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ABSTRACT
Let an injective function f : V (G) → 2X , where V (G) is the
vertex set of a graph G and 2X is the power set of a nonempty
set X , be given. Consider the induced function f⊕ : V (G) ×
V (G)→ 2X \{φ} defined by f⊕(u, v) = f(u)⊕f(v), where
f(u) ⊕ f(v) denotes the symmetric difference of the two sets.
The function f is called a k-uniform dcsl (and X a k-uniform
dcsl-set) of the graph G, if there exists a positive constant k such
that | f⊕(u, v) |= kdG(u, v), where dG(u, v) is the length
of a shortest path between u and v in G. If a graph G admits a
k-uniform dcsl, then G is called a k-uniform dcsl graph. In this
paper, we initiate a study on 2-uniform dscl graphs and we establish
a characterization for a graph to be k-uniform dcsl.
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1. INTRODUCTION
For all terminology and notation which are not defined in this paper,
we refer the reader to F. Harary [3]. Unless mentioned otherwise,
all the graphs considered in this paper are finite, simple and without
self-loops.
Acharya [1] introduced the notion of vertex set-valuation as a set-
analogue of number valuation. For a graph G = (V,E) and a non
empty set X , Acharya defined a set valuation of G as an injective
set valued function f : V (G) → 2X , and he defined a set-indexer
as a set valuation such that the function f⊕ : E(G) → 2X \ {φ}
given by f⊕(uv) = f(u) ⊕ f(v) for every uv ∈ E(G) is also
injective, where 2X is the set of all the subsets of X and ⊕ is the
binary operation of taking the symmetric difference of subsets of
X .

THEOREM 1. [1] Every graph has a set-indexer.

2. DCSL GRAPHS
Acharya and Germina, who has been studying topological set val-
uation, introduced the particular kind of set valuation for which a
metric, especially the cardinality of the symmetric difference, is
associated with each pair of vertices in proportion to the distance
between them [2]. In otherwords, the question is whether one can

determine those graphs G = (V,E) that admit an injective func-
tion f : V → 2X , X being a non empty ground set such that the
cardinality of the symmetric difference f⊕(uv) is proportional to
the usual path distance dG(u, v) between u and v in G, for each
pair of distinct vertices u and v in G. They called f a distance
compatible set labeling (dcsl) of G, and the ordered pair (G, f), a
distance compatible set labeled (dcsl) graph. Thus

DEFINITION 1. [2] Let G = (V,E) be any connected graph. A
distance compatible set labeling (dcsl) of a graph G is an injective
set assignment f : V (G) → 2X , X being a non empty ground
set, such that the corresponding induced function f⊕ : V (G) ×
V (G) → 2X \ {φ} given by f⊕(uv) = f(u) ⊕ f(v) satisfies |
f⊕(uv) |= kf

(u,v)
dG(u, v) for every pair of distinct vertices u, v ∈

V (G), where dG(u, v) denotes the path distance between u and v
and kf

(u,v)
is a constant, not necessarily an integer.

The following universal theorem has been established in [2].

THEOREM 2. [2] Every graph admits a dcsl.

DEFINITION 2. [2] A dcsl f of G is k-uniform if all the constant
of proportionality with respect to f in Definition 1 are equal to k,
and ifG admits such a dcsl thenG is called a k-uniform dcsl graph.

In this paper, we establish a necessary and sufficient condition for a
graph to be k-uniform dcsl. The remainder of the paper is organized
as follows. In Section 2, we study some classes of graphs which ad-
mit a 2-uniform dcsl and we calculate the number of induced con-
nected subgraphs, connected subgraphs of a paticular graphs which
admit a 2-uniform dcsl. Section 3, we give some defintions about
dcsl set-indexer and k-uniform dcsl set-indexer and study the be-
havior of induced subgraph (connected) of a k-uniform dcsl graph.
Finally, Section 4 provides a characterization for a graph to be k-
uniform dcsl graph.

3. 2-UNIFORM DCSL GRAPHS

In this Section, we first start with a vertex labeling of 2-uniform
dcsl graph and prove that every pair of adjacent vertices in a 2-
uniform dcsl graph G recieve subsets of the same cardinality or the
cardinality that differ by 2.

