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ABSTRACT 

This paper proposes a  greedy heuristic called Big step greedy 

heuristic   and investigates its application to compute 

approximate solution for maximum coverage problem. 

Greedy algorithms construct the solution in multiple steps, the 

classical greedy algorithm for maximum coverage problem, in 

each step selects one set that contains the greatest number of 

uncovered  elements. The Big step greedy heuristic, in each 

step selects  p (1 <= p <= k) sets such that the union of 

selected p sets contains the greatest number of  uncovered 

elements by evaluating all the possible p-combinations of 

given sets. When p=k  Big step greedy algorithm behaves like 

an exact algorithm that computes optimal solution by 

evaluating all possible k-combinations of the given sets. When 

p=1 it behaves like the classical  greedy algorithm. The Big 

step greedy heuristic can be combined with local search 

methods to compute better approximate solution.   
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1. INTRODUCTION 

Maximum coverage problem  is to select  k  sets 

{Sx1,Sx2,Sx3,......, Sxk} from given collection of sets S = 

{S1,S2,......, Sn}  such that the number of elements in the 

union of selected k  sets |Sx1 U Sx2 U …........ U Sxk| is 

maximum. Maximum coverage problem is a NP-hard problem 

[1]. 

Greedy algorithms construct the solution in multiple steps by 

making a locally optimal decision in each step. The classical 

greedy algorithm for maximum coverage problem, in each 

step selects one set that contains the greatest number of 

uncovered elements. The proposed algorithm called Big step 

greedy algorithm, in each step selects  p (1 <= p <= k) sets 

such that the union of selected p sets contains the greatest 

number of  uncovered elements by evaluating all possible p-

combinations of given sets. Approximation algorithms for 

Maximum Coverage problem and set covering problem use 

similar techniques. Grossman and Wool [2] conducted a 

performance comparison of nine approximation algorithms  

for set covering problem, and they found that randomized 

greedy algorithm is the overall best algorithm among the nine 

approximation algorithms. Results section  provides 

performance comparison of Big step greedy algorithm with 

randomized greedy algorithm. 

2. EXISTING APPROXIMATION 

ALGORITHMS 

The classical greedy algorithm for maximum coverage 

problem is shown in Fig. 1.The classical greedy algorithm 

starts with empty  set cover, and in each step it selects one set 

that contains the greatest number of remaining elements that 

are uncovered by current partial solution and adds the selected 

set to partial solution.  

 

Fig. 1. The classical greedy algorithm for maximum 

coverage problem. 

The  process of adding a set  to partial solution is repeated k 

times to select k sets. Hochbaum and Pathria [3] provides 

analysis of the classical greedy algorithm for maximum 

coverage problem.The earlier approximation algorithms 

[4,5,6] used greedy heuristic for set covering problem. 

Example 1 explains  greedy method  with help of a small set 

collection and the same set collection is used in Example 2 to 

explain Big step greedy algorithm. 

Example 1.  Let  S = {  {a,b,c,d,e,f}, {a,b,c,g,h},  {d,e,f,i,j}, 

{g,h,i}, {k,l}} be the given collection of sets and K=3.   

Assume labels for given sets  S1 = {a,b,c,d,e,f}, S2 = 

{a,b,c,g,h}, S3 = {d,e,f,i,j}, S4 = {g,h,i},   S5 = {k,l}. Initially  

partial cover  C = {}.  

In the first step of algorithm, among the five sets  S1 has six 

uncovered elements {a,b,c,d,e,f }and is better than the 

coverage of sets S2,S3,S4, and S5. So first step  selects S1  

and now partial cover C = {{a,b,c,d,e,f}}. 

In second step,  S4 has three uncovered elements {g,h,i}, S2 

has two uncovered elements {g,h}, S3 has two uncovered 

elements {i,j} and S5 has two uncovered elements {k,l} .So 

second step selects S4 and now partial cover C = 

{{a,b,c,d,e,f}{g,h,i}}. 

Algorithm GMC(S,k) 

S : A collection of sets {S1,S2, … Sn} 

k : Number of  sets to be selected from S 

begin 

  C← ϕ 

  W ← S1 U S2 U  ….... U Sn 

  S' ← S 

   while (|C| < k) 

       Select T ∈    S'  that maximizes |T ∩ W| 

       S' ←  S' \{T } 

      C ←  C U {T}  

       W ← W \ T 

   end while 

 return C 

end 
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In third step, S5 has two uncovered elements {k,l},   S2 has no 

uncovered elements and S3 has one element{j}. So third step 

selects S5 and  C =   { {a,b,c,d,e,f}{g,h,i},{k,l}} 

Now  |C| = 3 and C covers 11 elements. 

