semantic Web (SW), there is an emerging need to

enable Arab users to query ontologies and RDF stores without

being challenged with the formal logic of the SW. In the

domain of English language, several efforts provided Natural

Language (NL) interfaces to enable ordinary users to query

ontologies using NL queries. However, none of these efforts

were designed to support the Arabic language which has

different morphological and semantic structures.

As a step towards supporting Arabic Question Answering

(QA) on the SW, this work presents AR2SPARQL, a NL

interface that takes questions expressed in Arabic and returns

answers drawn from an ontology-based knowledge base. The

core of AR2SPARQL is the approach we propose to translate

Arabic questions into triples which are matched against RDF

data to retrieve an answer. The system uses both linguistic and

semantic features to resolve ambiguity when matching words

to the ontology content. To overcome the limited support for

Arabic Natural Language Processing (NLP), the system does

not make intensive use of sophisticated linguistic methods.

Instead, it relies more on the knowledge defined in the

ontology and the grammar rules we define to capture the

structures of Arabic questions and to construct an adequate

RDF representations. AR2SPARQL has been tested with two

different datasets and results have shown that it achieves a

good retrieval performance in terms of precision and recall.

Keywords

Semantic Web, SPARQL, Natural Language Interface, Arabic

Question Answering

1. INTRODUCTION
Semantic Web (SW) and Linked Data technologies have been

widely employed by a considerable number of applications.

Consequently, a huge amount of data is constantly being made

available on the Web in RDF and OWL format. However, the

logic-based infrastructure of the SW makes it difficult for

common users to interact with applications by commanding

formal logic. In an attempt to bridge the gap between average

users and the SW, several approaches have proposed friendly

Natural Language (NL) interfaces to enable for querying

ontologies and RDF data backends. These approaches aim to

hide the complexities of RDF data and query languages, e.g.

SPARQL, by getting NL queries as an input, and transforming

them into formal queries.

Although NL interfaces to the SW have gained a considerable

attention in the past few years, existing approaches are mostly

tailored to work with English and Latin-based text. The

advancements in NLP of English and Latin based languages

has contributed significantly to the development of NL

interfaces. However, there has not been a similar progress to

support Arabic NL interfaces to the SW. This can be

explained by the complexities of linguistic processing of

Arabic text: Arabic language has more complex

morphological, grammatical and semantic structures that

make existing NLP techniques used for the English text

inadequate for the Arabic text. The lack of resources, tools

and software development environments that process the

Arabic script is a major reason for the limited support for

Arabic language on the SW [6].

In the past few years, the field of Arabic NLP has gained a

considerable attention with the emergence of Arabic NLP

tools and free Arabic corpora. This has fostered the

development of applications that support Arabic language in a

variety of fields including Question Answering (QA),

information extraction and search engines. In the past few

years, the development of Arabic ontologies and ontology-

based representations of Arabic resources has gained a

considerable attention. In parallel with these efforts, little

attention was given to enable Arab users to query this content

through NL interfaces. This will certainly reflect a qualitative

shift in the handling and treatment of the Arabic knowledge

on the SW. It will also expand the influence of ontologies and

the SW among the Arab community.

For the purpose of supporting Arabic QA on the SW, this

work presents AR2SPARQL, a NL interface that takes queries

expressed in Arabic language and returns answers drawn from

an ontology-based knowledge base. In the context of this

work, we define a Natural Language (NL) interface as a

system that accepts questions formulated in natural language

and returns answers on the basis of a given knowledge base. It

should be emphasized that a NL interface goes strictly beyond

the capabilities of keyword-based retrieval systems, which are

not able to retrieve precise answers to questions but only to

retrieve a set of relevant documents given a keyword-based

query. The major features of AR2SPARQL include:

Firstly, AR2SPARQL translates Arabic NL queries to

SPARQL which is the W3C standard query language for the

SW. It uses Arabic NLP techniques to effectively maps query

terms to ontological entities <classes, properties and

instances>. It then utilizes a set of grammar rules as well as

the knowledge in the ontology to construct a SPARQL query

by linking the ontological entities. AR2SPARQL can handle

not only simple queries, but also complex ones such as those

consisting of multiple sentences linked by conjunctions, i.e.

“ .or interrogative pronouns, i.e ”أو ,و“ انتي, انزي ”.

Secondly, AR2SPARQL is designed to be ontology-portable

and no assumption is made about any specific domain of

knowledge. It can be interfaced to any ontology as long as the

ontology terms are represented in Arabic or their Arabic

translations are provided within the ontology.

Thirdly, the proposed approach for interpreting NL queries

does not make extensive use of NLP techniques such as text

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.6, September 2015

20

parsing or morphological analysis. It employs only a reduced

set of NLP operators, such as stemming and part of speech

tagging. Instead, it highly depends on the quality and choice

of vocabulary of the ontology as well as the rules we define to

interpret the NL query to SPARQL. This decision stems from

the fact that linguistic analysis is time-consuming, error-prone

and difficult to manipulate [26]. In particular, linguistic

analysis of Arabic sentences remains much poorer than

English, and the results can very often be misleading [14].

2. A SAMPLE ONTOLOGY
Before explaining the design of AR2SPARQL, it is important

to briefly introduce the sample ontology we developed for

illustration purposes. The discussion throughout this article is

based on this ontology which covers a subset of diseases.

Figure 1 depicts an excerpt of the ontology showing some

ontology classes (e.g. Treatment, Disease, Symptom, Organ,

Diagnosis) as well as the relations between them, i.e. the

object properties.

The interpretation from Arabic script into SPARQL requires

matching the Arabic query with the ontology in order to

extract entities that best describe the query words. Ontology

entities refer to classes, properties, instances/individuals or

data-type property values such as string literals. To support

mapping Arabic queries, ontology entities should have Arabic

names. AR2SPARQL assumes that all entities are named

using the rdfs:label property, and thus it retrieves the Arabic

name of any ontology entity by extracting the value of its

rdfs:label property (rdfs:label property is not shown in Figure

1 for simplicity). An ontology entity can have multiples

values of the rdfs:label property to indicate synonyms or

alternative names. When matching the query terms with the

ontology entities, all values of the label property are examined

to ensure the best match.

We emphasize that AR2SPARQL can be easily configured to

use any ontology as long as the Arabic translation of its

content is supplied within the ontology through rdfs:label.

