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ABSTRACT
Vn-Arithmetic graph has been introduced by Vasumathi and
Vangipuram [9]. In this paper some properties of Vn-Arithmetic
graph, maximum degree, minimum degree, number of edges, di-
ameter, radius, Hamiltonian and Eulerian are studied. Also, we in-
troducem-Arithmetical graphs. Some properties and interesting re-
sults for m-Arithmetical graphs are established.
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1. INTRODUCTION
Number Theory is one of the oldest branches of mathematics,
which inherited rich contributions from almost all greatest math-
ematicians, ancient and modern. Nathanson [5] was the pioneer in
introducing the concepts of Number Theory, particularly, the The-
ory of Congruences in Graph Theory, and paved the way for the
emergence of a new class of graphs, namely Arithmetic Graphs.
Inspired by the interplay between Number Theory and Graph The-
ory several researchers in recent times are carrying out extensive
studies on various Arithmetic graphs in which adjacency between
vertices is defined through various arithmetic functions.
All the graphs considered here are finite and undirected with no
loops and multiple edges. Let G = (V,E) be a graph. As usual
|V | and |E| denote the number of vertices and edges of a graph
G, respectively. In general, we use 〈X〉 to denote the subgraph in-
duced by the set of vertices X and N(v) and N [v] denote the open
neighbourhood and closed neighbourhood of a vertex v, respec-
tively. The degree of a vertex v, in a graph G, is denoted deg(v),
and is defined to be the number of edges incident with v. In sim-
ple graphs, deg(u) = |N(u)|. The minimum degree of a graph
G is denoted by δ, and the maximum degree is denoted by ∆. If
δ = ∆ = r for any graph G, we say G is a regular graph of degree
r.
The distance d(u, v) between any two vertices u, v ∈ G is the min-
imum length of a u-v path, and the eccentricity of a vertex v of a
connected graph G is e(v) = max{d(u, v), v ∈ V }. The diame-
ter of G is diam(v) = max{e(v), v ∈ V } and the radius of G is
rad(v) = min{e(v), v ∈ V }. A cycle passing through all the ver-
tices of a graph is called a Hamiltonian cycle. A graph containing
a Hamiltonian cycle is called a Hamiltonian graph. Also, A closed
walk in a graph G containing all the edges of G is called an Euler
line inG. A graph containing an Euler line is called an Euler graph.

All the definitions in this paper are referenced by [1].
Vasumathi and Vangipuram [9] introduced the concept of Vn-
Arithmetic graphs and studied some of its properties. Let n be
a positive integer such that n = pα1

1 pα2
2 . . . pk

αk . Then the Vn-
Arithmetic graph is defined as the graph whose vertex set consists
of the divisors of n and two vertices u, v are adjacent in Vn graph
if and only if gcd(u, v) = pi for some prime divisor pi of n. In
this graph vertex 1 becomes an isolated vertex. Hence we consider
Vn-Arithmetic graph without vertex 1 as the contribution of this
isolated vertex is nothing when the properties of these graphs and
enumeration of some domination parameters are studied. Clearly,
Vn graph is a connected graph. Because if n is a prime, then Vn
graph consists of a single vertex. Hence it is a connected graph. In
other cases, by the definition of adjacency in Vn there exist edges
between prime number vertices and their prime power vertices and
also to their prime product vertices. Therefore each vertex of Vn is
connected to some vertex in Vn. Some domination parameters and
domination parameters of direct product graphs of Cayley graphs
with Arithmetic graphs are presented in [6, 7, 4, 8, 3, 2].
In this paper, we obtain some properties of Vn-Arithmetic graph,
maximum degree, minimum degree, number of edges, diame-
ter, radius, Hamiltonian and Eulerian. Also, we introduce m-
Arithmetical graphs. Some properties and interesting results form-
Arithmetical graphs are established.

2. SOME PROPERTIES OF VN -ARITHMETIC
GRAPH

In this section some properties of Vn-Arithmetic graph are ob-
tained.

PROPOSITION 1. Let G be a Vn-Arithmetic graph, where n =
pα1
1 pα2

2 . . . pk
αk . Then the number of vertices of G is

|V | =
k∏
i=1

(αi + 1)− 1.

PROOF. Straightforward by Fundamental Theorem of Arith-
metic, the number of positive divisors d(n) of any natural number
n = pα1

1 pα2
2 . . . pk

αk is

d(n) =

k∏
i=1

(αi + 1),
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then, by the definition of Vn-Arithmetic graph

|V | =
k∏
i=1

(αi + 1)− 1.

THEOREM 1. Let G be a Vn-Arithmetic graph, where n =
pα1
1 pα2

2 . . . p
αk
k . For any vertex u =

∏
i∈B p

ai
i , where B ⊆

{1, 2, . . . , k}, 1 ≤ ai ≤ αi, ∀i ∈ B,

(1) If u = pj , where j ∈ {1, 2, . . . , k}, then

deg(u) = αj

k∏
i=1
i 6=j

(αi + 1)− 1.

