
International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.7, September 2015

19

Big Step Greedy Heuristic for Maximum Coverage

Problem

Drona Pratap Chandu
Indian Institute of Technology Roorkee

India

ABSTRACT

This paper proposes a greedy heuristic called Big step greedy

heuristic and investigates its application to compute

approximate solution for maximum coverage problem.

Greedy algorithms construct the solution in multiple steps, the

classical greedy algorithm for maximum coverage problem, in

each step selects one set that contains the greatest number of

uncovered elements. The Big step greedy heuristic, in each

step selects p (1 <= p <= k) sets such that the union of

selected p sets contains the greatest number of uncovered

elements by evaluating all the possible p-combinations of

given sets. When p=k Big step greedy algorithm behaves like

an exact algorithm that computes optimal solution by

evaluating all possible k-combinations of the given sets. When

p=1 it behaves like the classical greedy algorithm. The Big

step greedy heuristic can be combined with local search

methods to compute better approximate solution.

General Terms

Approximation algorithm, Improved greedy algorithm

Keywords

Big step, Greedy, Maximum coverage problem, Algorithm,

Approximation

1. INTRODUCTION

Maximum coverage problem is to select k sets

{Sx1,Sx2,Sx3,......, Sxk} from given collection of sets S =

{S1,S2,......, Sn} such that the number of elements in the

union of selected k sets |Sx1 U Sx2 U …........ U Sxk| is

maximum. Maximum coverage problem is a NP-hard problem

[1].

Greedy algorithms construct the solution in multiple steps by

making a locally optimal decision in each step. The classical

greedy algorithm for maximum coverage problem, in each

step selects one set that contains the greatest number of

uncovered elements. The proposed algorithm called Big step

greedy algorithm, in each step selects p (1 <= p <= k) sets

such that the union of selected p sets contains the greatest

number of uncovered elements by evaluating all possible p-

combinations of given sets. Approximation algorithms for

Maximum Coverage problem and set covering problem use

similar techniques. Grossman and Wool [2] conducted a

performance comparison of nine approximation algorithms

for set covering problem, and they found that randomized

greedy algorithm is the overall best algorithm among the nine

approximation algorithms. Results section provides

performance comparison of Big step greedy algorithm with

randomized greedy algorithm.

2. EXISTING APPROXIMATION

ALGORITHMS

The classical greedy algorithm for maximum coverage

problem is shown in Fig. 1.The classical greedy algorithm

starts with empty set cover, and in each step it selects one set

that contains the greatest number of remaining elements that

are uncovered by current partial solution and adds the selected

set to partial solution.

Fig. 1. The classical greedy algorithm for maximum

coverage problem.

The process of adding a set to partial solution is repeated k

times to select k sets. Hochbaum and Pathria [3] provides

analysis of the classical greedy algorithm for maximum

coverage problem.The earlier approximation algorithms

[4,5,6] used greedy heuristic for set covering problem.

Example 1 explains greedy method with help of a small set

collection and the same set collection is used in Example 2 to

explain Big step greedy algorithm.

Example 1. Let S = { {a,b,c,d,e,f}, {a,b,c,g,h}, {d,e,f,i,j},

{g,h,i}, {k,l}} be the given collection of sets and K=3.

Assume labels for given sets S1 = {a,b,c,d,e,f}, S2 =

{a,b,c,g,h}, S3 = {d,e,f,i,j}, S4 = {g,h,i}, S5 = {k,l}. Initially

partial cover C = {}.

In the first step of algorithm, among the five sets S1 has six

uncovered elements {a,b,c,d,e,f }and is better than the

coverage of sets S2,S3,S4, and S5. So first step selects S1

and now partial cover C = {{a,b,c,d,e,f}}.

In second step, S4 has three uncovered elements {g,h,i}, S2

has two uncovered elements {g,h}, S3 has two uncovered

elements {i,j} and S5 has two uncovered elements {k,l} .So

second step selects S4 and now partial cover C =

{{a,b,c,d,e,f}{g,h,i}}.

Algorithm GMC(S,k)

S : A collection of sets {S1,S2, … Sn}

k : Number of sets to be selected from S

begin

 C← ϕ

 W ← S1 U S2 U ….... U Sn

 S' ← S

 while (|C| < k)

 Select T ∈ S' that maximizes |T ∩ W|

 S' ← S' \{T }

 C ← C U {T}

 W ← W \ T

 end while

 return C

end

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.7, September 2015

20

In third step, S5 has two uncovered elements {k,l}, S2 has no

uncovered elements and S3 has one element{j}. So third step

selects S5 and C = { {a,b,c,d,e,f}{g,h,i},{k,l}}

Now |C| = 3 and C covers 11 elements.