Fig 1: An excerpt of the disease ontology

3. AR2SPARQL ARCHITECTURE
Figure 2 depicts the architecture of the AR2SPARQL system:

It takes a NL query as an input and translates it to a SPARQL

query, which is then executed over the RDF knowledge base.

When an ontology is selected as the underlying knowledge

base, the Dictionary Builder automatically extracts

ontological entities out of the ontology to build the

Ontological Dictionary, which works as a lexicon.

The system process is briefly explained as follows: When the

user inputs a query expressed in Arabic, the query is handled

by the Interpretation Module, which is the core processing

component of AR2SPARQL, and is in charge of interpreting

the Arabic query into SPARQL. The query first undergoes a

set of NLP techniques. The Ontological Dictionary is then

searched for ontology entities that best match with each word

in the NL query. Matched ontology entities are used by the

SPARQL Generator to construct the SPARQL query. The

SPARQL Generator exploits the knowledge in the ontology as

well as the grammar rules we define to build meaningful RDF

triple patterns by joining ontology entities together. Finally,

the SELECT clause and query modifiers, e.g. “UNION” and

“FILTER” are generated. The resultant query is executed over

the knowledge base to retrieve answers. In the following

sections, the components of the system as well as the

underlying Arabic-to-SPARQL interpretation process are

explained in detail.

Fig 2: The Architecture of AR2SPARQL System

4. THE SEMANTIC MODULE
The Semantic Module is responsible for maintaining the

ontology and the associated data. The ontology is represented

in terms of OWL. The data is represented as instances of the

corresponding ontology and is stored separately in a RDF

database store. This separation between the ontology and the

RDF data has many advantages such as better query

performance, improved system scalability and ontology re-

use[28]. When the system is first configured to use an

ontology and its instance data, we operate an inference

engine, i.e. reasoner, to infer additional facts and expressive

features. This enables the declaration of derived classes or the

declaration of further property characteristics (e.g. transitivity

and symmetry of properties) which can improve the QA

capabilities. The Semantic Module was implemented in Java

by using the Jena API
1
.

5. MAPPING QUERTY TO ONTOLOGY

ENTITIES
A SPARQL query typically consists of a set of RDF triple

patterns. A triple pattern is like an RDF triple except that each

of the subject, predicate and object may be variables. The first

step of transforming a user query to SPARQL is to identify

the ontology entities that best match with the user’s terms. For

example, given the schema in Figure 1, the NL query: “ يا

 matches with the following ”الأيشاض انتي يٍ أعشاضها فقش انذو؟

ontology entities: “:Disease”, “:has_symptom” and

“:Anemia”. After identifying the ontology entities, a SPARQL

query is constructed by combining the discovered ontology

entities to formulate RDF triples.

1https://jena.apache.org

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.6, September 2015

21

To map Arabic words to the ontology entities in a proper

manner, some challenges should be tackled: These challenges

are briefly discussed in what follows:

 The variety of text formats and writing styles: words with

similar meanings can be written in different formats which

have the same root (e.g. the words “علاج”and “ بـ_يعانج ”). In

addition, Arabic letters can be written in different styles such

as “أ” or “ا” or “ه” or “ة”.

 Matching phrases in the query: Some entities in the

ontology consist of a phrase rather than a single word. Some

of the words in the phrase have different corresponding

entities if they appear separately (e.g. “انذو”and “ استفاع ضغظ

 It is necessary to map words/phrases in the query with .(”انذو

the correct entities in the ontology as possible.

 Entity ambiguity: a single word can match with more than

one ontology entity. For example, the word “علاج” can map to

the ontology class :Treatment (علاج), the object property

:treats (يعانج) and the inverse property :treated_by (بـ_يعانج)

since all words share the same stem. The mapping process

should decide the correct matching.

 The gap between the user’s terminology and the ontological

terminology: a user query may contain synonyms of but not

the exact terms used in the ontology. For example, the user

term ”داء” does not match with the word “يشض” even though

they share the same meaning. Ontology mapping should

capture synonyms of the same word.

To address the above challenges, the following components

were designed:

 The Ontological Dictionary: To enable fast access and

matching of query words, all ontology entities including

classes, properties and instances are extracted, linguistically-

processed and stored in the Ontological Dictionary. Given a

word from the user query, the Ontological Dictionary should

output a set of ontology entities to act as descriptors for the

query words. The preprocessing of entities in the ontology

aims to apply some standard NLP processes on the Arabic

labels to enable for better matching with the user’s

vocabulary. These processes include: 1) Orthographic

normalization (e.g. replacing “أ”with “ا”and “ه”with “ة”).

Stanford Arabic Word Segmenter
2
 is used to apply

normalization to the Arabic words. 2) Removal of stopwords

and special characters such as “_” which often occurs in

ontology text. 3) Part of speech tagging: Stanford Arabic

POS
3
 is used for this purpose. Part of Speech tagging is

necessary to identify verbs, which often represent predicates

in RDF triples, and nouns, which often map to ontology

classes and instances. 4) Word Stemming by using the Arabic

stemmer proposed by Khoja [25]. Stemming aims to make the

Arabic words comparable regardless of the different formats.

To mitigate the gap between different terminologies, the

ontology was manually populated with the synonyms of

entities’ names as possible. The rdfs:label property was used

to assign synonyms to each entity in the ontology. Existing

efforts working on English text often try to expand the

system’s terminology by using lexical databases such as the

WordNet. Regarding Arabic, few efforts explored the

construction of controlled vocabularies for Arabic language

such as the Arabic WordNet [10]. However, as of the time of

writing this article, we are not aware of any lexical database

2http://nlp.stanford.edu/software/segmenter.shtml
3http://nlp.stanford.edu/software/tagger.shtml

for the Arabic language which can be programmatically used

through an open source API.

 The Query Mapper: The Query Mapper handles the process

of mapping the user query to the ontology: When a user query

is entered, it is tokenized, normalized and stemmed using the

same procedure applied on the ontology content. To help map

phrases in the query, all possible n-grams (4-grams, trigrams,

bigrams and unigrams) are generated from the user query (n is

initially set to 4, but can be reconfigured easily depending on

the max length of the ontology entities). Then, n-grams are

matched with the content of the Ontological Dictionary

starting from the highest n-grams. The assumption here is that

longer phrases will represent more specific descriptors than

shorter ones.