(2) If u =
∏
i∈B p

ai
i , 1 < ai ≤ αi, ∀i ∈ B, then

deg(u) = |B|
k∏

i=1

i/∈B

(αi + 1).

(3) If u =
∏
i∈B p

ai
i , ai = 1 for some i ∈ B′ ⊆ B, then

deg(u) = (|B −B′|+
∑
i∈B′

αi)

k∏
i=1

i/∈B

(αi + 1).

PROOF. Let u =
∏
i∈B p

ai
i be a vertex of G, where B ⊆

{1, 2, . . . , k}, 1 ≤ ai ≤ αi, ∀i ∈ B. Since, |V | =
∏k

i=1
(αi +

1)−1, then the degree of u ∈ V (G) is the number of vertices in G
minus the number of the vertices which are not adjacent to u, so,
Case 1. Let u = pj , j ∈ {1, 2, . . . , k}. Then

deg(u) =

( k∏
i=1

(αi + 1)− 1

)
−
( k∏

i=1
i 6=j

(αi + 1)− 1

)
− 1

= αj

k∏
i=1
i6=j

(αi + 1)− 1.

Case 2. Let u =
∏
i∈B p

ai
i , 1 < ai ≤ αi, ∀i ∈ B. Suppose that,

B = {1, 2, . . . , r}, r ≤ k (elements of B need not be ordered).
Then

deg(u) =

( k∏
i=1

(αi + 1)− 1

)
−
( k∏

i=1

i/∈B

(αi + 1)− 1

)

−
( r∑

i=1

(αi − 1)

) k∏
i=1

i/∈B

(αi + 1)−
( r−1∑

i=1

αi

r∑
j=i+1

αj

)

k∏
i=1

i/∈B

(αi + 1)−
( r−2∑

i=1

αi

r−1∑
j=i+1

αj

r∑
l=j+1

αl

) k∏
i=1

i/∈B

(αi + 1)

− . . .−
( r∏
i=1

αi

) k∏
i=1

i/∈B

(αi + 1) = |B|
k∏

i=1

i/∈B

(αi + 1).

Because,

r∏
i=1

(αi + 1) = 1 +

r∑
i=1

αi +

r−1∑
i=1

αi

r∑
j=i+1

αj +

r−2∑
i=1

αi

r−1∑
j=i+1

αj

r∑
l=j+1

αl + . . .+

r∏
i=1

αi.

Case 3. Let u =
∏
i∈B p

ai
i , where ai = 1 for some i ∈ B′ ⊆ B.

Then, all the vertices of the form paj
∏

i=1

i/∈B
paii , where 1 ≤ a ≤ αj ,

∀j ∈ B are adjacent to u, then

deg(u) =

k∏
i=1

(αi + 1)−
k∏

i=1

i/∈B

(αi + 1)−
( ∑
i∈B−B′

(αi − 1)

)

k∏
i=1

i/∈B

(αi + 1)−
( r−1∑

i=1

αi

r∑
j=i+1

αj

) k∏
i=1

i/∈B

(αi + 1)

−
( r−2∑

i=1

αi

r−1∑
j=i+1

αj

r∑
l=j+1

αl

) k∏
i=1

i/∈B

(αi + 1)

− . . .−
( r∏
i=1

αi

) k∏
i=1

i/∈B

(αi + 1)

=

(
|B −B′|+

∑
i∈B′

αi

) k∏
i=1

i/∈B

(αi + 1).

From Theorem 1. it is easy to see that for any two vertices u, v of
G such that u =

∏j

i=1
paii , v =

∏j

i=1
pbii , j ≤ k (the elements of

{1, 2, . . . , j} need not be ordered), then deg(u) = deg(v), where
1 < ai ≤ αi, 1 < bi ≤ αi, ∀i ∈ {1, 2, . . . , j}. Let G be a Vn-
Arithmetic graph, where n = pα1

1 pα2
2 . . . pk

αk . Then,

|V | =
{
deg(pj) + deg(paj ), if at least αj 6= 1 and 1 < a ≤ αj ;
deg(pj) + deg(prps), if αi = 1, ∀i ∈ {1, 2, . . . , k}.

PROOF. Let G be a Vn-Arithmetic graph, where n =
pα1
1 pα2

2 . . . pk
αk .

Case1. Suppose that, at least αj 6= 1 and 1 < a ≤ αj . Then

deg(pj) + deg(paj ) = αj

k∏
i=1
i 6=j

(αi + 1)− 1 +

k∏
i=1
i6=j

(αi + 1) = |V |.
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Case2. Suppose that, αi = 1, ∀i ∈ {1, 2, . . . , k}. Then the number
of vertices of G in this case is |V | = 2k − 1 and so,

deg(pj) + deg(prps) = 2k−1 − 1 + 2k−1 = |V |.