Random and probabilistic greedy approximate algorithms

[7,8,9] produce better solutions than the classical greedy

algorithm for set covering problem. Randomized greedy

algorithm used by Grossman and Wool [2] is same as

classical greedy algorithm except that ties are broken at

random and the basic algorithm is repeated N times and

returns the best solution among the N solutions.

Computational study by Grossman and Wool [2] shown that

randomized greedy algorithm is the best approximation

algorithm among the nine algorithms for set covering

problem.

Aickelin[10], Beasley and Chu [11] used genetic algorithms

for set covering problem. Gomes et al [12] compared four

algorithms Round, Dual-LP, Primal-Dual, and Greedy and

they concluded that Greedy algorithm performs well among

the four algorithms for set covering problem.

Greedy randomized adaptive search procedure (GRASP) [13]

is an iterative metaheuristic that can be applied to many

combinatorial optimization problems. GRASP in each

iteration constructs a feasible solution using randomized

greedy adaptive method and it applies local search to find

locally optimal solution in the neighbourhood of the

constructed solution.

DePuy et al [14] proposed a metaheuristic called Meta-RaPS

to solve combinatorial problems and DePuyet al [15]

investigated differences between Meta-RaPS and GRASP.

Lan et al [16] applied Meta-RaPS for set covering problem

and compared with five best algorithms used by Grossman

and Wool [2].

Resende [17] applied GRASP for maximum covering problem

and shown that GRASP finds near optimal solutions for the

majority of the tested problems.

3. BIG STEP GREEDY HEURISTIC

Big step greedy heuristic starts with empty set collection, in

each step it selects p (1 <= p <= k) sets such that the union of

selected p sets contains the greatest number of uncovered

elements by evaluating all possible p-combinations of

remaining sets and adds the p selected sets to partial set cover.

The process of adding p subsets is repeated k/p times. The

last step of the algorithm selects less than p sets when k is not

a multiple of p. The Big step greedy algorithm is shown in

Fig. 2.

When p=k big step greedy algorithm behaves like an exact

algorithm that computes optimal solution by evaluating all

possible k-combinations of given sets. When p=1 it behaves

like the classical greedy algorithm. When step-size is p the

big step greedy algorithm runs in O((k/p) * |S|p)time. Example

2 explains the Big step greedy algorithm with help of the set

collection used in Example 1.

Fig. 2. Big Step Greedy Algorithm for Maximum

Coverage Problem.

Example 2. Let S = { {a,b,c,d,e,f}, {a,b,c,g,h},

{d,e,f,i,j},{g,h,i }, {k,l}} be the given collection of sets, K=3

and step-size of algorithm is p=2.Assume labels for given sets

S1 = {a,b,c,d,e,f}, S2 = {a,b,c,g,h}, S3 = {d,e,f,i,j}, S4 =

{g,h,i }, and S5 ={k,l}.As step-size p=2, every step of the

algorithm choose two sets such that union of the two selected

sets contains the greatest number of uncovered elements.

Initially partial cover C = {}.

In the first step of algorithm, candidates are (S1,S2) , (S1,S3)

(S1,S4) (S1,S5) (S2,S3) (S2,S4) (S3,S4)(S3,S5) and (S4,S5),

among the ten candidates (S2,S3) is better than all other

candidates as S2 U S3 has ten uncovered elements and is

greater than that of other candidates. So the first step selects

(S2,S3) and now partial cover C = { {a,b,c,g,h} {d,e,f,i,j}}

In second step, it selects only one set instead of two sets

because K=3 and two sets S2,S3 are already selected by first

step. Candidates are S1, S4, and S5. S5 has two uncovered

elements {k,l}, S1 has no uncovered element and S4 has no

uncovered elements.

 Algorithm BSGMKC(S,k,p)

 S: A collection of sets {S1,S2, … ,Sn}

 k : Number of sets to be selected

 p : step-size of the algorithm

 begin

 C ← ϕ

 W ← S1 U S2 U ….... U Sn

 while (|C| < k)

 if ((k - |C|) < p) then

 q ← k - |C|

 else

 q ← p

 end if

 Select T={T1,T2,....,Tq}, T⊆ S\C that maximizes |W ∩

(T1 U T2 U … .. U Tq)|

 W ← W \ (T1 U T2 U … .. U Tq)

 C ← C U {T1,T2,...,Tq}

 end while

 return C

 end

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.7, September 2015

21

Fig. 3. Best of Big Steps Algorithm.