6. THE SPARQL GENERATOR
The SPARQL Generator is the backbone of the AR2SPARQL

system, and is responsible for generating the SPARQL query

by linking the ontology entities recognized by the Query

Mapper. It links the ontology entities captured from the

mapping process in order to create RDF triples. These triples

are then aggregated to generate a complete SPARQL query

that, when executed, can retrieve the intended answers from

the knowledge base. In what follows, we begin by giving a

brief overview of the most important concepts underlying

SPARQL queries. Thereafter, we present our approach to

translate Arabic natural query into SPARQL.

6.1 Translating Arabic NL Queries into

SPARQL
A SPARQL query, in its basic format, consists of two parts:

the SELECT clause identifies the variables to appear in the

query results, and the WHERE clause provides the basic

graph pattern to match against the data graph. The WHERE

clause consists of one or more triple patterns < 𝑠 𝑝 𝑜 > where

s, p and o denote the subject, predicate and object

respectively. In SPARQL queries, the subject, predicate and

object can be variables, resources (written as URIs) or literal

values. Given the SPARQL query: SELECT ?person where

?person <foaf:name> “Ahmed”: the subject is the variable

denoted by ?person, the predicate is the resource denoted by

the URI: foaf:name, and the object is the literal value

“Ahmed”.

Let C be the set of all classes, P the set of all properties, I the

set of all instances and L the set of all literals contained in the

target knowledge base of the SPARQL queries at hand. We

define the translation function 𝜌: 𝐸∗ → < 𝑠 𝑝 𝑜 >∗as a

function that maps an ontology entity 𝐸, or a sequence of

entities, to one or more RDF triple pattern(s). For the

translation function 𝜌, the input is the sequence of ontology

entities recognized by the Query Mapper, and the output is a

set of RDF triple patterns. Formally, the goal is to devise the

extension of 𝜌 to any ontology entity, or combination of

entities, expressed in Arabic. We adopt a rule-based approach

to achieve this goal as follows:

Rule 1: 𝑖𝑓 𝑥 𝑃 𝐼 𝐿 𝑡𝑒𝑛 𝜌 𝑥 ⇒ 𝑥

Rule 2: i𝑓 𝑥 𝐶 𝑡𝑒𝑛 𝜌 𝑥 ⇒ ? 𝑣𝑎𝑟 ˄ (? 𝑣𝑎𝑟 𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒 𝑥)

The above two rules define how the atomic types (i.e. classes,

instance, properties and literal values) are represented in the

SPARQL query. Rule 1 indicates that the properties, instances

and literal values remain unchanged in the generated

SPARQL body. Rule 2 indicates that an ontology class entity

is represented as a variable, ?var, that is of type x. The

variable name ?var is randomly-generated.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.6, September 2015

22

The procedure of constructing a SPARQL query from an

Arabic NL query is explained in what follows. This procedure

is illustrated with a running example the shows the translation

of the query “ based on the schema ”يا الأيشاض انتي تصيب انكبذ؟

shown in Figure 1:

Step 1: The query text is mapped to the ontology content. The

output of this step is a sequence of ontology entities that

correspond to the query words. Entities are ordered according

to the occurrence of their corresponding words in the query.

The output of mapping the above query is the sequence:

<:Disease (class), :infects (object_property), :Liver

(instance)>.

Step 2: The sequence of ontology entities are scanned for a

complete triple pattern. A complete triple pattern <s p o>

should fulfill the following conditions:

 It is a sequence of ontology terms that map to a subject, a

predicate and an object in sequence.

 A subject can be either a class or an instance.

 An object can be a class, an instance or a literal value.

A predicate can by either an object property or a data type

property. The subject and the object should belong to the

domain and the range of the predicate respectively. If a

complete triple pattern is captured based on the above

conditions, the interpretation of the NL query is

straightforward: Rules 1 and 2 are applied according to the

type of each ontology entity, and results are linked together to

form one or more triple patterns. The generated triple patterns

will formulate the WHERE clause of the SPARQL query. The

translation function 𝜌 of a complete triple pattern <s p o> can

be expressed as follows:

Rule 3: 𝜌 𝑠, 𝑝, 𝑜 ⇒ 𝜌 𝑠) ˄ 𝜌 𝑝 ˄ 𝜌(𝑜

𝑤𝑒𝑟𝑒 𝑠 𝐶 ∪ 𝐼 , 𝑝 𝑃, 𝑜 𝐶 ∪ 𝐼
∪ 𝐿 , 𝑠 𝐷𝑜𝑚𝑎𝑖𝑛 𝑜𝑓 𝑃, 𝑜 𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑃

Referring to our running example, A subject (:Disease), a

predicate (:infects) and an object (:Liver) appear in sequence.

The class :Disease and the instance :Liver both fulfill the

condition that they belong to the domain and range of the

property :infects respectively. Thus, a complete triple pattern

is captured. Rule 1,2 and 3 are applied as follows:

𝜌(: 𝐷𝑖𝑠𝑒𝑎𝑠𝑒, ∶ 𝑖𝑛𝑓𝑒𝑐𝑡𝑠, : 𝐿𝑖𝑣𝑒𝑟)

=>𝜌 : 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 ˄ 𝜌 : 𝑖𝑛𝑓𝑒𝑐𝑡𝑠 ˄ 𝜌(: 𝐿𝑖𝑣𝑒𝑟)

=> ?var ˄ :infects ˄ :Liver ˄ ?var rdf:type :Disease

=> ?var :infects :Liver . ?var rdf:type :Disease

Note that the above output, which will constitute the WHERE

clause of the generated SPARQL query, is the composite of

two triple patterns: the first indicates that the variable ?var

relates to the instance :Liver through the predicate :infects,

while the latter defines the type of the variable ?var.

Step 3: The SELECT clause is constructed by choosing

variables that should appear in the query results from those

included in the WHERE clause. This process is done as

follows: 1) find the question words such as "يا" "يٍ" , or ”أيٍ”,

command words such as "أركش" , 2) take the nouns that directly

follow the question words as targets. 3) From the triples

generated in Step 3, take variables that correspond to the

target nouns. These variables will be part of the SELECT

clause. Detailed rules vary for different question/command

words: for example, quantity questions starting with “ ”كى عذد

is interpreted into something like “SELECT

COUNT(DISTINCT ?x)”. For Yes/No questions, e.g.

questions starting with the question word “هم”, the ASK form

is used to test whether or not a query pattern has a solution.

For example, the NL query “هم يصيب انسكش انكبذ؟” is interpreted

into something like “ASK WHERE {:Diabetes :infects

:Liver}” which will return either Yes or No depending on

whether or not a solution exists.