Random and probabilistic greedy approximate algorithms 

[7,8,9] produce better solutions than the classical greedy 

algorithm for set covering problem. Randomized  greedy 

algorithm used by  Grossman and Wool [2] is same as 

classical greedy algorithm except that ties are broken at 

random and the basic algorithm is repeated N times and 

returns the best solution among the N solutions. 

Computational study by Grossman and Wool [2] shown that 

randomized greedy algorithm is the best approximation 

algorithm among the nine algorithms for set covering 

problem. 

Aickelin[10], Beasley and Chu [11] used genetic algorithms 

for set covering problem. Gomes et al [12] compared four 

algorithms Round, Dual-LP, Primal-Dual, and Greedy and 

they concluded  that Greedy algorithm performs well among 

the four algorithms for set covering problem. 

Greedy randomized adaptive search procedure (GRASP) [13] 

is an iterative metaheuristic that can be applied to many 

combinatorial optimization problems.  GRASP in each 

iteration constructs a feasible solution using randomized 

greedy adaptive method and it applies local search  to find 

locally optimal solution in the neighbourhood of the 

constructed solution. 

DePuy et al [14]  proposed a metaheuristic called Meta-RaPS 

to solve combinatorial problems and DePuyet al [15] 

investigated differences between Meta-RaPS and GRASP. 

Lan et al [16] applied Meta-RaPS for set covering problem 

and compared with five best algorithms used by Grossman 

and Wool [2]. 

Resende [17] applied GRASP for maximum covering problem 

and shown that GRASP finds near optimal solutions for the 

majority of the tested  problems. 

3. BIG STEP GREEDY HEURISTIC 

Big step greedy heuristic starts with empty set collection, in 

each step it selects  p (1 <= p <= k) sets such that the union of 

selected p sets contains the greatest number of  uncovered 

elements by evaluating all possible p-combinations of 

remaining sets and adds the p selected sets to partial set cover. 

The process of adding p subsets is repeated  k/p times. The 

last step of the algorithm selects less than p sets  when k is not 

a multiple of p. The Big step greedy algorithm is shown in 

Fig. 2.  

When p=k  big step greedy algorithm behaves like an exact 

algorithm that computes optimal solution by evaluating all 

possible k-combinations of given sets. When p=1 it behaves 

like the classical  greedy algorithm. When step-size is p the 

big step greedy algorithm runs in O((k/p) * |S|p)time. Example 

2 explains the Big step greedy algorithm with help of the set 

collection used in Example 1. 

 

Fig. 2. Big Step Greedy Algorithm for Maximum 

Coverage Problem. 

Example 2.  Let  S = {  {a,b,c,d,e,f}, {a,b,c,g,h},  

{d,e,f,i,j},{g,h,i }, {k,l}} be the given collection of sets, K=3 

and step-size of algorithm is p=2.Assume labels for given sets  

S1 = {a,b,c,d,e,f}, S2 = {a,b,c,g,h}, S3 = {d,e,f,i,j}, S4 = 

{g,h,i }, and S5 ={k,l}.As step-size  p=2, every step of the 

algorithm choose two sets such  that union of the two selected 

sets contains the greatest number of  uncovered elements. 

Initially  partial cover   C = {}.  

In the first step of algorithm, candidates are (S1,S2) , (S1,S3) 

(S1,S4) (S1,S5) (S2,S3) (S2,S4) (S3,S4)(S3,S5) and (S4,S5),   

among the ten candidates (S2,S3)  is better than  all other 

candidates as S2  U S3  has ten uncovered elements and is 

greater than that of other candidates. So the first step  selects 

(S2,S3)   and now partial cover C = { {a,b,c,g,h} {d,e,f,i,j}} 

In second step, it selects only one set instead of two sets 

because K=3 and two sets  S2,S3 are already selected by first 

step. Candidates are S1, S4, and S5. S5 has two uncovered 

elements {k,l}, S1 has no uncovered element  and S4 has no 

uncovered elements. 

 

  Algorithm BSGMKC(S,k,p) 

    S: A collection of sets {S1,S2, … ,Sn} 

    k : Number of  sets to be selected 

    p : step-size  of the algorithm 

   begin 

  C ← ϕ 

  W ← S1 U S2 U  ….... U Sn 

  while (|C| < k) 

      if ( (k - |C|) < p) then 

         q ←  k - |C| 

      else 

         q ← p 

      end if 

      Select T={T1,T2,....,Tq}, T⊆  S\C that maximizes |W  ∩ 

(T1 U T2 U … .. U Tq)| 

      W ← W \ (T1 U T2 U … .. U Tq) 

     C ← C  U {T1,T2,...,Tq} 

  end while 

     return C 

  end 
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Fig. 3. Best of Big Steps Algorithm. 