PROPOSITION 1. Let (G, f) be any 2-uniform dcsl graph, and
u and v are adjacent vertices in G. Then, either | f(u) |=| f(v) |
or | f(u) |=| f(v) | −2 (or | f(v) | = | f(u) | −2).
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PROOF. Suppose G has two adjacent vertices u and v, and f be
any 2-uniform dcsl of G. We prove that either | f(u) | = | f(v) |
or | f(u) |=| f(v) | −2. Since, by the vertex labeling f of G,
either f(u) is subset of f(v) or f(u) is not subset of f(v) (similar
argument holds, if u replaced by v).

CASE 1: When f(u) is subset of f(v)
Then, | f(u) |=| f(v) | −2; otherwise, i.e., if | f(u) |6=| f(v) |
−2, then | f(u) |=| f(v) | −i, where 1 ≤ i 6= 2 ≤ n and n be a
finite value. Thus, |f(u)⊕ f(v)| = i 6= 2.d(u, v), a contradiction.

CASE 2: When f(u) is not subset of f(v)
Then, | f(u) | = | f(v) |; if not, i.e., | f(u) |6=| f(v) |, then two
cases arrises

SUBCASE 2.1: f(u) ∩ f(v) = ∅
Since, f is a 2-uniform dcsl of G, and | f(u) |6=| f(v) |, we get
f(u) is subset of f(v); a contradiction.

SUBCASE 2.2: f(u) ∩ f(v) 6= ∅
Again, Since, f is a 2-uniform dcsl of G, and | f(u) |6=| f(v) |,
here also, we get f(u) is subset of f(v); a contradiction.
Hence, when f(u) is not subset of f(v), then | f(u) | = | f(v) |.
Thus, in a 2-uniform dcsl graph G, if u and v are adjacent in G,
then, either | f(u) |=| f(v) | or | f(u) |=| f(v) | −2.

Let us recall the following definitions related to relations.
(1) | A |=| B |, denoted as R1, means there is a bijection A→ B.
(2) | A |<| B |, denoted as R2, means there is an injection A→ B
but no surjection A→ B.
(3) | A |≤| B |, denoted as R3, means | A |<| B | or | A |=| B |.
A partially ordered set (or a poset, in short) P as a structure (P ,�)
where P is a non-empty set and ‘�’ is a partial order relation on P
such that ‘�’ is reflexive, antisymmetric and transitive. We denote
(x, y) ∈ P by x � y. By standard notation, we usually identify the
ground set of a poset with the whole poset.
A relation (binary) R, on a non-empty set X , is an equivalence
relation if and only if it is reflexive, symmetric, transitive.

The vertex labeling which is given in Proposition 1, satisfies three
interesting properties of relations. Remark 1, Remark 2 and Remark
4 shows the existence of such relations.

REMARK 1. The set F of vertex labeling of 2-uniform dcsl graph
G, be such that the adjacent vertices in G recieve subsets of same
cardinality, then, F forms an equivalence relation with respect to
R1, and forms a poset with respect to set inclusion ’⊆’.

The following theorem shows the existence of one such vertex la-
beling f which is given in Remark 1 to a complete graph.

THEOREM 3. The vertex labeling f of a complete graph Kn,
for n ≥ 2 admits 2-uniform dcsl, and | f(u) |=| f(v) |, for every
pair of distinct u, v ∈ V (Kn).

PROOF. Let V (Kn) = {v1, v2, .., vn}, where n ≥ 2, and let
X = {1, 2, .., n}.
Define f : V (Kn)→ 2X by f(vi) = {i}, where 1 ≤ i ≤ n.
Then, | f(vi)⊕f(vj) |=| {i, j} |= 2.d(vi, vj), for 1 ≤ i 6= j ≤ n.
Hence, f is a 2-uniform dcsl, and also, | f(vi) |=| f(vj) |, for
1 ≤ i 6= j ≤ n.

Following the above theorem, we have

COROLLARY 1. A graph G with all vertices of full degree is
2-uniform dcsl if and only if G ∼= Kn.

It should note that, the vertex labeling which is given in Theorem
3 is not unique, there exists another vertex labeling f of 2-uniform
dcsl Kn, such that | f(u) | = | f(v) | −2, when u and v are
adjacent in V (Kn) and one of the vertex u ∈ {u, v}, such that
f(u) = ∅. Following result answers this question.

PROPOSITION 2. There exists a vertex labeling f of 2-uniform
dcsl Kn, n ≥ 2, such that f(u) = ∅, for some u ∈ V (Kn).