Referring to the query “ the noun ,”يا الأيشاض انتي تصيب انكبذ؟

 .is the target that should appear in the query result ”الأيشاض“

The variable ?var from the above WHERE clause corresponds

to the target noun. Thereby, the SPARQL query after

generating the SELECT clause becomes:

SELECT DISTINCT ?var WHERE {?var :infects :Liver . ?var

rdf:type :Disease}

6.2 Generating SPARQL from Incomplete

Patterns
The above procedure addresses the optimal case in which a

complete triple pattern is captured by combining the ontology

entities. However, there are circumstances in which one or

more of the triple components can be missing, for different

reasons, resulting in an incomplete triple pattern. Consider the

following example: “ ؟الإَفهىَضايا أعشاض ”, the words “و ”أعشاض

 correspond to an ontology class and an instance”الإَفهىَضا“

respectively, but no ontology property is explicitly

determined, resulting in an incomplete triple. In another

example: “ ؟كيف يشخص سشطاٌ انقىنىٌ ”: the verb “يشخص”

corresponds to a property, the noun “ ”سشطاٌ انقىنىٌ

corresponds to an instance, but no word maps to a term that

represents a valid subject.

In such cases, the procedure explained in section 6.1 fails to

generate a valid SPARQL query directly. It is necessary first

to determine and replace the missing components. Only then,

a complete RDF triple can be captured and, hence, the above

procedure can be applied.

We used an approach that leverages knowledge in the

ontology to capture missing components of RDF triples.

Knowing any two triple components, the third component can

be retrieved by querying the knowledge base using the

appropriate queries. To illustrate how a missing RDF

component can be identified by knowing the other two

components, consider the query: ؟أعشاض الاَفهىَضايا " “:

Mapping the query words to the ontology will produce the

following sequence of entities: <:Symptom (Class),

:Flue(instance)>. This sequence does not make a triple

because it lacks a predicate. The implicit predicate can be

determined by looking in the ontology for properties being

used to link the class :Symptom with the class of the instance

:Flue. Given a class C and an instance I, the following

SPARQL query is executed to obtain candidate properties:

SELECT DISTINCT ?predicate WHERE {?predicate

rdfs:domain C . ?predicate rdfs:range ?range_class . I rdf:type

?range_class }

The above query retrieves properties whose domain includes

the class C, and whose range includes the type of the instance

I. If multiple properties exist, the user is prompted to choose

the desired property. Referring to the query “ يا أعشاض

 and to the schema shown in Figure 1, we execute the ”الاَفهىَضا؟

following query to identify implicit properties:

SELECT DISTINCT ?predicate WHERE {?predicate

rdfs:domain :Symptom . ?predicate rdfs:range ?range_class .

:Flue rdf:type ?range_class }

Executing the above query will return the property

:symptom_of (نـ_عشض), and the triple pattern after identifying

the property becomes :<:Symptom(Class), :symptom_of

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.6, September 2015

23

(Property), :Flue (instance)>. Afterwards, the procedure in

section 8.1 becomes applicable, and the following SPARQL

query will be generated: SELECT DISTINCT ?var WHERE

{?var :symptom_of :Flue . ?var rdf:type :Symptom}.

The rules used to determine the missing RDF components

vary depending on the type of the missing component as well

as the types of other components. Besides the cases where the

predicate can be implicit, the object or the subject of the triple

pattern can also be implicit. An example of the latter case is

the query: “ ؟كيف يشخص سشطاٌ انقىنىٌ ”: The verb succeeding the

question word, i.e. “يشخص”, maps to the object property

“:diagnoses”. The phrase “ٌسشطاٌ انقىنى” maps to the instance

“:Colon_Cancer”. To have a complete RDF triple, we need to

identify the type of the ontology entity that corresponds to the

implicit subject. Knowing the property P and the instance I,

candidate subject types can be retrieved from the knowledge

base by using the following SPARQL query:

SELECT DISTINCT ?subject_class WHERE {P rdfs:domain

?subject_class . P rdfs:range ?object_class . I rdf:type

?object_class }

The above query retrieves ontology classes that fall in the

domain of the property P whose range includes the class of

the instance I. On executing the query with P equals to

:diagnoses and I equals to :Colon_Cancer, we will obtain the

subject type :Diagnosis. This will generate the following

complete triple: <:Diagnosis (Class), :diagnoses (Property),

:Diabetes (Instance)>, which is interpreted into the SPARQL

query: SELECT DISTINCT ?var WHERE {?var :diagnoses

:Colon_Cancer . ?var rdf:type :Diagnosis}.

6.3 Interpreting Queries with Conjunctive

Sub-queries
AR2SPARQL is capable of interpreting queries that are linked

with relative pronouns, e.g. “ انتي, انزي ”or conjunctions, e.g. “و,

 Queries that are connected with conjunctions cannot be .”أو

processed separately because they often depend on each other,

e.g. one query corresponds to entities in the preceding query.

Consider the following question: يا انًشض انزي يصيب انكبذ ويسبب

" ؟عسش انهضى ”: The sentence after the conjunction refers to the

subject of the first sentence, i.e. “انًشض”. Therefore, missing

components of RDF triples cannot be determined without

identifying the dependency between sentences around the

conjunction.

Related efforts working on the English script often used a

statistical parser to identify dependencies between phrases.

However, building parse trees from Arabic text is often more

complicated, and produces poor results as compared to

English counterparts [15]. Therefore, a parser-free approach is

proposed and used. The semantics in the ontology are used to

identify dependencies between the triple patterns.

To illustrate how NL queries consisting of multiple sentences

are processed, consider the following query: يا انًشض انزي يصيب

" ؟انكبذ ويسبب عسش انهضى ”. The process of generating RDF

triples from this query is depicted in Figure 3.A and explained

as the following:

Mapping this query to the ontology content will result in the

following sequence of ontology entities:

<:Disease (Class), :infects (Property), :Liver (Instance),

:causes (Property), :Indigestion (Instance)>

Given the above sequence, the SPARQL Generator tries to

generate RDF triples by combining consecutive entities. This

will result in the following triples:

 Triple 1: <:Disease :infects :Liver>,which is a complete

triple pattern.

 Triple 2: <? :causes :Indigestion>. This combination does

not correspond to a complete triple pattern because it lacks a

subject.