THEOREM 2. Let G be a Vn-Arithmetic graph, where n =
pα1
1 pα2

2 . . . pk
αk , such that at least one of αi, i ∈ {1, 2, . . . , k}

does not equal one. Then,

(1) ∆(G) = αj
∏k

i=1
i6=j

(αi + 1)− 1,

where, αj is the maximum exponent of pi, i ∈ {1, 2, . . . , k};
(2) δ(G) = k.

PROOF. Let n = pα1
1 pα2

2 . . . pk
αk such that at least one of αi,

i ∈ {1, 2, . . . , k} does not equal one. Then, we have the following
cases:

(1) Suppose that, u = pj for some j ∈ {1, 2, . . . , k}) be a
vertex of G such that αj is the maximum exponent of pi,
i ∈ {1, 2, . . . , k}. The vertex u = pj has the maximum de-
gree of G which is

deg(u) = αj

k∏
i=1
i6=j

(αi + 1)− 1.

By Theorem 1 the vertex u = pj has the greatest degree
among the primes and the power primes vertices ofG. Further-
more Theorem 1 tell us the vertices of the form pipj , i 6= j,
(i, j ∈ {1, 2, . . . , k}) have degrees greater than the degrees of
all the primes product vertices, which is smaller than or equal
the degree of u = pj , because,
either,

deg(pj)− deg(pjpl) =

(
αj

k∏
i=1
i6=j

(αi + 1)− 1

)

−
(
αj + αl

) k∏
i=1
i 6=j,l

(αi + 1)

= −1 + αl
(
αj − 1

) k∏
i=1
i 6=j,l

(αi + 1) ≥ 0

since, αj > 1.
or,

deg(pj)− deg(prps) =

(
αj

k∏
i=1
i 6=j

(αi + 1)− 1

)

−
(
αr + αs

) k∏
i=1
i 6=r,s

(αi + 1)

= −1 +

(
(αrαs + 1)(αj + 1)− (αr + 1)(αs + 1)

) k∏
i=1

i6=j,r,s

(αi + 1)

since, all of αi, i ∈ {1, 2, . . . , k} are positive integers and
αj > 1 is the greatest value of them then,

(αrαs + 1)(αj + 1)− (αr + 1)(αs + 1) ≥ 1

so,

deg(pj)− deg(prps) ≥ 0.

Which leads to the required result.

(2) On the other hand, the vertex t =
∏k

i=1
pαi
i has the mini-

mum degree of G which is deg(t) = k (Theorem 1). Sup-
pose that, u =

∏j

i=1
paii , j < k (elements of {1, 2, . . . , j}

need not be ordered) be a vertex of G, where 1 ≤ ai ≤ αi,
∀i ∈ {1, 2, . . . , j}. Then,

deg(u) > j +

(
j

1

)[(
k − j

1

)
+

(
k − j

2

)
+ . . .

+

(
k − j
k − j

)]
> j2k−j ≥ k.

Also, if j = k, then by Theorem 1 deg(u) ≥ k.

THEOREM 3. Let G be a Vn-Arithmetic graph, where n =
p1p2 . . . pk (αi = 1, ∀i ∈ {1, 2, . . . , k}). Then,

(1) ∆(G) = 2k−1

(2) δ(G) =

{
k, k ≥ 3;
1, k = 2.

PROOF. Let n = p1p2 . . . pk. By substitute αi = 1,
∀i ∈ {1, 2, . . . , k} in Theorem 1 we get for any u ∈ G,

deg(u) =

{
2k−1 − 1, if u = pj , for some j ∈ {1, 2, . . . , k};
|B|2k−|B|, if u =

∏
i∈B pi.

We observe that when |B| = 2, then the vertices u = pipj , i, j ∈
{1, 2, . . . , k} have the maximum degree of G which is

∆(G) = deg(u) = 2k−1

Also, the minimum degree of G,

δ(G) = deg(

k∏
i=1

pi) = k,

where k ≥ 3. But, if k = 2 (i.e., n = p1p2), then V =
{p1, p2, p1p2}. So, deg(p1) = 1, deg(p2) = 1 and deg(p1p2) =
2, hence, δ(G) = 1.

The connectivity κ = κ(G) of a graph G is the minimum number
of vertices whose removal results in a disconnected graph. For κ ≥
k, we say that G is k-connected. By other words, a k-connected
graph is the graph that the removal of fewer than k vertices will not
disconnect it.

