
International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

35

A Study on Features and Limitations of On-line C

Compilers

Ramkumar

Lakshminarayanan, PhD

Sur College of Applied
Sciences, Oman.

 Balaji Dhanasekaran, PhD

Salalah College of Applied
Sciences, Oman

 Ben George Ephrem, PhD

Higher College of Technology,
Oman.

ABSTRACT

Compilers are used to run programs that are written in a range

of designs from text to executable formats. With the advent of

the internet, studies related to the development of cloud based

compilers are being carried out. There is a considerable

increase of on-line compilers enabling on-line compilation of

user programs without any mandate to. This study is specific

to on-line C compilers to investigate the correctness, issues

and limitations.

Keywords
C Program, Cloud Compiler, Compiler Performance,

Information and Communication Technology, Online

Compiler

1. INTRODUCTION
Complete compiler infrastructure is just too complex to

develop and maintain in the academic research environment

[1]. When the field of compiling began in the late 1950’s, its

focus was limited to the translation of high-level language

programs to machine code and to the optimization of space

and time requirement. The most remarkable accomplishment,

by far, of the compiler field is the widespread use of high-

level languages. But over a period of time compilers are used

for general purpose programming and mainly used for

application development.

Compiler algorithms for parsing, type checking and inference,

data flow analysis, loop transformations based on data-

dependence analysis, register allocation based on graph

coloring, and software pipelining are among the most elegant

creations of computer science [1].

Compilers have been tested using randomized testing methods

for nearly 50 years. A survey was done by Boujarwah and

Saleh [8] and suggested methods for the compiler test case

generation. Xuejun Yang et al created a randomized test-

generator that supports compiler bug-hunting using

differential testing [9]. Lindig [10] created a tool quest to

create a randomly generated C program to find several

compiler bugs. The quest has not used the control flow and

arithmetic approach, creates complex data structures, loads

them with complex data structures, loads them with constant

values, and passes them to a function, where assertions check

values received.

Improving the correctness of on-line C compilers is a worthy

and important goal. C snippet is part of the trusted computing

code for almost every modern computer system, including

mission life critical pacemaker firmware. This tradition has

extended its span and raids cloud based compilers that

primarily deals with providing a platform to compile and

execute programs that are independent of platform related

restrictions. Cloud-based compilers can be used by any user

who subscribes to it for a specific period of time. The

functionalities that are provided by the cloud are to compile

the programs on the go, file management and forums to

discuss the issues [6].

The earlier testing studies focused on identifying the methods

for testing the compilers using an automated approach as the

control of compiler are in the control of the tester. The

development of on-line compilers is heading towards the

development of the cloud based compilers. Further to the need

not to be installed, cloud compilers can easily be upgraded

too.

2. C COMPILER
C is a general purpose programming language developed by

Dennis Ritchie between 1969 and 1973. C is one of the

programming the languages used over a period of time [2]. It

is a compiler compatible to most architectures and operating

systems. Many of the languages like C++, Java, JavaScript,

C# and PHP have drawn many of the features from C. The

current version of the standard is C11 approved on December

2011 [3]. The most common C Library is the C Standard

Library, which is specified by the ISO and ANSI C Standards

and comes with every C implementation [4].

3. ON-LINE COMPILERS (ONCOMP)
Table 1 lists mostly used on-line compilers and ordered [7].

Table 1. List of on-line compilers

S.N

o

On-line Compiler

1 http://www.compileon-line.com/compile_c_on-

line.php

OnComp 1

2 http://code.hackerearth.com/

OnComp 2

3 http://codepad.org/

OnComp 3

4 https://ideone.com

OnComp 4

5 http://www.on-linecompiler.net/

OnComp 5

6 gcc.godbolt.org

OnComp 6

7 http://cmpe150-1.cmpe.boun.edu.tr/on-

lineCompiler/parts/

OnComp 7

8 http://codebunk.com/

OnComp 8

http://code.hackerearth.com/
http://codepad.org/
https://ideone.com/
http://www.onlinecompiler.net/
http://cmpe150-1.cmpe.boun.edu.tr/onlineCompiler/parts/
http://cmpe150-1.cmpe.boun.edu.tr/onlineCompiler/parts/
http://codebunk.com/

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

36

9 http://www.botskool.com/

OnComp 9

10 http://rextester.com/

OnComp10

11 Learn2Code (Chrome Plugin)

OnComp 11

In the given listing OnComp 1 was designed to compile C and

other programming languages. The version of the C compiler

is gcc Version 4.8.1. Supports the ACE editor, VIM editor and

Emacs editor. Has got the facility to compile multiple files. It

is possible to download the source and the object files. The

results of the application are displayed in the same screen. It

provides the facility to give command line arguments and

stdin input.