It is implicitly understood from the context of the query is that

the verb after the conjunction, i.e. "يسبب" refers to the subject

of the first sentence,”انًشض”. By exploiting the ontology

semantics and constraints, it is possible to identify this

dependency and, accordingly, replace missing RDF

components by entities from other complete triples. In the

previous example, the complete Triple 1 is searched for an

entity that can replace the missing subject of Triple 2. The

selected entity should fulfill the condition that it should

belong to the domain of the property: causes. The class

:Disease of Triple 1 is selected because it is the only entity

that fulfills this condition, and Triple 2 becomes <:Disease

:causes :Indigestion>. Afterwards, all triples become

complete, and thus can be interpreted into SPARQL by

applying the procedure discussed in Section 8.1. Since both

Triple 1 and 2 share the same subject, they will use the same

variable in the generated query to denote the shared subject.

The output query will be:

SELECT DISTINCT ?var WHERE {?var :infects :Liver . ?var

:causes :indigestion. ?var rdf:type :Disease}

In another example, consider the query “ يا الأيشاض انتي تسبب

يا الأيشاض انتي “ The sentence .(see Figure 3.B) ”الإسهال وفقش انذو؟

 which appears before the conjunction, comprises ,”تسبب الإسهال

a complete triple pattern which is <:Disease :causes

:Diarrhea>. The phrase “ which appears after the ,”فقش انذو

conjunction, maps to a single ontology instance, and it is not

part of any recognized triple. In this case, two other entities

should be identified so that the part after the conjunction

makes a complete RDF triple. In this case, the rule used to

generate a complete triple from a single instance is as follows:

the subject and predicate of the first triple are used for the

target triple if and only that single instance belongs to the

range of the predicate of the first triple. In the previous

example, the instance :Anemia belongs to the range of the

property :causes according to the ontology definition.

Therefore, the subject and predicate of the first triple are used

for the second triple which will become: <?Disease :causes

:Anemia>. This process is equivalent to rephrasing the above

query to be: “ يا الأيشاض انتي تسبب الإسهال والأيشاض انتي تسبب فقش

 Having two complete triple patterns, the SPARQL .”انذو؟

query will be:

SELECT DISTINCT ?var WHERE {?var :causes :Diarrhea .

?var :causes :Anemia . ?var rdf:type :Disease}

It should be noted that different rules were defined to handle

different types of dependencies between triple patterns.

Fig 3: Example of generating RDF triples by capturing dependencies between the query parts: A) The subject “:Disease”

of the first triple is used for the second triple. B) The subject “:Disease” and predicate “:causes” of the first triple are used

for the second triple.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.6, September 2015

24

Detailed rules vary for different sequences of entities resulting

from the mapping process.

7. AMBIGUITY RESOLUTION
When mapping the user query to the ontology, it is possible

that a query word can match with multiple ontology entities. It

is necessary to ensure that each word/phrase in the query will

only correspond to a single entity in the ontology as possible.

AR2SPARQL uses an approach consisting of two levels to

resolve ambiguity in the mapping process.

The first level of ambiguity resolution uses the semantic

features of the ontology to determine the best match. The

point is that only ontological entities that can make a valid

and complete RDF triple pattern are chosen. To show how the

ontology semantics are used to resolve ambiguity, consider

the following query: “يا الأيشاض انتي يٍ أعشاضها استفاع ضغظ انذو؟”

and the schema in Figure 1. The phrase “أعشاضها” presents

ambiguity because it matches with three ontology entities: the

class :Symptom (عشض), the property :has_symptom (عشض_نه)

and its inverse :symptom_of (نـ_عشض) as they all share the

same root. The rule used in this case is that an ambiguous

word that occurs between an ontology class and an ontology

instance should map to an ontology property because this will

result in a complete RDF triple. Therefore, priority in this

example is given to the properties: has_symptom and

:symptom_of over the class :Symptom.

Note that ambiguity in the above example has not been

resolved yet since the word “أعشاضها” still corresponds to

multiple properties. In this case, the domain and range of

candidate properties are examined to determine the correct

property that links the corresponding subject and object in the

RDF triple. In the previous example, only the property

:has_symptom (عشض_نه) fulfills this condition because the

class :Disease belongs to its domain and the type of the

instance :High_Blood_pressure belongs to its range.

Different rules are defined to handle other forms of ambiguity.

For example, the word “أعشاض” in the query “ يا أعشاض يشض

 .is ambiguous as it matches with three ontology entities ”انسكش

The rule used in this case is to prioritize class entity, i.e.

:Symptom, over properties if the ambiguous word occurs after

the question mark.

If ambiguity cannot be resolved by exploiting the ontology

semantics and constraints, the second level which requires the

user intervention is used. The system prompts the user with a

dialog showing the ambiguous query word/phrase and a list of

candidate ontology entities. The user should choose only one

entity that will be used to construct the SPARQL query.

8. EXPERIMENTS AND EVALUATION
A full evaluation of the system requires an evaluation of two

aspects: 1) Question answering ability: the aim is to asses to

what extent the system is able to translate Arabic NL queries

to valid SPARQL queries and then retrieve satisfactory

answers from a specific knowledge base. 2) Portability across

ontologies: AR2SPARQLwas designed with the assumption

that it should work with any ontology as long as Arabic

translations to all ontology entities are provided.

8.1 Datasets
The assessment of our system was challenged by the lack of

Arabic domain ontologies and associated knowledge bases

that can be used for question answering. While there are

plenty of OWL test data and questions in English [1], we are

not aware of any ontology-based test data for Arabic question

answering. Therefore, we used two different datasets: The

first was obtained from a well-known English-based dataset

after adapting it for Arabic use, while the second was

constructed from scratch. The details and rationales behind

using these datasets are discussed in what follows:

The first dataset is based on the dataset provided by

Mooney[32] which has been widely used to assess NL

interfaces in English [13, 27, 35]. We used the OWL

knowledge base which comprises terminology and data on the

geography of the United States. The dataset consists of an

OWL ontology and 877 questions expressed in English. To

adapt the dataset for Arabic, we populated the ontology with

Arabic translations of all ontology entities. Arabic translations

were added to the original ontology through the rdfs:label

property. Questions were also translated to Arabic, and all

translations were validated by a professional translator.