 So second step selects S5 and now finally solution C = { 

{a,b,c,g,h} {d,e,f,i,j} {k,l}} and C covers 12 elements. This is 

better than the coverage of  the sets selected by the classical 

greedy algorithm in Example 1. 

Best of big steps 1,2,3,4 algorithm(BBS-1,2,3,4) shown in 

Fig. 3 computes four approximate solutions using the big step 

greedy algorithm with step sizes p=1,2,3,4 and returns the best 

solution among the four computed solutions.  

Big step greedy heuristic does not use local search and big 

step greedy heuristic can be used in  the first phase of  

GRASP iterations to construct  better feasible solutions.  

4. EXPERIMENTAL RESULTS 

Big step greedy heuristic was compared to randomized greedy 

algorithm, the overall best  algorithm among the nine 

algorithms tested by Grossman and Wool [2].The classical 

greedy algorithm, the randomized greedy algorithm used by 

Grossman and Wool[2] and the Big step greedy  algorithm for 

maximum coverage problem were implemented using Java. 

 Table 1 provides  comparison of big step greedy algorithm 

BS-2 (step size p=2) with classical greedy algorithm and 

comparison of  big step greedy algorithm BS-4 (step size p=4) 

with classical greedy algorithm. 

 

Table 1. Greedy Vs Big step greedy on random problem instances 

|X| Collect

ion 

Size 

Avg 

Sub

set 

size 

k Numbe

r of  

Proble

ms 

Greedy Vs BS-2 Greedy Vs BS-4 

Greedy BS-2 Greedy BS-4 

1000 100 70 10 100 9 31 9 49 

1000 100 80 10 100 18 30 16 47 

1000 150 60 15 100 18 36 17 59 

1000 150 25 5 100 2 11 5 20 

1000 150 30 5 100 3 3 3 7 

1000 150 40 5 100 3 11 3 18 

1000 150 50 5 100 3 12 1 26 

1000 150 25 5 100 1 1 3 10 

1000 150 30 5 100 0 9 0 18 

1000 150 40 5 100 5 5 4 15 

1000 150 50 5 100 3 19 1 36 

1000 150 25 10 100 6 10 9 29 

1000 150 30 10 100 4 19 1 29 

1000 150 40 10 100 5 19 8 33 

1000 150 50 10 100 10 27 3 50 

1000 150 25 15 100 10 21 8 33 

1000 150 30 15 100 10 26 14 45 

1000 150 40 15 100 12 31 12 53 

1000 150 50 15 100 16 27 10 57 

1000 150 25 20 100 9 29 6 53 

1000 150 30 20 100 17 21 22 39 

1000 150 40 20 100 15 35 13 51 

1000 150 60 5 100 2 14 1 25 

1000 150 70 5 100 3 12 4 31 

1000 150 80 5 100 6 12 6 26 

1000 150 60 10 100 11 29 13 38 

1000 150 70 10 100 15 30 10 46 

1000 150 80 10 100 10 26 10 43 

1000 150 90 5 100 8 23 10 40 

1000 150 90 10 100 11 43 9 64 
 

 In the Table 1, column labeled “|X|” is the number of 

elements in the universal set, column labeled “Collection  

 

Size” is the number of sets in the set collection S of problem 

instance, column labeled “k” is the number of sets to be 

Algorithm BestOfBigSteps-1-2-3-4(S,k) 

S : A collection of sets {S1,S2, … Sn} 

k : Number of  sets to be selected from S 

begin 

  Best ← ϕ 

   for (p = 1 to 4) 

       C ←   BSGMKC(S,k,p) 

      if ( | U Best| < | U C|) then 

         Best ← C 

      end if 

    end for 

 return Best 

end 
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selected from the given collection of sets, column labeled 

“Number of Problems”  is the number of problems used for 

performance comparison, column labeled “BS-2” under 

“Greedy Vs BS-2” is the number of problem instances for 

which Big step greedy heuristic with p=2 is computing better 

approximate solutions than the classical greedy algorithm and 

column labeled “Greedy” under “Greedy Vs BS-2” is the 

number of problem instances for which the classical greedy 

algorithm is computing better approximate solutions than the 

Big step greedy heuristic with p=2. The two columns under 

“Greedy Vs BS-4” have a similar meaning as the columns 

under  “Greedy Vs BS-2”.