 So second step selects S5 and now finally solution C = {

{a,b,c,g,h} {d,e,f,i,j} {k,l}} and C covers 12 elements. This is

better than the coverage of the sets selected by the classical

greedy algorithm in Example 1.

Best of big steps 1,2,3,4 algorithm(BBS-1,2,3,4) shown in

Fig. 3 computes four approximate solutions using the big step

greedy algorithm with step sizes p=1,2,3,4 and returns the best

solution among the four computed solutions.

Big step greedy heuristic does not use local search and big

step greedy heuristic can be used in the first phase of

GRASP iterations to construct better feasible solutions.

4. EXPERIMENTAL RESULTS

Big step greedy heuristic was compared to randomized greedy

algorithm, the overall best algorithm among the nine

algorithms tested by Grossman and Wool [2].The classical

greedy algorithm, the randomized greedy algorithm used by

Grossman and Wool[2] and the Big step greedy algorithm for

maximum coverage problem were implemented using Java.

 Table 1 provides comparison of big step greedy algorithm

BS-2 (step size p=2) with classical greedy algorithm and

comparison of big step greedy algorithm BS-4 (step size p=4)

with classical greedy algorithm.

Table 1. Greedy Vs Big step greedy on random problem instances

|X| Collect

ion

Size

Avg

Sub

set

size

k Numbe

r of

Proble

ms

Greedy Vs BS-2 Greedy Vs BS-4

Greedy BS-2 Greedy BS-4

1000 100 70 10 100 9 31 9 49

1000 100 80 10 100 18 30 16 47

1000 150 60 15 100 18 36 17 59

1000 150 25 5 100 2 11 5 20

1000 150 30 5 100 3 3 3 7

1000 150 40 5 100 3 11 3 18

1000 150 50 5 100 3 12 1 26

1000 150 25 5 100 1 1 3 10

1000 150 30 5 100 0 9 0 18

1000 150 40 5 100 5 5 4 15

1000 150 50 5 100 3 19 1 36

1000 150 25 10 100 6 10 9 29

1000 150 30 10 100 4 19 1 29

1000 150 40 10 100 5 19 8 33

1000 150 50 10 100 10 27 3 50

1000 150 25 15 100 10 21 8 33

1000 150 30 15 100 10 26 14 45

1000 150 40 15 100 12 31 12 53

1000 150 50 15 100 16 27 10 57

1000 150 25 20 100 9 29 6 53

1000 150 30 20 100 17 21 22 39

1000 150 40 20 100 15 35 13 51

1000 150 60 5 100 2 14 1 25

1000 150 70 5 100 3 12 4 31

1000 150 80 5 100 6 12 6 26

1000 150 60 10 100 11 29 13 38

1000 150 70 10 100 15 30 10 46

1000 150 80 10 100 10 26 10 43

1000 150 90 5 100 8 23 10 40

1000 150 90 10 100 11 43 9 64

 In the Table 1, column labeled “|X|” is the number of

elements in the universal set, column labeled “Collection

Size” is the number of sets in the set collection S of problem

instance, column labeled “k” is the number of sets to be

Algorithm BestOfBigSteps-1-2-3-4(S,k)

S : A collection of sets {S1,S2, … Sn}

k : Number of sets to be selected from S

begin

 Best ← ϕ

 for (p = 1 to 4)

 C ← BSGMKC(S,k,p)

 if (| U Best| < | U C|) then

 Best ← C

 end if

 end for

 return Best

end

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.7, September 2015

22

selected from the given collection of sets, column labeled

“Number of Problems” is the number of problems used for

performance comparison, column labeled “BS-2” under

“Greedy Vs BS-2” is the number of problem instances for

which Big step greedy heuristic with p=2 is computing better

approximate solutions than the classical greedy algorithm and

column labeled “Greedy” under “Greedy Vs BS-2” is the

number of problem instances for which the classical greedy

algorithm is computing better approximate solutions than the

Big step greedy heuristic with p=2. The two columns under

“Greedy Vs BS-4” have a similar meaning as the columns

under “Greedy Vs BS-2”.