THEOREM 4. Let G be a Vn-Arithmetic graph, where n =
pα1
1 pα2

2 . . . p
αk
k such that n 6= p1p2. Then G is a k-connected

graph.
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PROOF. Let G be a Vn-Arithmetic graph, where n =
pα1
1 pα2

2 . . . p
αk
k such that n 6= p1p2. Then from Theorem 2 and

Theorem 3 the minimum degree ofG is δ(G) = k, which is the de-
gree of the vertices of the form t =

∏k

i=1
paii , where 1 < ai ≤ αi,

∀i ∈ {1, 2, . . . , k} (or t =
∏k

i=1
pi if αi = 1, ∀i ∈ {1, 2, . . . , k})

because, those vertices adjacent only to the prime vertices pi,
i ∈ {1, 2, . . . , k} and each the other vertices have degrees greater
than or equal k. So, the minimum number of vertices whose re-
moval disconnect the graph G is k. Hence, G is a k-connected
graph.

By using the Euler Theorem, the number of edges of any graph
G(V,E) is given by:

|E| = 1

2

n∑
i=1

deg(ui), ∀ui ∈ V .

PROPOSITION 2. Let G be a Vn-Arithmetic graph, where n =
pα1
1 pα2

2 . . . p
αk
k . Then

|E| = 1

2

( k∑
i=1

deg(pi) +

k−1∑
i=1

k∑
j=i+1

deg(pipj)+

k−2∑
i=1

k−1∑
j=i+1

k∑
l=j+1

deg(pipjpl) + . . .+ deg(

k∏
i=1

pi)+

k

k∑
j=1

(αj − 1)deg(paj ) +

k∑
j=1

(αj − 1)

k∑
l=1
l 6=j

k∑
m=1
m 6=j,l

deg(paj plpm)

+ . . .+

k∑
j=1

(αj − 1)deg(paj

k∏
i=1
i 6=j

) +

k−1∑
j=1

(αj − 1)

k∑
l=j+1

(αl − 1)

deg(paj p
b
l ) +

k−1∑
j=1

(αj − 1)

k∑
l=j+1

(αl − 1)

k∑
m=1
m 6=j,l

deg(paj p
b
lpm)

+

k−1∑
j=1

(αj − 1)

k∑
l=j+1

(αl − 1)

k∑
m=1
m 6=j,l

k∑
r=1

m 6=j,l,m

deg(paj p
b
lpmpr)

+ . . .+

k−1∑
j=1

(αj − 1)

k∑
l=j+1

(αl − 1)deg(paj p
b
l

k∏
i=1
i 6=j,l

pi)

+ . . .+ (

k∏
i=1

(αi − 1))deg(

k∏
i=1

paii )

)
such that, 1 < a ≤ αj , 1 < b ≤ αl, . . ..

It’s clearly that, this formula is very long and difficult to use, and
we cannot reduce it to a short formula because the degrees of the

vertices of G are depending on the powers αi’s and the options of
their products. But we can make a short formula for special cases
of G.

THEOREM 5. Let G be a Vn-Arithmetic graph, where n =
pα1 p

α
2 . . . p

α
k (αi = α, ∀i ∈ {1, 2, . . . , k}). Then the number of

edges of G is given by

|E| = 1

2

[
−k+

k∑
j=0

(
k

j

)
(α−1)j

k−j∑
i=0

(
k − j
i

)
(iα+j)(α+1)k−i−j

]
.

PROOF. Let G be a Vn-Arithmetic graph, where n =
pα1 p

α
2 . . . p

α
k . Then

|E| = 1

2

(α+1)k−1∑
i=1

deg(ui), ui ∈ V.

So,

(α+1)k−1∑
i=1

deg(ui) =

(
k

1

)
deg(pj) +

(
k

2

)
deg(pjpl) + . . .+

(
k

k

)

deg
( k∏
i=1

pi
)

+

(
k

1

)(
α− 1

1

)
deg(paj ) +

(
k

1

)(
α− 1

1

)(
k − 1

1

)

deg(paj pl) +

(
k

1

)(
α− 1

1

)(
k − 1

2

)
deg(paj plpm) + . . .+

(
k

1

)
(
α− 1

1

)(
k − 1

k − 1

)
deg
(
paj

k∏
i=1
i6=j

pi
)

+

(
k

2

)[(
α− 1

1

)]2
deg(paj p

b
l )

+

(
k

2

)[(
α− 1

1

)]2(
k − 2

1

)
deg(paj p

b
lpm) + . . .+

(
k

2

)[(
α− 1

1

)]2
(
k − 2

k − 2

)
deg
(
paj p

b
l

k∏
i=1
i 6=j,l

pi
)

+ . . .+

(
k

k − 1

)[(
α− 1

1

)]k−1

deg
( k∏

i=1
i 6=j

paii
)

+

(
k

k − 1

)[(
α− 1

1

)]k−1

deg
(
pj

k∏
i=1
i6=j

paii
)

+

(
k

k

)[(
α− 1

1

)]k
deg
( k∏
i=1

paii
)

where, 1 < a ≤ αj , 1 < b ≤ αl, . . ..
By substitute αi = α, ∀i ∈ {1, 2, . . . , k} in Theorem 1 we get for
any vertex u of G

(1) deg(u) =

{
α(α+ 1)k−1 − 1, if u = pi, i ∈ {1, 2, . . . , k};
|B|
(
α+ 1

)k−|B|
, if u =

∏
i∈B p

a
i , 1 < a ≤ α, ∀i ∈ B.
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(2) deg(u) =
(
|B−B′|+ |B′|α

)(
α+ 1

)k−|B|
, if u =

∏
i∈B p

a
i ,

a = 1 for some i ∈ B′ ⊆ B.