 

Table 2. Randomized Greedy Vs Big step greedy  

|X| Collect

ion 

Size 

Avg 

Subse

t size 

k Numbe

r of  

Proble

ms 

R-Greedy Vs 

BS-3 

R-Greedy Vs BS-4 

R-

Greedy 

BS-3 R-Greedy BS-4 

1000 100 70 10 100 16 32 19 39 

1000 100 80 10 100 34 27 30 28 

1000 150 60 15 100 49 15 37 32 

1000 150 25 5 100 11 6 11 10 

1000 150 30 5 100 4 2 10 3 

1000 150 40 5 100 8 5 8 9 

1000 150 50 5 100 6 16 4 16 

1000 150 25 5 100 6 1 9 5 

1000 150 30 5 100 9 1 4 5 

1000 150 40 5 100 7 6 8 8 

1000 150 50 5 100 3 11 1 26 

1000 150 25 10 100 26 2 26 6 

1000 150 30 10 100 23 7 17 7 

1000 150 40 10 100 26 15 35 12 

1000 150 50 10 100 27 15 22 23 

1000 150 25 15 100 49 5 41 9 

1000 150 30 15 100 38 7 36 5 

1000 150 40 15 100 42 14 36 17 

1000 150 50 15 100 45 14 36 23 

1000 150 25 20 100 52 6 39 11 

1000 150 30 20 100 55 8 49 10 

1000 150 40 20 100 62 10 51 14 

1000 150 60 5 100 9 11 6 17 

1000 150 70 5 100 8 19 12 25 

1000 150 80 5 100 9 14 7 17 

1000 150 60 10 100 26 19 22 17 

1000 150 70 10 100 21 25 20 28 

1000 150 80 10 100 32 20 26 27 

1000 150 90 5 100 17 26 15 28 

1000 150 90 10 100 23 35 24 43 
 

Between BS-2 (big step with p=2) and the classical greedy 

algorithm, BS-2 computed  better approximate solutions than 

the classical greedy algorithm for 21% of the problems, and 

the classical greedy algorithm performed better than BS-2 for 

8% of the problems. 

Between BS-4 (big step with p=4) and the classical greedy 

algorithm, BS-4 computed   better approximate solutions than 

the classical greedy algorithm for 36% of the problems, and 

classical greedy algorithm performed better than the BS-4 for 

8% of the problems. 

Table 2 provides performance comparison of randomized 

greedy algorithm with N=20 and big step greedy algorithm 

BS-3 (with step size p=3) and big step greedy algorithm BS-4 

(with step size p=4 )on 3000 randomly generated problem 

instances.  

 

Between BS-3 (big step with p=3) and randomized greedy 

algorithm, BS-3 computed  better approximate solutions  than 

the randomized greedy algorithm for 13% of the problems, 

and the randomized greedy algorithm performed better than 

BS-3 for 25% of the problems. 

And between BS-4 (big step with p=4) and randomized 

greedy algorithm, BS-4 computed better approximate 

solutions than randomized greedy algorithm for 17% of the 

problems, and random greedy algorithm performed better than 

BS-4 for 22% of the problems. 

Table 3 provides performance comparison of Best of big steps 

algorithm(BBS-1,2,3,4) and randomized greedy algorithm on 

3000 randomly generated problem instances. BBS-1,2,3,4 

algorithm computed better approximate solutions for 22% of 

the problems and randomized greedy algorithm computed 

better approximate solutions for 11% of the problems. 
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Table 3. Randomized Greedy Vs Best of Big steps 1,2,3,4 