Table 2. Randomized Greedy Vs Big step greedy

|X| Collect

ion

Size

Avg

Subse

t size

k Numbe

r of

Proble

ms

R-Greedy Vs

BS-3

R-Greedy Vs BS-4

R-

Greedy

BS-3 R-Greedy BS-4

1000 100 70 10 100 16 32 19 39

1000 100 80 10 100 34 27 30 28

1000 150 60 15 100 49 15 37 32

1000 150 25 5 100 11 6 11 10

1000 150 30 5 100 4 2 10 3

1000 150 40 5 100 8 5 8 9

1000 150 50 5 100 6 16 4 16

1000 150 25 5 100 6 1 9 5

1000 150 30 5 100 9 1 4 5

1000 150 40 5 100 7 6 8 8

1000 150 50 5 100 3 11 1 26

1000 150 25 10 100 26 2 26 6

1000 150 30 10 100 23 7 17 7

1000 150 40 10 100 26 15 35 12

1000 150 50 10 100 27 15 22 23

1000 150 25 15 100 49 5 41 9

1000 150 30 15 100 38 7 36 5

1000 150 40 15 100 42 14 36 17

1000 150 50 15 100 45 14 36 23

1000 150 25 20 100 52 6 39 11

1000 150 30 20 100 55 8 49 10

1000 150 40 20 100 62 10 51 14

1000 150 60 5 100 9 11 6 17

1000 150 70 5 100 8 19 12 25

1000 150 80 5 100 9 14 7 17

1000 150 60 10 100 26 19 22 17

1000 150 70 10 100 21 25 20 28

1000 150 80 10 100 32 20 26 27

1000 150 90 5 100 17 26 15 28

1000 150 90 10 100 23 35 24 43

Between BS-2 (big step with p=2) and the classical greedy

algorithm, BS-2 computed better approximate solutions than

the classical greedy algorithm for 21% of the problems, and

the classical greedy algorithm performed better than BS-2 for

8% of the problems.

Between BS-4 (big step with p=4) and the classical greedy

algorithm, BS-4 computed better approximate solutions than

the classical greedy algorithm for 36% of the problems, and

classical greedy algorithm performed better than the BS-4 for

8% of the problems.

Table 2 provides performance comparison of randomized

greedy algorithm with N=20 and big step greedy algorithm

BS-3 (with step size p=3) and big step greedy algorithm BS-4

(with step size p=4)on 3000 randomly generated problem

instances.

Between BS-3 (big step with p=3) and randomized greedy

algorithm, BS-3 computed better approximate solutions than

the randomized greedy algorithm for 13% of the problems,

and the randomized greedy algorithm performed better than

BS-3 for 25% of the problems.

And between BS-4 (big step with p=4) and randomized

greedy algorithm, BS-4 computed better approximate

solutions than randomized greedy algorithm for 17% of the

problems, and random greedy algorithm performed better than

BS-4 for 22% of the problems.

Table 3 provides performance comparison of Best of big steps

algorithm(BBS-1,2,3,4) and randomized greedy algorithm on

3000 randomly generated problem instances. BBS-1,2,3,4

algorithm computed better approximate solutions for 22% of

the problems and randomized greedy algorithm computed

better approximate solutions for 11% of the problems.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.7, September 2015