OnComp 2 is also designed to work with other programming

languages. The application has not provided any details about

the version of the compiler. In this application, it is possible to

clone the code, share the code and download the source code.

It supports API and VIM plugin. Login feature is included

using the Facebook, Google and GitHub.

OnComp 3 works with the Sphere EngineTM. It provides the

facility to track the code and possible to give the input and get

the output in the same screen. It is possible to share and

embed the source code. There are memory constraints of the

submitted code and compilation time exceeds 10 seconds.

Execution time, for unregistered users is 5 seconds, for

registered, is 15 seconds. The size limit of program 64 kB.

This compiler uses gcc version 4.8.1.

OnComp 4 does not have the feature to input the data and no

information related to the compiler is provided. It is possible

to create projects in the application.

OnComp 5 compiles the program on-line and the executable

code is automatically downloaded to the user machine. It

provides the compilation on Linux and Windows. The

application is not provided with any details.

OnComp 6 compiles the program and provides the output in

assembly code. It works with different compiler options like -

02. The compiler uses gcc 4.7.

The version of the OnComp 7 is not known and no details

related to the web application are available. The code is

compiled on-line and the executable is downloaded

automatically.

OnComp8 supports 14 different languages other than C. It

compiles and run code on-line. It is possible to chat,share

code. It is possible to replay the history of the code. It is

possible to create teams, create private code. This application

was developed to support the interview process.

OnComp9’ s compiler version is not provided. It is possible to

provide input and the output is displayed in the same screen.

The space provided for the output is very less. The application

is loaded with a lot of advertisement a very poor design of

user interface.

OnComp 10 is compiled using C version gcc 4.8.1 (gcc –

Wall –std=gnu99 -02). The maximum allowed compile time is

30 seconds and after 10 seconds of execution, the process is

killed. It provides API support and the possibility to create

user.

OnComp 11 compiles and test the code within the chrome

browser. The details related to the compiler are not provided

and not available. It is also designed to support different

programming languages. It reads input and writes output on

the same screen.

Most of the compilers do not provide details of the operating

system, architecture and version of the C compiler. The

following code (Code 1) is used to identify the configuration

of the system running on the on-line compilers [15].

Code 1

#include<sys/utsname.h> /* Header for 'uname' */
main()

{
 struct utsname uname_pointer;

uname(&uname_pointer);

 printf("System name - %s \n", uname_pointer.sysname);

 printf("Nodename - %s \n", uname_pointer.nodename);

 printf("Release - %s \n", uname_pointer.release);
 printf("Version - %s \n", uname_pointer.version);

 printf("Machine - %s \n", uname_pointer.machine);

}

Table 2 illustrates the system information of the on-line

compilers that runs with linux operating system. Among the

11 on-line compilers, 4 of them use x86_64 server

architecture, 2 uses i686 and others have not allowed the code

to get compiled and not able to know the architecture and

operating system

Table 2. System Information Of The On-Line Compilers

 On-line Compiler System Information

1 http://www.compileon

-

line.com/compile
_c_on-line.php

OnComp 1

System name - Linux

Nodename -

p3446206.pubip.serverbeach.co
m

Release - 2.6.32-

358.18.1.el6.x86_64
Version - #1 SMP Wed Aug

28 17:19:38 UTC 2013

Machine - x86_64

2 http://code.hackerearth
.com/

OnComp 2

Not allowed the execution

3 http://codepad.org/

OnComp 3

System name - Linux
Nodename - 86828ea41af7

Release - 3.11.0-15-generic

Version - #25-Ubuntu SMP
Thu Jan 30 17:22:01 UTC 2014

Machine - x86_64

4 https://ideone.com

OnComp 4

System name - Linux

Nodename - checker
Release - 2.6.34

Version - #6 SMP Fri Jan 21

15:21:52 CET 2011
Machine - i686

5 http://www.on-

linecompiler.net/

OnComp 5

Not allowed the execution

6 gcc.godbolt.org

OnComp 6

Not allowed the execution

7 http://cmpe150-
1.cmpe.boun.edu

.tr/on-

lineCompiler/par
ts/

Not allowed the execution

http://www.botskool.com/
http://rextester.com/
http://code.hackerearth.com/
http://code.hackerearth.com/
http://codepad.org/
https://ideone.com/
http://www.onlinecompiler.net/
http://www.onlinecompiler.net/
http://cmpe150-1.cmpe.boun.edu.tr/onlineCompiler/parts/
http://cmpe150-1.cmpe.boun.edu.tr/onlineCompiler/parts/
http://cmpe150-1.cmpe.boun.edu.tr/onlineCompiler/parts/
http://cmpe150-1.cmpe.boun.edu.tr/onlineCompiler/parts/
http://cmpe150-1.cmpe.boun.edu.tr/onlineCompiler/parts/