|X| Collect

ion 

Size 

Avg 

Subset 

size 

k Number 

of  

Problem

s 

R-Greedy Vs Best Of Big steps 

R-Greedy BBS-1,2,3,4 

1000 100 70 10 100 7 47 

1000 100 80 10 100 7 38 

1000 150 60 15 100 18 35 

1000 150 25 5 100 2 10 

1000 150 30 5 100 2 4 

1000 150 40 5 100 2 10 

1000 150 50 5 100 0 22 

1000 150 25 5 100 4 6 

1000 150 30 5 100 2 5 

1000 150 40 5 100 3 11 

1000 150 50 5 100 0 28 

1000 150 25 10 100 10 7 

1000 150 30 10 100 10 10 

1000 150 40 10 100 12 22 

1000 150 50 10 100 10 28 

1000 150 25 15 100 32 12 

1000 150 30 15 100 23 11 

1000 150 40 15 100 18 23 

1000 150 50 15 100 25 26 

1000 150 25 20 100 30 12 

1000 150 30 20 100 29 16 

1000 150 40 20 100 36 21 

1000 150 60 5 100 3 21 

1000 150 70 5 100 2 31 

1000 150 80 5 100 2 22 

1000 150 60 10 100 9 27 

1000 150 70 10 100 3 36 

1000 150 80 10 100 11 39 

1000 150 90 5 100 3 38 

1000 150 90 10 100 8 55 
 

5. CONCLUSION 

This research proposed a new greedy heuristic called big step 

greedy heuristic. Big step greedy algorithm was compared 

with classical greedy algorithm and randomized  greedy 

algorithm[2]. Experiments  on many instances of maximum 

coverage problem shown that big step greedy algorithm with 

p=2,p=3, and p=4 computes better approximate solutions than 

the classical greedy algorithm in many cases. As step size p is 

increased, big step greedy algorithm computed better 

approximate solutions than the classical greedy algorithm for 

more percentage of the tested problems. 

The randomized greedy algorithm with 20 repetitions 

computed better approximate solution than the big step greedy 

algorithm with step size p=3 and with step size p=4 on the 

average. Best of big steps 1,2,3,4 algorithm computed  better 

approximate solution than the randomized greedy algorithm 

with 20 repetitions on the average. Best of big steps algorithm 

proposed in this research can be combined with local search 

methods to  find better approximate solution. 

6. REFERENCES 
[1] Karp, R.M., "Reducibility Among Combinatorial 

Problems", Complexity of Computer Computations, 

Plenum Press (1972). 

[2] Tal Grossman,  Avishai Wool,  "Computational 

experience with approximation algorithms for the set  

 

covering problem", European journal of operational 

research 101, 81-92 (1997).  

[3] Dorit S. Hochbaum, Anu Pathria  "Analysis of the 

Greedy Approach in Problems of Maximum k-

Coverage", Naval Research Logistics, Vol. 45, 615-627 

(1998). 

[4] Chvatal, V.  "A Greedy Heuristic for the Set-Covering 

Problem", Mathematics of Operations Research, 4(3), 

223-235 (1979). 

[5] Johnson, D.S., "Approximation algorithms for 

combinatorial problems", Journal of Computer System 

Science 9,256-278 (1974). 

[6] Lovasz L, "On the ratio of optimal integral and fractional 

cover", Discrete Mathematics, 13,383-390 (1975). 

[7] Haouari, M., Chaouachi, J.S., "A probabilistic greedy 

search algorithm for combinatorial optimization with 

application to the set covering problem", Journal of the 

Operational Research Society 53, 792-799 (2002). 

[8] Vasko, F.J., Wilson, G.R., "An efficient heuristic for 

large set covering problems" Naval Research Logistics 

Quarterly 31, 163-171 (1984). 

[9] Feo, T., Resende, M.G.C., "A probabilistic heuristic for a 

computationally difficult set covering problem", 

Operations Research Letters 8, 67-71 (1989). 



International Journal of Computer Applications (0975 – 8887) 

Volume 125 – No.7, September 2015 

24 

[10] Aickelin, U., "An indirect genetic algorithm for set 

covering problems", Journal of the Operational Research 

Society 53, 1118-1126 (2002). 

[11] Beasley, J.E., Chu, P.C., "A genetic algorithm for the set 

covering problem", European Journal of Operational 

Research 94, 392-404 (1996). 

[12] ] Fernando C. Gomes, Claudio N. Meneses, Panos M. 

Pardalos,Gerardo Valdisio R. Viana, "Experimental 

Analysis of Approximation Algorithms for the Vertex 

Cover and Set Covering Problems", Computers & 

Operations Research, 33, 3520-3534 (2006) . 

[13] T. A. Feo and M. G. C. Resende., "Greedy randomized 

adaptive search procedures. Journal of Global 

Optimization", 6, 109-133, (1995). 

[14] DePuy, G.W., Whitehouse, G.E., Moraga, R.J., "Using 

the meta-raps approach to solve combinatorial 

problems", In Proceedings of the 2002 Industrial 

Engineering Research Conference, vol. 19, p. 21 (2002). 

[15] DePuy, G.W., Moraga, R.J., Whitehouse, G., 'Meta-

RaPS: A simple and effective approach for solving the 

traveling salesman problem", Transportation Research 

Part E: Logistics and Transportation Review 41 (2), 115-

130 (2005). 

[16] G. Lan, G. W. DePuy, and G. E.Whitehouse, "An 

effective and simple heuristic for the set covering 

problem," European Journal of Operational Research, 

vol. 176, no. 3, pp. 1387-1403 (2007). 

[17] Mauricio G.C. Resende, "Computing Approximate 

Solutions of the Maximum Covering Problem with 

GRASP", Journal of Heuristics, Vol 4, Issue 2, 161-177 

(1998). 

 

 

IJCATM : www.ijcaonline.org 


