
International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

22

Empirical Validation of Test Case Generation based

on All-edge Coverage Criteria

Shveta Parnami
The IIS University

Jaipur, India

K.S. Sharma
The IIS University

Jaipur, India

Swati V. Chande
IIIM

Jaipur, India

ABSTRACT
Software testing assesses the functionality and correctness of

the software through analysis and execution. It is done by

exercising appropriate number of test cases so that no part of

the program is left untested. Presence of multiple loops in a

program makes it unlikely or impossible to test all paths.

Therefore researchers try to find the subsets of the test cases,

which when tested give confidence of complete testing.

However, the subsets of paths are based on some testing

criteria. In this research paper GA approach has been used to

find out the subset of paths of the test program that fulfills all

edge coverage criteria. The Genetic Algorithm for Test Case

Generation (GATCG) proposed in this work generates

reduced number of paths for a test program. These paths are

termed as prime paths. The proposed GATCG technique

makes use of the concept of prime paths to reduce the cost of

testing. The efficiency of proposed algorithm is established

from the results, in terms of number of iterations and time

consumed in generating the prime paths for test programs.

Keywords
Prime paths, Test case generation, Testing cost, Genetic

algorithm.

1. INTRODUCTION
Software testing is done by executing the adequate test cases

with appropriate test inputs and comparing the results

obtained with the expected output. It is practically impossible

to manually test the larger programs. However, the

automation of the testing process reduces the time and

resources required to test the complex and large programs. On

the basis of test design, testing is broadly categorized as:

Statement testing, Path testing [1-5] and Branch testing [6-9].

Path testing is based on the basic control structure of the

program and are more challenging in nature [10] in

comparison to other testing methods. Most of the researches

on search based software engineering have focused on branch

coverage or statement coverage; very few of them consider

the path coverage [11]. Path coverage allows deeper logical

error(s) to be found that may not be detected if branch or

statement coverage is used. It is unlikely to achieve complete

path coverage for a looping program because a loop can go

infinitely. Generating a sufficient amount of test paths set is a

crucial task. The numbers of test paths in a no-loop program

are equal to its cyclomatic complexity (CC). The presence of

loops, especially nested loops, increases the number of test

paths tremendously [11]. As such, it is desirable to design a

mechanism through which the number of paths could be kept

within definite limits.

This paper presents GA based GATCG approach to generate

the subset of test paths that adequately represents the

complete set of all paths of a program. The approach uses all-

edge coverage criteria for the generation of test paths. For a

loop based program, the number of executions for a loop is

limited to, zero or one time. The generated subset of paths is

termed as ‘prime paths’. Prime paths set ensures that all

statements of the program are covered atleast once.

The paper is organized as follows: Section 2 explains some

important concepts used in the present study to generate test

cases. Section 3 describes the proposed GATCG technique for

test case generation. Section 4 presents the results of applying

this algorithm to a sample program so as to evaluate the

effectiveness of the proposed GATCG technique. Section 5

presents the conclusions drawn by the authors and future

scope of the work.

2. BASIC CONCEPTS
This section explains some basic concepts used in this work to

generate test cases.

2.1 Software Testing
Software testing is an important element of software quality

assurance and represents the definitive analysis of

specification, design and coding. It is laborious, costly and

time consuming task: it spends almost 50% of software

system development resources [12]. Software testing is

performed for defect detection and reliability estimation. The

goal of software testing is to design a set of minimal number

of test cases to reveal any existing faults [12-13] and

promising the complete coverage of the program under test.

Testing or inspecting for the coverage of the software is

termed as coverage testing. Coverage testing is done through

use of statement coverage or branch coverage or path

coverage. Testing conducted to ensure that each statement is

covered is called statement coverage testing. In branch testing

each branch is checked during testing. Out of all, most

powerful testing is path testing [11, 14-17]. In path testing

each path of the test program is tested. Path testing assures

complete coverage of the program. Path testing is realized

through control flow graph of the test program. Identifying

the test paths for testing process is a challenging task and

there is need to explore these aspects of test case generation in

order to increase the degree of automation and efficiency of

software testing.

2.2 Control Flow Graph
A control flow graph (CFG) of the test program is build to

identify paths in it. CFG is a representation, using graphical

notation, of all paths that might be traversed through a

program during its execution. The CFG of a program is

represented by a directed graph G = (N, E), consisting of

finite set of nodes (N) and a set of edges (E), where the set

containing N nodes represents N statements and E is a set of

edges that represents directed edges between the two nodes. A

directed edge ‘e’ represents an ordered pair (n, m), where n

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

23

and m are adjacent nodes of CFG. A path is a sequence of

adjacent nodes that starts from the starting node and ends at

the exit node of CFG. A closed path passing through the start

and exits node is called a cycle [18].

2.3 Path Testing
In testing, a foremost challenge is to find a good starting set of

test cases that removes redundant testing, provide adequate

test coverage, allows more effective testing and make limited

use of the most of the limited testing resources. If the set of

paths are properly chosen then some measure of test

thoroughness is said to be achieved.