Then
(α+1)k−1∑

i=1

deg(ui) = −k +

k∑
i=0

iα

(
k

i

)
(α+ 1)k−i + k(α− 1)

k−1∑
i=0

(
k − 1

i

)
(iα+ 1)(α+ 1)k−i−1+

(
k

2

)(
α− 1

)2 k−2∑
i=0

(
k − 2

i

)(
iα+ 2

)(
α+ 1

)k−i−2
+ . . .

+

(
k

k − 1

)(
α− 1

)k−1(
iα+ k − 1

)(
α+ 1

)
+ k
(
α− 1

)k
= −k +

k∑
j=0

(
k

j

)(
α− 1

)j k−j∑
i=0

(
k − j
i

)(
iα+ j

)(
α+ 1

)k−i−j
.

Let G be a Vn-Arithmetic graph, where n = p1p2 . . . pk (αi = 1,
∀i ∈ {1, 2, . . . , k}). Then the number of edges of G is given by

|E| = 1

2

( k−1∑
i=1

i

(
k

i

)
2k−i

)
.

PROPOSITION 3. Let G be a Vn-Arithmetic graph, where n =
pα1
1 pα2

2 . . . p
αk
k . Then, the diameter of G at most equal 2.

PROOF. Let G be a Vn-Arithmetic graph, such that V (G) =
X1 ∪X2 ∪X3, where X1 = {pi : i = 1, 2, . . . , k}, X2 = {pai :

1 < a ≤ αi, i = 1, 2, . . . , k} and X3 = V −
(
X1 ∪X2

)
. we have

two cases:
Case I. Suppose that, k > 1 and n 6= p1p2. Then, we have the
following subcases:
Subcase 1. Assume that, u, v ∈ X1, where u = pi, v = pj , i 6= j.
Then there is a vertex t ∈ X3, t = pipj which adjacent to both u
and v. So, d(u, v) = 2.
Subcase 2. Assume that, u, v ∈ X2. Then we have two possibili-
ties:

(1) Let u and v are different powers of the same prime pi. Then
they are adjacent to the vertex pi ∈ X1. So, d(u, v) = 2.

(2) Let u = pai and v = pbj , i 6= j. Then there is a vertex t ∈ X3,
t = pipj which adjacent to both u and v. So, d(u, v) = 2.

Subcase 3. Assume that, u, v ∈ X3. Then there are two possibili-
ties:

(1) Let gcd (u, v) =
∏
i∈B p

ai
i where B ⊆ {1, 2, . . . , k}, 1 ≤

ai ≤ αi, ∀i ∈ B. Then u and v are either adjacent (if |B| = 1
and a = 1) or choose r ∈ B such that the vertex pr ∈ X1 is
adjacent to both u and v. So, d(u, v) = 1 or d(u, v) = 2.

(2) Let gcd (u, v) = 1. Then there is a vertex t ∈ X3, t = prps
such that, pr is a prime divisor of u and ps is a prime divisor
of v which is adjacent to both u and v. So, d(u, v) = 2.

Subcase 4. Assume that, u ∈ X1 and v ∈ X2. Then there are two
possibilities:

(1) Let gcd (u, v) = pi, i ∈ {1, 2, . . . , k}. Then d(u, v) = 1.
(2) Let gcd (u, v) = 1, i.e. u = pr, v = pas , where r 6= s. Then

there exists a vertex t ∈ X3, t = prps which is adjacent to
both u and v. So, d(u, v) = 2.

Subcase 5. Assume that, u ∈ X1 and v ∈ X3. Then there are two
possibilities:

(1) Let gcd (u, v) = pi, i ∈ {1, 2, . . . , k}. Then d(u, v) = 1.
(2) Let gcd (u, v) = 1, i.e. u = pr , v =

∏
i∈B
r/∈B

paii , B ⊆

{1, 2, . . . , k}, 1 ≤ ai ≤ αi, ∀i ∈ B. Then there exists a vertex
t ∈ X3, t = prps such that ps is a prime divisor of v which is
adjacent to both u and v. So, d(u, v) = 2.