In the second dataset, we constructed a sample ontology of

which an excerpt is shown in Figure 1. The intention of

creating the ontology was to examine the system’s portability

when it is interfaced to different ontologies. The ontology

consists of 24 classes, 12 object-type properties and 8 data-

type properties. All ontology entities were translated to

Arabic, and translations were added to the ontology through

the rdfs:label property. We created 124 instances of different

types, and linked them with the appropriate relations from the

ontology. The ontology data and relations were validated by a

domain expert. We then presented the ontology and the

knowledge base to five human subjects who were medicine

students from the local university, thus had prior knowledge

of the ontology domain. Each student was asked to formulate

10 questions. At the end, a total of 45 questions were chosen

after excluding duplicated ones. Although the number of

queries is less than those used in the Mooney’s dataset, it

helps to assess the performance of the system by using user-

define queries collected from native Arabic speakers.

8.2 Evaluation Metrics
AR2SPARQL was evaluated in terms of precision, recall and

F-measure, which are defined as follows:

Precision =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑 𝑞𝑢𝑒𝑟𝑖𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

Recall =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒 𝑐𝑡𝑙𝑦 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑 𝑞𝑢𝑒𝑟𝑖𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑞𝑢𝑒𝑟𝑖𝑒𝑠

F-measure =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

8.3 Results and Discussion
Table 1 illustrates the evaluation results obtained over the two

datasets, showing the amount of queries tagged as correct

(when the system-generated SPARQL query matches the

manually-generated one) and incorrect (the systems returns a

wrong or incomplete SPARQL query). The system

successfully answered 535 queries of the geography queries,

thereby achieving 61% average recall and 88.14% average

precision. The system also provided answers for 28 queries of

the diseases queries with an average recall of 62.22% and an

average precision of 82.35%.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.6, September 2015

25

Table 1. Performance of AR2SPARQL using the Arabic

Mooney and Diseases test data. Row1 shows the number of

testing queries. Row 2 shows the number of correctly

generated SPARQL queries. Row 3 shows the number of

wrong or incorrect SPARQL queries.

Domain Geography Diseases

#. of queries 877 45

of correct 535 28

of incorrect 72 6

Precision 88.14% 82.35%

Recall 61% 62.22%

F-measure 0.72 0.71

We also analyzed the failures of the system, and classified

them into three main categories:

Out-of-coverage failures: This type of failures occurs when a

query requires classes, properties or instance not reflected

within the ontology. For instance, in the query: “ يضاعفاث يا

؟الإصابت بًشض تصهب انششاييٍ ” (What are the complications of

atherosclerosis?), the system failed to map the word

 .to any of the ontology entities (complications) ”يضاعفاث“

Out-of-coverage failures also occur due to the system’s

inability to map words in the query to ontology entities: In the

query: “ What are the states) ”يا هي انىلاياث انًجاوسة نًيتشغٍ؟

neighboring Michigan?), the system could not match the word

 to any property in the geography (neighboring) ”انًجاوسة“

ontology. However, this query can be correctly answered if

the word “انًجاوسة” is mapped to the ontology property

“:border” whose Arabic label is “يحذ”. Out-of-coverage

failures can also result from the lack of relations between

ontology entities. For example, in the query “ أركش أَىاع عًهياث

 there is no ,(?Mention the types of heart surgery) ”جشاحت انقهب

explicit relation in the ontology between the instance “heart”

and any instance of the type “Surgery”, resulting in an

incomplete generation of triple patterns. AR2SPARQL cannot

infer an answer if there is no relation defined in the ontology

between the two terms implied in the relationship.

In general, the out-of-coverage failures contributed for 35%

and 50% of the total number of failed queries for the

geography and diseases datasets respectively

We believe that an out-of-coverage failure is not considered

as a failure of AR2SPARQL. These failures can be easily

overcome by enriching the ontology and the knowledge base

with more classes, instances and properties so that the system

has a better coverage. It is also possible to bridge between the

terminology used by the user and the concepts used in the

underlying ontology by using external dictionaries, e.g.

WordNet for Arabic language.

Semantic failures: This type of failures occurs when the query

requires advanced semantic analysis and reasoning that goes

beyond the system’s capabilities. Examples of these queries

include: “ What is the area of all)”يا يساحت كم انىلاياث يجتًعت؟ً

the states combined?), “ يا يتىسظ عذد انسكاٌ نكم كيهىيتش يشبع في

 What is the average population per square) ”انىلاياث انًتحذة؟

km in the US?). Answers to these queries are not explicitly

present in the ontology, and require deep analysis and

calculations to be performed over the knowledge base. In

addition, some words in queries may have multiple meanings,

and their interpretations vary from domain to domain. For

example, in the query “ ”يا هي انًذٌ انشئيسيت في أكبش ولايت؟

('What are the major cities in the largest state?), it is unclear

whether the comparative and superlative words “أكبش ,انشئيسيت”

refer to the area or the population size.

AR2SPARQL does not currently support the processing of

comparative and superlative words such as “أكبش/ انًشابه

 since the interpretation of (main, most, largest) ”أبشص/أهى/نـ

these words often requires specific mechanisms to understand

the comparison in different ontologies. It should be noted that

AR2SPARQL is designed to be ontology-portable, hence

more focus was paid towards the generalization of the

interpretation process rather than relying on domain specific

interpretations. In fact, even many of the English QA systems

that used the same data set do not manage to answer complex

queries that require deep semantic analysis [22, 35].

This type of failures contributed for 41% and 17% of the total

number of failed queries for the geography and diseases

datasets respectively. It is obvious that the semantic failures

were less common in the case of the diseases dataset because

the human subjects sought to ask questions whose answers

could be directly found in the ontology. This is in contrast to

the geography dataset where the questions were much diverse

and of different complexities.

Linguistic failures: this type of failures originates from

linguistic ambiguity that hinders the ability to identify

relations between the query words. AR2SPARQL relies on

handcrafted rules to identify dependencies between sentences

split with conjunctions or pronouns. However, due to the

limited coverage of these rules, some queries will be left

unresolved. For example, in the query: “ يا الأيشاض انتي تسبب

؟استفاع ضغظ انذو وكيف تشخص ”, the system was not able to

determine whether the word “تشخص” (is diagnosed) should be

linked to the word “الأيشاض” or to the phrase “ استفاع ضغظ

 .since both ways are possible according to the ontology ”انذو

In addition, Arabic words have different meanings depending

on how they are diacritized. However, AR2SPARQL does not

currently handle diacritized text, a thing that may lead to

linguistic ambiguities.