PROOF. Let Kn be a complete graph on n vertices v1, v2, ....,
vn, n ≥ 2.
Define f : V (Kn) → 2X by f(vi) = {i, n}, for 1 ≤ i ≤ n − 1,
and f(vn) = ∅. Then, for 1 ≤ i ≤ n − 1, | f(vn) |=| f(vi) |
−2 and | f(vi) ⊕ f(vn) |=| {i, n} |= 2.d(vi, vn). In particular,
| f(vi) ⊕ f(vj) |=| {i, j} |= 2.d(vi, vj), for 1 ≤ i 6= j ≤ n.
Thus, f is a 2-uniform dcsl.

Now, we consider the set of vertex labeling of 2-uniform dcsl ofG,
such that the adjacent vertices in G recieve subsets of the cardinal-
ity that differ by 2 and it is easy to prove that it forms a poset with
respect to set inclusion ’⊆’.

REMARK 2. The set F of vertex labeling of 2-uniform dcsl graph
G, such that the adjacent vertices in G recieve subsets of the car-
dinality that differ by 2, then, F forms a poset with respect to set
inclusion ’⊆’.

We can prove that K1,n, where n ≥ 1 admits the vertex labeling of
2-uniform dcsl which is discussed in Remark 2. Hence we have the
following theorem.

THEOREM 4. The vertex labeling f of a star graph K1,n,
where n ≥ 2 admits 2-uniform dcsl, and for each pair of adjacent
vertices in K1,n, f recieve subsets of the cardinality that differ by
2.

PROOF. Let {v0, v1, v2, .., vn}, where n ≥ 2 be the vertices of
K1,n with v0 as its center, and let X = {1, 2, .., 2n}.
Define f : V (K1,n)→ 2X by f(v0) = ∅, and f(vi) = {i, i+ n},
where 1 ≤ i ≤ n.
Then, for i ≥ 1| f(v0)⊕ f(vi) |=| {i, i+ n} |= 2.d(v0, vi),
and | f(vi) ⊕ f(vj) |=| {i, i + n, j, j + n} |= 2.d(vi, vj), for
1 ≤ i 6= j ≤ n. Hence, f is a 2-uniform dcsl.
Finally, we prove that | f(u) |=| f(v) | −2 (or | f(v) |=| f(u) |
−2), when u and v are adjacent in V (K1,n). Since, for 1 ≤ i ≤ n,
only v0 is adjacent to each vi in V (K1,n), thus | f(v0) |=| f(vi) |
−2.

REMARK 3. In the above theorem, we may assign the vertex
labeling f(u) = ∅, to any one of the vertex u ∈ V (K1,n), then
also, K1,n admits 2-uniform dcsl (See Figure 1).

Fig. 1. 2-uniform dcsl Vertex labeling of K1,n, n ≥ 2.
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Finally, we consider the set of vertex labeling of 2-uniform dcsl
of G, such that the adjacent vertices in G receive subsets of same
cardinality or the cardinality that differ by 2, then we have the fol-
lowing remark.

REMARK 4. Let F be the range of a vertex labeling of 2-uniform
dcsl graph G, then, F does not form neither a poset nor an equiv-
alence relation with respect to R3 but it forms a poset with respect
to set inclusion ‘⊆’.

REMARK 5. In Theorem 4, we could observe the vertex labeling
f which is same as the vertex labeling f that is given in Remark 4
and we have either | f(u) |=| f(v) | or | f(u) |=| f(v) | −2 (or
| f(v) | = | f(u) | −2), when u and v are distinct pair of vertices
in K1,n.

One should note that every subgraph of a 2-uniform dcsl graph
G need not be connected. Thus we are interested to test the sub-
graphs (connected) of a 2-uniform dcsl graph G, whether it admits
2-uniform dcsl or not. The following results tell about the induced
subgraphs of a 2-uniform dcsl complete graph Kn.

PROPOSITION 3. Every induced subgraph of a complete graph
Kn admits 2-uniform dcsl.

PROOF. Since every induced subgraph of a complete graph is
complete, and by Theorem 3, these complete graphs admits 2-
uniform dcsl.

The following theorem shows the number of induced subgraphs of
a complete graph that admits 2-uniform dcsl. For the completeness
of the statement we are including null graph (a graph with out ver-
tices) and trivial graph (a graph with only one vertex) which are
clearly 2-uniform dcsl graphs.

THEOREM 5. The number of induced subgraphs of a complete
graph Kn that admits 2-uniform dcsl is 2|V (Kn)|.