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

37

OnComp 7

8 http://codebunk.com/

OnComp 8

System name - Linux

Nodename - none
Release - 2.6.36.1

Version - #1 Tue Dec 7

23:10:05 UTC 2010
Machine - i686

9 http://www.botskool.c

om/

OnComp 9

Not allowed the execution

10 http://rextester.com/

OnComp 10

System name - Linux

Nodename -

vmi16328.contabo.net
Release - 3.11.0-17-generic

Version - #31-Ubuntu SMP

Mon Feb 3 21:52:43 UTC 2014
Machine - x86_64

11 Learn2Code (Chrome

Plugin)

OnComp 11

System name - Linux

Nodename - ip-10-10-167-
8.ec2.internal

Release - 3.11.0-19-generic

Version - #33-Ubuntu SMP Tue
Mar 11 18:48:34 UTC 2014

Machine - x86_64

Most of the compilers do not have interfaces in the same way.

Designs are not easily understandable at the outset. They are

not designed in any standard user interface.

The compiler objective is to provide the output in the

executable format [14], OnComp 5 and OnComp 7 provides

the output in the executable format, whereas other compilers

do not have the facility of creating executable file. OnComp 6

provides the output in the assembly code, whereas other

compilers do not have that facility. For further testing the

usage of standard library codes OnComp 6 was not considered

as it provides the assembly code.

Earlier there are studies which are performed on the compilers

to find bugs by performing access summary testing on

randomly generated C programs [5]. On-line compilers are

available on the web without any proper information and

without clarity about the standard architecture. So it becomes

challenging for the end user to identify the truthfulness of on-

line compilers. Bugs are out of reach for current and future

automated program-verification tools because specifications

that need to be checked were never written down in a precise

way. The approach to verification is very impractical;

however, other methods for improving compiler quality can

succeed[6]. So the possibility of testing compilers, on-line, is

by manually entering codes in the interface provided. The

initial test was to ensure that on-line compilers are executing c

programs.

Initially, all the online compilers are verified whether they are

executing the C programs and noted they are compiling and

providing results. It is being noted OnComp 6 provided the

output in the assembly code.

Also, testing is furthered to investigate whether on-line

compilers are executing the programs using a specific

standard library like assert.h and ctype.h.

The assert.h header file of the C standard library provides a

macro called assert which can be used to verify the

assumptions made by the program and print a diagnostic

message if this assumption is false. The ctype.h header file

of the C standard library provides several functions useful for

testing and mapping characters. All the functions

accepts ―int‖ as a parameter, whose value must be EOF or

representable as an unsigned char.

Table 3 lists the details regarding the compilation of the

asset.h and ctype.h code.

TABLE 3. Asset.H And Ctype.H Execution Details

S.No On-line

Compil

er

Asset.h Ctype.h

1 OnComp 1 Compiled Compiled

2 OnComp 2 Took more compilation

time

Took more

compilation

time

3 OnComp 3 Not able to give input Compiled

4 OnComp 4 Compiled Compiled

5 OnComp 5 Compiled Compiled

6 OnComp 6 Not tested Assembly Code

7 OnComp 7 Compiled Compiled

8 OnComp 8 No input option - but
compiled without

error

Yes

9 OnComp 9 Compiled Compiled

10 OnComp10 Compiled Compilation time
exceeded

10 sec.

11 OnComp11 Compiled Compiled

Among the 11 OnComp7 provided the expected output, one of

the drawbacks in 2 of the on-line compilers is in

providing the inputs. OnComp 2 took more compilation

time and it varied from time and time. For ctype.h code,

other than the OnComp 2 and OnComp 10, the code was

compiled within the time and shown the expected result.

Sample code using float.h, limits.h, math.h, setjmp.h and

signal.h were compiled using on-line compilers and the

compilation details are provided in Table 4. The sample

code containing float.h and limits.h was compiled with

all the compilers. As in the earlier execution OnComp 2

took more time to compile. math.h code was not

compiled by OnComp 8 and has not provided the

expected result. setjmp.h code showed error in the

OnComp 5 and OnComp 9. signal.h code was not

compiled in OnComp 3, OnComp 9 and OnComp 10.