Despite of these limitations, linguistic failures were the least

common type of failures: it contributed only for 24% and 33%

of the total number of failed queries for the geography and

diseases datasets respectively. This was attributed to the

simplicity of the testing query sets which do not often include

linguistically-complex structures.

Finally, interfacing the system to two different ontologies

confirmed the assumption that it is ontology portable, as we

did not notice any mistake or deviation in the behavior when

switching the ontologies.

9. RELATED WORK
In this section, we review and discuss the state of the art from

three areas related to our work, which are: Arabic QA

systems, the support for Arabic language on the SW and NL

interfaces to the SW.

9.1 Arabic QA Systems
Despite the Arabic-specific difficulties when compared to

English, several efforts have been made to reach an acceptable

level in the Arabic QA task. Existing approaches can be

divided into two types based on the type of the knowledge

domain[12]:1) closed domain systems which deal with

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.6, September 2015

26

questions under a specific domain. 2) open domain systems

which deal with questions of different types and retrieves

answers from large databases such as the Internet. In open-

domain systems, question analysis and answer extraction tasks

are often difficult in comparison with close-domain systems

which often rely on application dependent rules and

constraints. AQAS [30] is an example of closed-domain

systems that was specialized in the restricted domain of

radiation and its effects. QARAB[16]system uses an approach

that provides short answers to Arabic questions from a

collection of Arabic text documents. AQusASys[9]is an open-

domain system designed to answer questions related to named

entities. It gives attention to question analysis in order to

extract informative features.

Most of the above efforts rely on morpho-syntactic

approaches in which sophisticated linguistic analysis and NL

methods are used. They also provide answers in the form of

short passages, extracted from the document collections,

rather than giving precise answers. The performance of these

systems is limited by the difficulty of Arabic language

processing and the considerable lack of effective NLP tools

that support Arabic. Few efforts proposed the use of semantic

approaches by integrating ontologies or control vocabularies

to improve QA. For example, Abuenour et al. [3] used Arabic

WordNet to expand the user query by capturing terms that are

semantically related to the user terms.

9.2 Support for Arabic language on the

SW
To the best of our knowledge, only a few published studies

have employed SW technologies in developing Arabic

language applications. In general, the studies that addressed

the support of Arabic language on the SW can be divided into

four categories[7]: 1) the development of Arabic

ontologies[18, 20, 21], 2) Employing ontologies to improve

Arabic named entities extraction [4, 36], 3) Ontology based

representation of Islamic knowledge [2, 19, 24] and 4)

supporting cross-language information retrieval and

search[17, 33]. Although an increasing number of efforts have

started to use ontologies to enhance information retrieval from

Arabic data [29, 31], the use of ontologies was almost limited

to query expansion, and results were retrieved from

unstructured data on the Web. Our work takes a different

direction by addressing NL interfaces for querying ontologies

and RDF stores.

In the last few years, there has been a growing interest in

building Arabic ontologies that can be used in a wide context.

For example, the Arabic Ontology project [21] aims to build a

formal ontology that resembles an Arabic WordNet but with

strict ontological principles. The Quranic Ontology uses

knowledge representation to define the key concepts in the

Quran, and shows the relationships between these concepts

using predicate logic [11]. Other efforts also started to explore

ways to enrich the Arabic content over Linked Data such as

the creation of Arabic DBpedia [5, 8]. In line with these

efforts, NL interfaces will be demanded to enable Arab users

to send queries and obtain results from the growing Arabic

content on the SW.

9.3 Natural language Interfaces for the SW
In the context of English and Latin based languages, many NL

interfaces for querying ontologies and RDF data have been

developed in recent years. AquaLog [26] is a QA system over

Linked Data that is not tailored towards a particular ontology.

It is distinguished by its learning mechanism in a way that it

uses ontology reasoning to learn more generic patterns. NLP-

Reduce [23] is another domain-independent NL interface to

ontologies that avoids using complex linguistic analysis. It

tries to identify triple structures in the query words and match

them to an OWL knowledge base. The main drawback of

these systems is that they rely on handcrafted grammars to

identify terms, relations, and to compose triples. Therefore,

more expressive queries that do not match any of the

predefined patterns cannot be answered.

Some researches proposed the use linguistic parsing to

identify and link query terms as an alternative to handcrafted

grammars, thus providing the ability to handle linguistically

complex questions. For example, PANTO [35] is a portable

NL interface that uses a deep parse tree to capture nominal

phrases, determine relations and then generate RDF triples.

Unger et al. [34] presented an approach that relies on a deep

linguistic analysis to produce a SPARQL template that

directly mirrors the internal structure of the question and that

is instantiated by mapping the occurring natural language

expressions to the domain vocabulary. Despite the capabilities

offered by the deep linguistic analysis and parsing, it is

difficult to generalize these approaches to Arabic language.

The rich and complex morphology that Arabic has makes the

parsing of Arabic text complicated and error-prone.

10. CONCLUTION AND FUTURE WORK
This paper presents AR2SPARQL, an Arabic natural language

interface to ontologies and RDF data. It translates the user

query to RDF triple patterns which are then used to build a

SPARQL query. Due to the limited available support for

Arabic NLP, AR2SPARQL makes less use of linguistic

analysis and more of the ontology semantics and constraints

in order to translate the Arabic query to SPARQL.

Since this is one of the first works the tackles the notion of

Arabic QA on the SW, there are still many directions open for

future research: First, researchers can explore ways to handle

diacritization, coreference resolution, superlative and

comparative nouns and deep reasoning. Second,

AR2SPARQL can be interfaced to a single ontology at a time.

However, when it comes to the real SW, there is a need to

compose information from multiple ontologies. Therefore, a

future direction is to upgrade the system from relying on a

single ontology to opening up to the rich ontological

knowledge available on the Web.

11. REFERENCES
[1] Mooney Natural Language Learning Data. [cited 1-8-

2015. Available on:

https://files.ifi.uzh.ch/ddis/oldweb/ddis/research/talking-

to-the-semantic-web/owl-test-data/.

[2] Abdelnasser, H., et al., 2014. Al-Bayan: An Arabic

Question Answering System for the Holy Quran. ANLP

2014. p. 57.

[3] Abouenour, L. 2011. On the improvement of passage

retrieval in Arabic question/answering (Q/A) systems, in

Natural Language Processing and Information Systems

Springer. p. 336-341.

[4] Abouenour, L., K. Bouzoubaa, and P. Rosso. 2010. Using

the Yago ontology as a resource for the enrichment of

Named Entities in Arabic WordNet. in Editors &

Workshop Chairs.