PROOF. Since by Proposition 3, each induced subgraph of Kn

is 2-uniform dcsl. Thus every subgraph G[H], induced by H ⊆
V (Kn) admits 2-uniform dcsl. Since the order of Kn is n. Hence,
we get 2|V (Kn)| number of induced subgraphs that admits 2-
uniform dcsl.

REMARK 6. In the above Theorem 5, if we restrict to non-trivial
(a graph with two or more vertices) induced subgraphs, then the
number of non-trivial induced subgraphs of a complete graph Kn

that admits 2-uniform dcsl is 2|V (Kn)|− | V (Kn) | −1.

Since the graphs Kn and K1,n are admitting 2-uniform dcsl, so it
is clear that the connected subgraphs of a complete graph Kn+1

which always admit 2-uniform dcsl are K1,r , where 1 ≤ r ≤ n.
Thus, to find the number of connected subgraphs of Kn+1 which
is of the form K1,r , where 1 ≤ r ≤ n is an interesting problem.

THEOREM 6. Let G a complete graph on n + 1 vertices, then
the number of 2-uniform dcsl connected subgraphs of G which is
of the form K1,r , where 1 ≤ r ≤ n is | V (G) | (2|V (G)|−1 −
|V (G)|−1

2
− 1).

PROOF. Suppose G ' Kn+1. Since by Theorem 4, for 1 ≤
r ≤ n, K1,r is 2-uniform dcsl, so it suffices to prove this theo-
rem by counting individually the number of subgraphs of the form

K1,n, K1,(n−1), K1,(n−2), . . , K1,1 and adding this number we
get the required result. We first count the number of subgraphs of
the form K1,n. Since they are n+1 number of full degree vertices
in G and each of these vertices including with their correspond-
ing neighboring vertices forms a connected subgraph of the form
K1,n, hence they are n+ 1 number of connected subgraphs of the
form K1,n. Secondly, to get the number of connected subgraphs of
the form K1,(n−1), we remove one leaf from K1,n out of n leaves,
so they are nc1 ways to choose the number of graphs of the form
K1,(n−1). Since they are n+1 of such K1,n, hence, the total num-
ber of connected subgraphs of the form K1,(n−1) is nc1(n+1). In
the same way, removing 2 leaves from K1,n out of n leaves, yields
nc2(n+ 1) number of subgraphs of the form K1,(n−2). Repeating
this process up to the removal of n − 2 leaves and the removal of
n−2 leaves, yields ncn−2(n+1) number of subgraphs of the form
K1,2=(n−(n−2)). Lastly, removing n − 1 leaves from each K1,n is
equal to the number of edges in G, which is equal to (n+ 1)c2 .
Thus, by adding all the number of subgraphs of the form K1,n,
K1,(n−1),K1,(n−2), . . ,K1,1 together, we get the total number of 2-
uniform dcsl connected subgraphs of G which is of the form K1,r ,
where 1 ≤ r ≤ n is (n+1)(nc0 +nc1 + ..+ncn−2)+(n+1)c2 =

(n+ 1)(2n − n− 1) + n(n+1)
2

= (n+ 1)(2n − n
2
− 1)

= | V (G) | (2s − s
2
− 1)

where s =| V (G) | −1

From Theorem 6, we immediately get an analogous result for the
number of non-trivial connected subgraphs of K1,n.

PROPOSITION 4. The number of non-trivial connected sub-
graphs of a star graph K1,n that admits 2-uniform dcsl is
2|V (K1,n)| − 1.

4. SET-INDEXER OF A DCSL GRAPH

Since induced subgraphs are not always connected, thus, every in-
duced subgraph of a 2-uniform dcsl graphG need not be 2-uniform
dcsl. Now, it is interesting to know the behavior of connected in-
duced subgraph of a 2-uniform dcsl graph G, whether it admits
2-uniform dcsl or not, for that, we are defining dcsl set-indexer and
k-uniform dcsl set-indexer as follows.

DEFINITION 3. Let (G, f) be a dcsl graph. A dcsl set-indexer
(DSI, in short) of G is an injective function f such that the induced
function f⊕ on E(G) is also injective.

Since, by Definition 1 of dcsl graph (G, f), it is not sure that every
induced function f⊕ of f is an injective function on V (G)×V (G).
Thus, we have

THEOREM 7. For a dcsl graph (G, f), if the constants of pro-
portionality kf

(u,v)
, u 6= v ∈ V (G) are all distinct. Then, the in-

duced function f⊕ of f is an injective function on V (G)× V (G).