Subcase 6. Assume that, u ∈ X2 and v ∈ X3. Then we character-
ize two possibilities:

(1) Let gcd (u, v) = pbr , 1 ≤ b ≤ a ≤ αr . Then u and v are
either adjacent (if b = 1) or there is a vertex pr ∈ X1 which is
adjacent to both u and v. So, d(u, v) = 1 or d(u, v) = 2.

(2) Let gcd (u, v) = 1, i.e. u = par , v =
∏

i∈B
r/∈B

paii , B ⊆

{1, 2, . . . , k}, 1 ≤ ai ≤ αi, ∀i ∈ B. Then there exists a vertex
t ∈ X3, t = prps such that ps is a prime divisor of v which is
adjacent to both u and v. So, d(u, v) = 2.

Hence, if n = pα1
1 pα2

2 . . . p
αk
k , k > 1 then, diam(G) = 2.

Case II. Suppose that, k = 1 (i.e. n = pα where p is prime) or
n = p1p2. Then we characterize three subcases:
Subcase 1. Let α = 2 ⇒ n = p2. Then G has only two vertices
p, p2 and one edge joining p and p2. So, diam(G) = 1.
Subcase 2. Let α > 2. Then X1 = {p}, X2 = {p2, . . . , pα} and
X3 = φ, so,

(1) For u, v ∈ X2, the vertex p ∈ X1 is adjacent to both u and v.
So, d(u, v) = 2.

(2) For u = p ∈ X1 and v ∈ X2, then gcd(u, v) = p and hence,
d(u, v) = 1.

This means that, e(u) = 2 for u ∈ X2 and e(u) = 1 for u ∈ X1.
Subcase 3. Let n = p1p2. ThenX1 = {p1, p2},X3 = {p1p2} and
X2 = φ. So, as in subcase2, e(u) = 2 for u ∈ X1 and e(u) = 1
for u ∈ X3.

LetG be a Vn-Arithmetic graph, where n = pα1
1 pα2

2 . . . pk
αk such

that, k > 1 and n 6= p1p2. Then

diam(G) = 2 = rad(G).

THEOREM 6. Let G be a Vn-Arithmetic graph, where n =
pα1
1 pα2

2 . . . p
αk
k . Then G is not an Eulerian graph.

PROOF. Suppose that G is a Vn-Arithmetic graph, where n =
pα1
1 pα2

2 . . . p
αk
k . it is well known that the graph G is an Eulerian

graph if and only if every vertex of G has an even degree. So,

(1) Let all αi, i ∈ {1, 2, . . . , k} are odd. Then the degrees of the
prime vertices pi, i ∈ {1, 2, . . . , k} are odd.

(2) Suppose that, at least one of αi, i ∈ {1, 2, . . . , k} is even call
it αr then the vertex pr has an odd degree.
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The Hamiltonian closure of a graph G, denoted Cl(G), is the sim-
ple graph obtained fromG by repeatedly adding edges joining pairs
of nonadjacent vertices with degree sum at least |V (G)| until no
such pair remains. A graph G is Hamiltonian if and only if its clo-
sure is Hamiltonian.

THEOREM 7. Let G be a Vn-Arithmetic graph, where n =
p1p2 . . . pk, 3 ≤ k ≤ 6. Then G is a Hamiltonian graph.

PROOF. Suppose that G is a Vn-Arithmetic graph, where n =
p1p2 . . . pk, 3 ≤ k ≤ 6. We show that the Hamiltonian closure ofG
is a complete graph i.e.Cl(G) ∼= K2k−1. and hence,G is Hamilto-
nian. Let Xq = {u ∈ V : u =

∏
i∈Bq

pi, Bq ⊆ {1, 2, . . . , k},
|Bq| = q ≤ k} i.e. X1 = {u = pj : j = 1, 2, . . . , k},
X2 = {u ∈ V : u = prps, r, s = 1, 2, . . . , k}, X3 = {u ∈
V : u =

∏
i∈B3

pi, |B3| = 3} and so on.
Step 1. In this step:

(1) The subset of the prime vertices X1 will be adjacent to all the
vertices of the subsetX2 because, deg(pj)+deg(prps) = |V |
(Corollary 1).

(2) The vertices ofX2 will be adjacent one to each others because,
deg(pj) ≤ deg(prps).

So, in the end of this step the degrees of the vertices of X1 and X2

will become:

(1) deg(pj) = 2k−1 − 1 +
(
k−1
2

)
.

(2) deg(u)u∈X2
= 2k−1 +

(
k−2
1

)
+
(
k−2
2

)
.

Step 2. In this step:

(1) the vertices of X1 will be adjacent one to each others because
in this case, deg(pj) + deg(pr) ≥ |V |. Also, the vertices of
X1 will be adjacent to all the vertices of X3 because,
deg(pj) + deg(u)u∈X3

= 7(2k−3) +
(
k−1
2

)
− 1 ≥ |V |, where

3 ≤ k ≤ 6.
(2) The vertices of X2 will be adjacent to all the vertices of X3

because,
deg(u)u∈X2

+deg(u)u∈X3
= 7(2k−3)+

(
k−2
1

)
+
(
k−2
2

)
≥ |V |,

where 3 ≤ k ≤ 6.