[5] Al-Feel, H., 2013. A Step towards the Arabic DBpedia.

International Journal of Computer Applications. 80(3): p.

27-33.

[6] Al-Khalifa, H. and A. Al-Wabil. 2007. The Arabic

language and the semantic web: Challenges and

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.6, September 2015

27

opportunities. in The 1st int. symposium on computer and

Arabic language.

[7] Al-Zoghby, A.M., A.S.E. Ahmed, and T.T. Hamza, 2013.

Arabic Semantic Web Applications: A Survey. Journal of

Emerging Technologies in Web Intelligence. 5(1): p. 52-

69.

[8] Bahanshal, A.O. and H.S. Al-Khalifa. 2013. Toward

Recipes for Arabic DBpedia. in Proceedings of

International Conference on Information Integration and

Web-based Applications & Services: ACM.

[9] BEKHTI, S. and M. AL-HARBI. 2013. AQuASys: A

Question-Answering System For Arabic. in WSEAS

International Conference. Proceedings. Recent Advances

in Computer Engineering Series: WSEAS.

[10] Black, W., et al. 2006. Introducing the Arabic wordnet

project. in Proceedings of the 3rd International WordNet

Conference (GWC-06).

[11] Dukes, K., E. Atwell, and N. Habash, 2013. Supervised

collaboration for syntactic annotation of Quranic

Arabic. Language resources and evaluation. 47(1): p. 33-

62.

[12] Ezzeldin, A.M. and M. Shaheen. 2012. A SURVEY OF

ARABIC QUESTION ANSWERING: CHALLENGES,

TASKS, APPROACHES, TOOLS, AND FUTURE

TRENDS. in The 13th International Arab Conference on

Information Technology.

[13] Fader, A., L.S. Zettlemoyer, and O. Etzioni. 2013.

Paraphrase-Driven Learning for Open Question

Answering. in ACL (1).

[14] Farghaly, A. and K. Shaalan, 2009. Arabic natural

language processing: Challenges and solutions. ACM

Transactions on Asian Language Information Processing

(TALIP). 8(4): p. 14.

[15] Green, S. and C.D. Manning. 2010. Better Arabic

parsing: Baselines, evaluations, and analysis. in

Proceedings of the 23rd International Conference on

Computational Linguistics: Association for

Computational Linguistics.

[16] Hammo, B., H. Abu-Salem, and S. Lytinen. 2002.

QARAB: A question answering system to support the

Arabic language. in Proceedings of the ACL-02

workshop on Computational approaches to semitic

languages: Association for Computational Linguistics.

[17] Hattab, M., et al. 2009. Addaall Arabic Search Engine:

Improving Search based on Combination of

Morphological Analysis and Generation Considering

Semantic Patterns. in The second International

Conference on Arabic Language Resources and Tools,

Cairo, Egypt.

[18] Hazman, M., S.R. El-Beltagy, and A. Rafea, 2009.

Ontology learning from domain specific web documents.

International Journal of Metadata, Semantics and

Ontologies. 4(1): p. 24-33.

[19] Iqbal, R., A. Mustapha, and Z.M. Yusoff, 2013. An

experience of developing Quran ontology with contextual

information support. Multicultural Education &

Technology Journal. 7(4): p. 333-343.

[20] Ishkewy, H., H. Harb, and H. Farahat, 2014. Azhary: An

Arabic Lexical Ontology. International Journal of Web &

Semantic Technology. 5(4).

[21] Jarrar, M. 2011. Arabic ontology engineering-challenges

and opportunities. in Proceedings of the 2011

International Conference on Intelligent Semantic Web-

Services and Applications: ACM.

[22] Kaufmann, E. and A. Bernstein. 2007. How useful are

natural language interfaces to the semantic web for

casual end-users?: Springer.

[23] Kaufmann, E., A. Bernstein, and L. Fischer. 2007. NLP-

Reduce: A "naive" but Domain-independent Natural

Language Interface for Querying Ontologies: ESWC

Zurich.

[24] Khan, H.U., et al., 2013. Ontology Based Semantic

Search in Holy Quran. International Journal of Future

Computer and Communication. 2(6): p. 570-575.

[25] Khoja, S. 2001. APT: Arabic part-of-speech tagger. in

Proceedings of the Student Workshop at NAACL.

[26] Lopez, V., M. Pasin, and E. Motta. 2005. Aqualog: An

ontology-portable question answering system for the

semantic web, in The Semantic Web: Research and

Applications Springer. p. 546-562.

[27] Lopez, V., et al., 2013. Evaluating question answering

over linked data. Web Semantics: Science, Services and

Agents on the World Wide Web. 21: p. 3-13.

[28] Lu, J., et al. 2007. SOR: a practical system for ontology

storage, reasoning and search. in Proceedings of the

33rd international conference on Very large data bases:

VLDB Endowment.

[29] Mahgoub, A.Y., et al., 2014. Semantic Query Expansion

for Arabic Information Retrieval. ANLP 2014. p. 87.

[30] Mohammed, F., K. Nasser, and H. Harb, 1993. A

knowledge based Arabic question answering system

(AQAS). ACM SIGART Bulletin. 4(4): p. 21-30.

[31] Soudani, N., et al. 2014. Toward an Arabic Ontology for

Arabic Word Sense Disambiguation Based on

Normalized Dictionaries. in On the Move to Meaningful

Internet Systems: OTM 2014 Workshops: Springer.

[32] Tang, L.R. and R.J. Mooney. 2001. Using multiple clause

constructors in inductive logic programming for

semantic parsing, in Machine Learning: ECML 2001

Springer. p. 466-477.

[33] Tazit, N., et al., 2007. Semantic internet search engine

with focus on Arabic language. The 1st International

Sysmposium on Computers and Arabic Language &

Exhibition 2007آ© KACST & SCS.

[34] Unger, C., et al. 2012. Template-based question

answering over RDF data. in Proceedings of the 21st

international conference on World Wide Web: ACM.

[35] Wang, C., et al. 2007. Panto: A portable natural

language interface to ontologies, in The Semantic Web:

Research and Applications Springer. p. 473-487.

[36] Zaidi, S., M. Laskri, and A. Abdelali. 2010. Arabic

collocations extraction using Gate. in Machine and Web

Intelligence (ICMWI), 2010 International Conference on:

IEEE.

IJCATM : www.ijcaonline.org