PROOF. Suppose G be a graph and f be a dcsl labeling of G.
Since by definition of dcsl, to each pair u 6= v ∈ V (G), there exists
a constant of proportionality k associated with f . Now, if this k’s
are different means the labeling f(u)⊕ f(v) associated with k are
become different, which means that f⊕ is injective.

The converse of the above theorem may not be true always, i.e.,
there exists graphs whose edge labeling is injective, but the con-
stants of proportionality are not distinct (See Figure 2).
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Fig. 2. 2-uniform dcsl Vertex labeling of P3.

DEFINITION 4. [6] A dcsl f is dispersive if the constants of
proportionality kf

(u,v)
, u 6= v ∈ V (G) are all distinct and G is

dispersive if it admits a dispersive dcsl.
A dcsl f of a (p, q)-graph G is edge-dispersive if the constants of
proportionality kf(u,v), u 6= v ∈ E(G) are all distinct and G is
edge-dispersible graph if it admits an edge- dispersive dcsl.

THEOREM 8. Every dispersive dcsl graph (G, f) admits DSI.

PROOF. Since f is dispersive of G, so that all the constants of
proportionality kf(u,v), u 6= v ∈ V (G) are all distinct and by The-
orem 7, the induced function f⊕ of f is an injective function on
V (G) × V (G), hence f⊕ is an injective on E(G), and hence G
admits DSI.

Since all dispersible dcsl-graphs are edge-dispersible. Thus invok-
ing Theorem 8

THEOREM 9. Every edge-dispersive dcsl graph (G, f) admits
DSI.

DEFINITION 5. [6] A dcsl f of a graphG is (k, r)-arithmetic if the
constants of proportionality with respect to f can be arranged in
the arithmetic progression as k, k+r, k+2r, . . . , k+(q−1)r and
if G admits such a dcsl then, G is a (k, r)-arithmetic dcsl-graph.

THEOREM 10. Every (k, r)-arithmetic dcsl graph (G, f) ad-
mits DSI.

PROOF. Since by definition of (k, r)-arithmetic dcsl graph
(G, f), we have all the constants of proportionality kf

(u,v)
, u 6=

v ∈ E(G) are all distinct, which means the edge labeling f⊕(e) is
different for each e ∈ E(G), hence G admits DSI.

DEFINITION 6. [6] Let (G, f) be a k-uniform dcsl graph. A k-
uniform dcsl set-indexer (k-UDSI, in short) of G is an injective
function f such that the induced function f⊕ on E(G) is also in-
jective, and | f⊕(e) |= k for all e ∈ E(G), where k be a positive
integer.

Since, by Definition 2 of k-uniform dcsl graph (G, f), it is not
sure that every induced function f⊕ of f is an injective function on
V (G)×V (G), so that for a k-uniform dcsl ofG, it is not guarantee
thatG admits k-UDSI, but depends on k-uniform vertex labeling f
of G, they are graphs which admits k-UDSI. Thus, we have

THEOREM 11. If the induced function f⊕ of f , of a k-uniform
dcsl graph (G, f), is an injective function on V (G)×V (G). Then,
G admits k-UDSI.

THEOREM 12. If G has 2-uniform dcsl f , such that | f(u) |=|
f(v) |, for every pair of distinct u, v ∈ V (G). Then,G has 2-UDSI.

PROOF. We have already proved in Theorem 2 that there exists
a graph G whose vertex labeling f satisfies | f(u) |=| f(v) |, for
every pair of distinct u, v ∈ V (G).

Suppose G be a graph on n vertices v1, v2, .., vn and it has a 2-
uniform dcsl f which is given in Theorem 2. Then, for 1 ≤ i 6=
j ≤ n, | f(vi) |=| f(vj) |, and f⊕(vi, vj) = {i, j}, which is
an injective function, hence, by Theorem 11, for k = 2, G has
2-UDSI.

The converse of the above theorem need not be true always, i.e.,
there exists 2-uniform dcsl graphs which admits 2-UDSI such that
the adjacent vertices in G recieve subsets of the cardinality that
differ by 2 (See Figure 1).
Now, we are trying to answer the question whether connected in-
duced subgraph of a 2-uniform dcsl graphG, admits 2-uniform dcsl
or not.

THEOREM 13. If G has 2-uniform dcsl f , such that | f(u) |=|
f(v) |, for every pair of distinct u, v ∈ V (G). Then, any connected
induced subgraph H of G admits 2-uniform dcsl.