So, in the end of this step the degrees of the vertices of X1, X2 and
X3 will become:

(1) deg(pj) = 2k−1 − 1 +
(
k−1
1

)
+
(
k−1
2

)
+
(
k−1
3

)
.

(2) deg(u)u∈X2
= 2k−1 + 2

(
k−2
1

)
+
(
k−2
2

)
+
(
k−2
3

)
.

(3) deg(u)u∈X3
= 3(2k−3) +

(
k−3
1

)
+
(
k−3
2

)
+
(
3
2

)
.

Step3. In this step:

(1) the vertices of X1 will be adjacent to all the vertices of X4

because,
deg(pj)+deg(u)u∈X4

= 3(2k−2)+
(
k−1
1

)
+
(
k−1
2

)
+
(
k−1
3

)
−

1 ≥ |V |, where 4 ≤ k ≤ 6.
(2) The vertices of X2 will be adjacent to all the vertices of X4

because,
deg(u)u∈X2

+ deg(u)u∈X4
= 3(2k−2) + 2

(
k−2
1

)
+
(
k−2
2

)
+(

k−2
3

)
≥ |V |, where 4 ≤ k ≤ 6.

So, in the end of this step the degrees of the vertices ofX1,X2,X3

and X4 will become:

(1) deg(pj) = 2k−1 − 1 +
(
k−1
1

)
+
(
k−1
2

)
+
(
k−1
3

)
+
(
k−1
4

)
.

(2) deg(u)u∈X2
= 2k−1 + 2

(
k−2
1

)
+ 2
(
k−2
2

)
+
(
k−2
3

)
+
(
k−2
4

)
.

(3) deg(u)u∈X3
= 3(2k−3) +

(
k−3
1

)
+
(
k−3
2

)
+
(
3
2

)
.

(4) deg(u)u∈X4
= 2k−2 +

(
k−4
1

)
+
(
k−4
2

)
+
(
4
2

)
.

and so on. We observe that:

(1) If k = 3 then in step 2, Cl(G) ∼= K23 − 1.
(2) If k = 4 then in step 4, Cl(G) ∼= K24 − 1.
(3) If k = 5 then in step 5, Cl(G) ∼= K25 − 1.
(4) k = 6 then in step 6, Cl(G) ∼= K26 − 1.

Hence, G is Hamiltonian.

PROPOSITION 4. Let G be a Vn-Arithmetic graph, where
n = pα1

1 pα2
2 . . . p

αk
k , such that αi > 1, ∀i ∈ B where B ⊆

{1, 2, . . . , k}. If
∏
i∈B(αi − 1) ≥ k, then G is not Hamiltonian.

PROOF. Let G be a Vn-Arithmetic graph, where n =
pα1
1 pα2

2 . . . p
αk
k , such that αi > 1, ∀i ∈ B where B ⊆

{1, 2, . . . , k} and let V0 ⊂ V be the subset of vertices of V whose
have degree k i.e. u ∈ V0 ⇔ u is adjacent only to the prime ver-
tices pi, i ∈ {1, 2, . . . , k}. It is clearly that |V0| =

∏
i∈B(αi − 1).

Suppose |V0| ≥ k. Since V0 is an independent set and all pi,
i ∈ {1, 2, . . . , k} are not adjacent one to each others, then G has
no Hamiltonian cycle because if there is a spanning cycle ofG then
it should pass on at least one vertex twice. So, G is not Hamilto-
nian.

Let G be a Vn-Arithmetic graph, where n = pα1
1 pα2

2 , and n 6=
p1p2. ThenG is a Hamiltonian graph if and only if 1 ≤ α1, α2 ≤ 2.

PROOF. Let G is a Vn-Arithmetic graph, where n = pα1
1 pα2

2 ,
and n 6= p1p2. Suppose that G is Hamiltonian and at least α1 ≥ 3.
Then there exist at least two vertices t1, t2 ∈ V which are adjacent
only to both p1 and p2. Since p1, p2 are not adjacent and t1, t2 also
are not adjacent, then G has no Hamiltonian cycle. Contradiction.
On the other hand if 1 ≤ α1, α2 ≤ 2, then we have two cases:
Case 1. If n = p21p

2
2, then the cycle(

p1, p
2
1p

2
2, p2, p1p

2
2, p

2
1, p1p2, p

2
2, p

2
1p2, p1

)
in G is a Hamil-

tonian cycle.
Case 2. If n = p21p2 or n = p1p

2
2, then G has the Hamiltonian

cycles
(
p1, p

2
1p2, p2, p1p2, p

2
1, p1

)
,
(
p2, p1p

2
2, p1, p1p2, p

2
2, p2

)
respectively.
So G is Hamiltonian.