TABLE 4. float.h, limits.h, math.h, setjmp.h And signal.h

Execution Details

S.No On-line
Compiler

float.h limits.h math.h setjmp.h signal.h

1 OnComp

1

Yes Yes Yes Yes Yes

2 OnComp

2

More

Time

More

Time

Yes Yes Yes

3 OnComp3 Yes Yes No Yes Disallowed

4 OnComp
4

Yes Yes Yes Yes Yes

5 OnComp

5

Yes Yes Yes No No

http://codebunk.com/
http://www.botskool.com/
http://www.botskool.com/
http://rextester.com/

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

38

6 OnComp

6

Assembly Code Output

7 OnComp
7

Yes Yes Yes Yes Yes

8 OnComp

8

Yes Yes No Yes Yes

9 OnComp
9

Yes Yes Yes No No

10 OnComp

10

Yes Yes Yes Yes No

11 OnComp
11

Yes Yes Yes Yes Yes

4. INDEFINITE LOOPS
One of the key challenges in the programs developed using

the compilers is the handling of the indefinite loops and the

common one is infinite looping. As a result, the program

hangs.[16]. When the compiler is installed locally developer

will have the command over killing the process of the

program. By the following code (Code 2) we tested the on-

line compiler’s handling of indefinite loops.

Code 2

#include<stdio.h>
main()

{

while (1)
{

printf("Hello World");

} }

Table 5 provides the details of how the indefinite loops are

handled by the on-line compilers.

Table 5. Details Of Executing The Indefinite Loops

S.No On-line

Compiler

Details

1 OnComp 1 Hanged / No Ouput

2 OnComp 2 Hanged / No Output

3 OnComp 3 Error. Time Out

4 OnComp 4 Shown Output /

Timeout

5 OnComp 5 No issue for the on-

line compiler as the

executable is

downloaded

6 OnComp 6 Assembly Code

Output

7 OnComp 7 No issue for the on-

line compiler as the

executable is

downloaded

8 OnComp 8 Shown the output,

truncated the output

to 1000 characters.

9 OnComp 9 Fatal error

10 OnComp 10 Process killed after

10 seconds

11 OnComp 11 Shown the output till

the space is

available.

5. System() function
The C library function int system(const char *

command) passes the command name or program name

specified by command to the host environment to be executed

by the command processor and returns after the command has

been completed. The following code (Code 3) is used to test

the system() function.

Code 3

#include<stdio.h>

int main()

{

 system("ls");

 return(0);

}

Table 6 gives the compilation details of the system() function

of on-line compilers. OnComp 3 and OnComp 9 disallowed

the system() call and the security can be enforced by allowing

the system call for the registered users.

Table 6. Details Of Executing The System() Function

S.No On-line

Compiler

Details

1 OnComp 1 Compiled and shown the

files

2 OnComp 2 Not Compiled

3 OnComp 3 Disallowed System call

4 OnComp 4 Compiled and shown the

files

5 OnComp 5 No issue for the on-line

compiler as the executable

is downloaded

6 OnComp 6 Assembly Code Output

7 OnComp 7 Compiled.

8 OnComp 8 Compiled. No Output

9 OnComp 9 Restricted

10 OnComp 10 Compiled and shown the

files

11 OnComp 11 No output.

6. FILE MANAGEMENT
A file represents a sequence of bytes, does not matter if it is a

text file or binary file. C programming language provides

access to high level functions as well as low level (OS level)

calls to handle file on your storage devices. The following

codes (Code 4 & 5) are used for testing file management

operation involving on-line compilers. Table 7 lists the

execution details of the file management code.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

39

Code 4

#include <stdio.h>

main()
{

 FILE *fp;

 char buff[255];

 fp = fopen("/tmp/test.txt", "r");

 fscanf(fp, "%s", buff);
 printf("1 : %s\n", buff);

 fgets(buff, 255, (FILE*)fp);
 printf("2: %s\n", buff);

 fgets(buff, 255, (FILE*)fp);
 printf("3: %s\n", buff);

 fclose(fp);

}

Code 5

#include <stdio.h>

main()
{

 FILE *fp;

fp = fopen("/tmp/test.txt", "w+");

fprintf(fp, "This is testing for fprintf...\n");

fputs("This is testing for fputs...\n", fp);
fclose(fp);

}

More than 50 percent of on-line compilers do not support file

management code.