PROOF. LetG be a graph of order n which has a 2-uniform dcsl
f , such that | f(u) |=| f(v) |, for every u 6= v ∈ V (G), then by
Theorem 12, G admits 2-UDSI, which means the induced function
f⊕ of f is an injective function on E(G).
LetH be a connected induced subgraph ofG and f? be the restric-
tion of f to V (H). Then, f⊕f? is the corresponding restriction of f⊕

to V (H)× V (H).
Thus, clearly, f⊕f? is an injective function on V (H) × V (H) and
for every u 6= v ∈ V (H),| f?(u) |=| f?(v) | and | f⊕f?(u, v) |=
2 = 2.d(u, v); otherwise there exists p 6= q ∈ V (H), such that
| f?(p) |6=| f?(q) | and | f⊕(pq) |6= 2 ; a contradiction (since G
has 2-UDSI and | f(u) |=| f(v) |, for every u 6= v ∈ V (G)).
Hence, H has 2-uniform dcsl.

Invoking Theorem 13, we have
COROLLARY 2. If G has 2-uniform dcsl f , such that | f(u) |=|

f(v) |, for every pair of distinct u, v ∈ V (G). Then, any connected
induced subgraph H of G admits 2-UDSI.

REMARK 7. There are some 2-uniform dcsl graphs G such that
the adjacent vertices in G recieve subsets of the cardinality that
differ by 2 and the connected induced subgraphs of G admits 2-
uniform dcsl (See Figure 3).

Fig. 3. The 2-uniform dcsl of G, and its connected induced subgraphs H1,
H2 and H3.

Generalizing Theorem 13, for a k-uniform dcsl graph G, we get

THEOREM 14. If the induced function f⊕ of f , of a k-uniform
dcsl graph (G, f), is an injective function. Then, any connected
induced subgraph H of G admits k-uniform dcsl.

By Theorem 14, the following is obtained as its analogous result.
COROLLARY 3. If the induced function f⊕ of f , of a k-uniform

dcsl graph (G, f), is an injective function. Then, any connected
induced subgraph H of G admits k-UDSI.
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5. NON-K-UNIFORM DCSL GRAPH

In this section, we start with the non-k-uniform dcsl graph (a graph
in which there is no possibility of the existence of any vertex la-
beling of k-uniform dcsl) and prove that a graph is non-k-uniform
dcsl, if it contains a non-k-uniform dcsl subgraph. Using the exis-
tence of non-k-uniform dcsl graph condition, we able to prove the
necessary and sufficient condition for k-uniform dcsl graph.

THEOREM 15. If a graph G contains a non-k-uniform dcsl as
connected subgraph, then that graph G is non-k-uniform dcsl.

PROOF. We prove by contrapositive, i.e., every connected sub-
graph of a k-uniform dcsl graph G is a k-uniform dcsl. Suppose G
be a graph and f be a k-uniform dcsl of G. We prove this theorem
in 2 cases.

CASE 1: If the induced function f⊕ of f is an injective function,
then by Theorem 14, every connected subgraph H of G admits k-
uniform dcsl.

CASE 2: If the induced function f⊕ of f is not an injective func-
tion, then every connected subgraphH ofG need not be k-uniform
dcsl but it always possible to consider another vertex labeling to H
which admits k-uniform dcsl (since the given graphG is k-uniform
dcsl and the existence of vertex labeling of k-uniform dcsl is not
unique).

Now, we prove the necessary and sufficient condition for a graphG
to be k-uniform dcsl.

THEOREM 16. A graph G (connected) admits k-uniform dcsl
if and only if G does not contain any non-k-uniform dcsl as a sub-
graph.

PROOF. Suppose G admits k-uniform dcsl. If possible, suppose
G contains a non-k-uniform dcsl as subgraph, then by Theorem 15,
G is non-k-uniform dcsl, which is a contradiction.
Conversely, if a graph G does not contain any non-k-uniform dcsl
as a subgraph, which is equivalent to saying that every subgraph
(connected) of a graph G is k-uniform dcsl, then obviously G is
k-uniform dcsl (since, by hypothesis, G is itself a subgraph which
is k-uniform dcsl).

6. CONCLUSION

From Theorem 15, we can prove a given graphG is non-k-uniform
dcsl, when it contains a non-k-uniform dcsl as connected subgraph.
Also, by Theorem 16, we can say that every subgraph (connected)
of a graph G is k-uniform dcsl, when G is k-uniform dcsl.
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