23

Table 3. Randomized Greedy Vs Best of Big steps 1,2,3,4

|X| Collect

ion

Size

Avg

Subset

size

k Number

of

Problem

s

R-Greedy Vs Best Of Big steps

R-Greedy BBS-1,2,3,4

1000 100 70 10 100 7 47

1000 100 80 10 100 7 38

1000 150 60 15 100 18 35

1000 150 25 5 100 2 10

1000 150 30 5 100 2 4

1000 150 40 5 100 2 10

1000 150 50 5 100 0 22

1000 150 25 5 100 4 6

1000 150 30 5 100 2 5

1000 150 40 5 100 3 11

1000 150 50 5 100 0 28

1000 150 25 10 100 10 7

1000 150 30 10 100 10 10

1000 150 40 10 100 12 22

1000 150 50 10 100 10 28

1000 150 25 15 100 32 12

1000 150 30 15 100 23 11

1000 150 40 15 100 18 23

1000 150 50 15 100 25 26

1000 150 25 20 100 30 12

1000 150 30 20 100 29 16

1000 150 40 20 100 36 21

1000 150 60 5 100 3 21

1000 150 70 5 100 2 31

1000 150 80 5 100 2 22

1000 150 60 10 100 9 27

1000 150 70 10 100 3 36

1000 150 80 10 100 11 39

1000 150 90 5 100 3 38

1000 150 90 10 100 8 55

5. CONCLUSION

This research proposed a new greedy heuristic called big step

greedy heuristic. Big step greedy algorithm was compared

with classical greedy algorithm and randomized greedy

algorithm[2]. Experiments on many instances of maximum

coverage problem shown that big step greedy algorithm with

p=2,p=3, and p=4 computes better approximate solutions than

the classical greedy algorithm in many cases. As step size p is

increased, big step greedy algorithm computed better

approximate solutions than the classical greedy algorithm for

more percentage of the tested problems.

The randomized greedy algorithm with 20 repetitions

computed better approximate solution than the big step greedy

algorithm with step size p=3 and with step size p=4 on the

average. Best of big steps 1,2,3,4 algorithm computed better

approximate solution than the randomized greedy algorithm

with 20 repetitions on the average. Best of big steps algorithm

proposed in this research can be combined with local search

methods to find better approximate solution.

6. REFERENCES
[1] Karp, R.M., "Reducibility Among Combinatorial

Problems", Complexity of Computer Computations,

Plenum Press (1972).

[2] Tal Grossman, Avishai Wool, "Computational

experience with approximation algorithms for the set

covering problem", European journal of operational

research 101, 81-92 (1997).

[3] Dorit S. Hochbaum, Anu Pathria "Analysis of the

Greedy Approach in Problems of Maximum k-

Coverage", Naval Research Logistics, Vol. 45, 615-627

(1998).

[4] Chvatal, V. "A Greedy Heuristic for the Set-Covering

Problem", Mathematics of Operations Research, 4(3),

223-235 (1979).

[5] Johnson, D.S., "Approximation algorithms for

combinatorial problems", Journal of Computer System

Science 9,256-278 (1974).

[6] Lovasz L, "On the ratio of optimal integral and fractional

cover", Discrete Mathematics, 13,383-390 (1975).

[7] Haouari, M., Chaouachi, J.S., "A probabilistic greedy

search algorithm for combinatorial optimization with

application to the set covering problem", Journal of the

Operational Research Society 53, 792-799 (2002).

[8] Vasko, F.J., Wilson, G.R., "An efficient heuristic for

large set covering problems" Naval Research Logistics

Quarterly 31, 163-171 (1984).

[9] Feo, T., Resende, M.G.C., "A probabilistic heuristic for a

computationally difficult set covering problem",

Operations Research Letters 8, 67-71 (1989).

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.7, September 2015

24

[10] Aickelin, U., "An indirect genetic algorithm for set

covering problems", Journal of the Operational Research

Society 53, 1118-1126 (2002).

[11] Beasley, J.E., Chu, P.C., "A genetic algorithm for the set

covering problem", European Journal of Operational

Research 94, 392-404 (1996).

[12]] Fernando C. Gomes, Claudio N. Meneses, Panos M.

Pardalos,Gerardo Valdisio R. Viana, "Experimental

Analysis of Approximation Algorithms for the Vertex

Cover and Set Covering Problems", Computers &

Operations Research, 33, 3520-3534 (2006) .

[13] T. A. Feo and M. G. C. Resende., "Greedy randomized

adaptive search procedures. Journal of Global

Optimization", 6, 109-133, (1995).

[14] DePuy, G.W., Whitehouse, G.E., Moraga, R.J., "Using

the meta-raps approach to solve combinatorial

problems", In Proceedings of the 2002 Industrial

Engineering Research Conference, vol. 19, p. 21 (2002).

[15] DePuy, G.W., Moraga, R.J., Whitehouse, G., 'Meta-

RaPS: A simple and effective approach for solving the

traveling salesman problem", Transportation Research

Part E: Logistics and Transportation Review 41 (2), 115-

130 (2005).

[16] G. Lan, G. W. DePuy, and G. E.Whitehouse, "An

effective and simple heuristic for the set covering

problem," European Journal of Operational Research,

vol. 176, no. 3, pp. 1387-1403 (2007).

[17] Mauricio G.C. Resende, "Computing Approximate

Solutions of the Maximum Covering Problem with

GRASP", Journal of Heuristics, Vol 4, Issue 2, 161-177

(1998).

IJCATM : www.ijcaonline.org