Table 7. Details Of Executing The File Management Code

S.No On-line

Compiler

Details

1 OnComp 1 Not Compiled

2 OnComp 2 Not Compiled

3 OnComp 3 Compiled

4 OnComp 4 Runtime error

5 OnComp 5 Compiled

6 OnComp 6 -

7 OnComp 7 Compiled

8 OnComp 8 Runtime error

9 OnComp 9 Restricted

10 OnComp 10 Compiled

11 OnComp 11 Not Compiled

The figure 1 shows the details of the execution of indefinite

loop code, system() function code and the file management

code. OnComp 2 have not executed any of the test codes.

Unexpected result happened during the compilation of file

management code in OnComp 4 and OnComp 8. OnComp 5

and OnComp 10 compiled the system() function code and the

file management code. None of the on-line compilers

considered supports all the code execution.

Fig. 1 : Chart of execution details of indefinite loops,

system() function and file management code.

7. CONCLUSION
The basic idea of this study is to identify how on-line

compilers handle the programs based on the C standard

library, indefinite loops, system calls and file management.

The initial challenge in the test of on-line compilers is to

understand the user interface and on the understanding of the

back-end compilers. One of the common issues noted in the

study is the delay in the compile-time based on the internet

bandwidth and some of the programs did not compile and

there is no proper notification, even. Error rectification is

possible only through compiler error notification that too is

lacking in most of the compilers. The approach to developer

notification must be improved by on-line compilers. Details

like architecture, operating system and the compiler version

are not mentioned either. Some on-line compilers have not

compiled even the standard library codes. The indefinite loops

were not managed well by most of the compilers. The system

calls are supported in most of the compilers without registered

users, which are likely to create security leaks. File

management codes are not supported effectively in most of

the compilers. There is a wider scope for fully designed on-

line compilers. As a future study the existing C compiler has

to be redesigned to support the cloud requirement and new

testing approaches are to be designed

8. REFERENCES
[1] Mary Hall, David Padua and Keshav Pingali, ―Compiler

Research: The Next 50 years‖, Communications of the

ACM, Vol. 52 : No 2, February 2009.

[2] http://www.tiobe.com/ accessed on December 2014.

[3] WG14 N1570 Committee Draft — April 12, 2011

[4] Stephen G, Programming in C (3rd Edition), July 18,

2004

[5] Eric Eide, John Regehr, Volatiles are Miscompiled, and

what to do about it, Proceedings of the English ACM and

IEEE International Conference on Embedded Software

(EMSOFT), Atlanta, Georgia, USA, Oct 2008.

[6] Sajid Abdulla, Srinivasan Iyer, Sanjay Kutty, Cloud

based compiler, International Journal of Students

Research in Technology and Mangement, Vol(3), May

2013.

0 0 0

1

2 2

1

0 0

11

0 0

1 1 1

0

2

1

00 0

1

2

1 1

2

0

1

0

OC

1

OC

2

OC

3

OC

4

OC

5

OC

7

OC

8

OC

9

OC

10

OC

11

0

0.5

1

1.5

2

2.5

Online Compilers

Indefinite Loops

system() function

File management

code

1 - Compiled

0 - Not Compiled

2 - Undefined

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

40

[7] http://smallseotools.com/google-pagerank-checker/

accessed on March 2014

[8] A.S Boujarwah and K. Saleh, Compiler test case

generation methods: a survey and assessment,

Information and Software Technology, 1997

[9] Xuejun Yung et al, Finding and understanding bugs in C

compilers, ACM SIGPLAN Conference on Programming

Language Design and Implementation, San Jose, 2011

[10] C. Lindig, Random testing of C Calling conventions, In

Proc, AADEBUG, Sept 2005.

[11] www. Cloudcompiling.com accessed on June 2014

[12] A. Rabibyathul, Basariya and K. Tamil Selvi,

Centralized C# compiler using cloud computing,

International Journal of Communications and

Engineering Volume 06-6, March 2012.

[13] P. Purdom, A sentence generator for testing parsers, BIT

Numerical Mathematics, 12(3), 1972.

[14] S. Summit. Comp.lang.c frequently asked questions:

http://c-faq.com/.

[15] Standard Library Testing Codes: -

http://www.tutorialspoint.com.

[16] Jian Zhang, A Path-based Approach to the Detection of

Infinite Looping, Proceedings of the Second Asia-Pacific

Conference On Quality Software IEEE, 2001.

IJCATM : www.ijcaonline.org

http://smallseotools.com/google-pagerank-checker/
http://c-faq.com/
http://www.tutorialspoint.com/