3. M -ARITHMETICAL GRAPHS
DEFINITION 8. Let G(V,E) be a connected graph with n ver-

tices. Then G is called m-Arithmetical graph for some integer
m ≥ 1 if and only if there exists at least one Arithmetic graph
Vm ∼= G.

EXAMPLE 1. :

—P3 is 6-Arithmetical.
—K2 is 4-Arithmetical.
—Sn is 2n-Arithmetical. (where Sn is the star with n vertices).

Of course there are infinite Arithmetic graphs Vm which is isomor-
phic to G, so, we convince to select the Vm where m is the mini-
mum in all cases.
Note that. Since, Vm is a connected graph we conclude that all
disconnected graphs are not m-Arithmetical.

THEOREM 9. Let G be a regular graph. Then G is m-
Arithmetical graph if and only if G ∼= P2.
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PROOF. Let G be a regular graph. Suppose, G is m-
Arithmetical graph. Then there is an Arithmetic graph Vm such
that Vm ∼= G. Then, we have two cases:
Case1. Suppose, m = pα1

1 pα2
2 . . . pk

αk , k ≥ 2. From the proof of
Theorem 2.(1) we have

deg(pj)− deg(pjpl) = −1 + αl
(
αj − 1

) k∏
i=1
i 6=j,l

(αi + 1),

where, j, l ∈ {1, 2, . . . , k}, j 6= l.
Let αj be the minimum degree of pi, i ∈ {1, 2, . . . , k}. Then

(1) if αj = 1⇒ deg(pj)− deg(pjpl) = −1
which implies that Vm is not regular.

(2) if αj > 1, so, αl ≥ αj > 1, ∀l ∈ {1, 2, . . . , k}, l 6= j, then,

deg(pj)− deg(pjpl) > 0.

Hence, Vm, where m = pα1
1 pα2

2 . . . pk
αk , k ≥ 2 is not a regular

graph.
Case2. Let m = pα. Then, by Theorem 3.

∆(Vm) = α− 1, δ(Vm) = 1.

Since, a graph G is a regular graph if and only if ∆(G) = δ(G).
Then,

α− 1 = 1⇒ α = 2.

So, Vm, where m = p2 is a regular graph and hence, G ∼= Vm ∼=
P2.
The converse is clear.

Let G be a complete graph. Then G is m-Arithmetical graph if and
only if G ∼= K2.

THEOREM 10. Let G be a bipartite graph. Then G is m-
Arithmetical graph if and only if G is a star.

PROOF. Let G be a bipartite graph. Suppose, G is m-
Arithmetical graph. Then there exists an Arithmetic graph Vm ∼=
G. We prove that Vm is a star. So, we characterize the following
cases:
Case1. Suppose, n = pα1

1 pα2
2 . . . pk

αk , k ≥ 2, where at least one
of αi 6= 1, i ∈ {1, 2, . . . , k}. Then the graph Vm has a triangle (an
odd cycle subgraph) 〈X1〉 where X1 = {pj , p2j , pjpl}, such that
j, l ∈ {1, 2, . . . , k}, j 6= l. Hence, Vm is not a bipartite graph and
so not a star.
Case2. Suppose, m = p1p2 . . . pk, k ≥ 3 (αi = 1,
∀i ∈ {1, 2, . . . , k}). In this case the subgraph 〈X2〉 of Vm where
X2 = {pr, prps, prpt} is an odd cycle subgraph of Vm. So, Vm is
not a star.
Case3. Now it remains that m = pα or m = p1p2,

(1) Let m = pα. Then all the vertices of Vm have a form pa,
a ∈ {1, . . . , α}. So, the vertex p is adjacent to all the other
vertices. Also, the vertices pa, a ∈ {2, . . . , α} are not adjacent
one to each others because, gcd(pa, pb) = pa where a < b,
a, b ∈ {2, . . . , α}. Hence, Vm is a star.

(2) Let m = p1p2. Then V = {p1, p2, p1p2}. The prime vertices
p1, p2 are not adjacent one to the other and the vertex p1p2 is
adjacent to both p1 and p2. Hence, Vm is a star.

For the other side, suppose that G is a star. The proof of the first
side tell us Vm is a star if and only if m = pα or m = p1p2 for
some positive integer α and some primes p1, p2 and p. Since, G =

Sn for some number of vertices n, then there exists an Arithmetic
graph Vm where m = pn such that Vm ∼= G = Sn. So, G is
m-Arithmetical graph.

4. CONCLUSION
In this paper, we have studied some of the basic properties of
Vn-Arithmetic graph which will greatly help facilitate the study
of many other properties and other parameters for this type of
graphs, also they will help to conclude the sufficient and necessary
conditions for any graph to be m-Arithmetical, which the authors
will study it soon.
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