There are numerous paths between the start and exit of a

software program. Every condition or decision statement in

the program doubles the number of paths in it. Each case

statement multiplies the number of paths by the number of

cases it has. And also every loop duplicates the number of

paths by the number of times the loop iterates[19].In the path

selection, every path is exercised from start to exit, every

statement, branch and case statement must be exercised at

least once. All branch statements must be exercised in both

directions i.e., true or false.

2.4 Prime Paths
As the number of loops and complexity of the program

increases, the number of paths also increases. In that case it

becomes almost impossible to test all paths of a program. The

testing objectives could be achieved by testing only a subset

of the paths. These subsets are made on the basis of testing

criteria [15], selecting only those paths which are difficult to

reach i.e. the probability of executing these paths are very

low. Path subset proposed by Singh [20] has included those

paths which have high probability of execution. Independent

paths were considered for path subset by Faezeh et.al.[21].

The study conducted by them in the field of generating subset

of the test paths manually selected these paths. However, in

the existing manual selection method there are chances that

the paths left during testing might have errors, which could

propagate to higher levels of software development. The

problem is overcome by automatically generating the subset

of paths based on some coverage criteria. This subset of paths

is called Prime Paths. A path from one node to other node is a

prime path, if it is a simple path and does not appear as a

proper subpath of any other simple path. Prime path coverage

is a set of test requirements containing each prime path. The

paper aims at generating a subset of paths, i.e., a set of prime

paths to meet all-edge coverage criteria. All-edge coverage

means that all the edges of the CFG must be exercised atleast

once in the generated test cases. Studies made by them have

empirically proved that the evolutionary search techniques

pave the way for an effective and efficient approach for

finding test cases. Next section provides a brief introduction

to the Genetic algorithm technique, which is a popular and

best suited method for generating test cases.

2.5 Genetic Algorithm
In many fields in the engineering worlds, Genetic Algorithms

(GA) have been widely studied [1-2, 8-9, 11-15, 17, 20] and

experimented. GA is based on the ideology of the evolution

via natural selection, employing a population of individuals

that undergo selection in presence of operators, such as

mutation and recombination, which are responsible for

providing variation in the population. GA is useful and work

efficiently in very large and complex search space.

Simple Genetic Algorithm
A simple genetic algorithm is given below:

{

Population initialization;

Population evaluation;

while (Termination Criteria Not Met)

{

Parents selected for reproduction;

Perform recombination and mutation on

selected parents;

Re-evaluate population to pass the best

individuals to next generation;

}

}

Genetic Algorithms begin with a set of initial individuals

sampled from the problem domain. Individuals in each

generation are evaluated with a fitness function. The

algorithm performs a series of operations to transform the

present generation into a new, fitter generation.

3. PROPOSED GATCG APPROACH

FOR TEST CASE GENERATION
GATCG is GA based test case generation algorithm. It

searches for test paths (test cases) which satisfy the all-edge

coverage criterion. GATCG methodology proposes generation

of test cases (in the form of test paths) by means of genetic

algorithm approach. The proposed GATCG algorithm

considers only test requirements that do not pose a constraint

on the amount of time that a loop takes for its execution. Only

two cases are relevant: whether the loop is executed or not,

i.e. either the path traverse the loop zero time or traverse for

one time.

The approach works by converting a program under test

(PUT) to its corresponding CFG, then generating paths in the

form of test cases such that every edge of the CFG are

covered. GATCG works in two phases.

First phase is the set up phase where PUT is converted into

CFG and then in to Optimized Control Flow Graph (OCFG).

OCFG is obtained by removing unnecessary nodes from CFG,

without changing the control flow semantics of the test

program. The statement of a program is mapped to nodes in a

control flow graph. The nodes are connected by walking

through the program code and pointing a statement's node to

the statement's child. The graph is then optimized by

removing the unnecessary nodes in order to keep the expenses

of the prime path calculation algorithm to a minimum. As

explained by Gerritsen [22] it is quite costly to calculate all

prime paths in a control flow graph. The more nodes a CFG

has, the costlier it is. Generally, there are many nodes that will

not influence the amount of prime paths; they are the nodes

with only one child. Removing unnecessary nodes can

optimize the prime path calculation. The optimization process

must not alter the prime paths in any way, apart from the fact

that they will be shortened. The set up phase also lists the set

of successor for each node of OCFG. Second phase of

GATCG uses GA to generate test cases to cover all edges of

OCFG by using the information (list of set of successors)

provided by the first phase. The end result of GATCG is the

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

24

set of prime paths that include all edges of the OCFG. The

approach is explained below with the help of an example.

Consider the Minimax program given in Figure1. The

corresponding CFG and OCFG of the program given in

Figure 1 are illustrated, respectively, in Figure 2 and 3.

Figure 1: Minimax Program

The major components of GATCG for prime path set

generation are discussed below.

Search Space: It is the set of all solutions among which the

result lies. It is, therefore, a set of paths in the OCFG of the

program under test. A path is represented by sequence of

connected nodes. Search space for the example (program in

Figure 1) is the set of paths P = {P1, P2, P3, …, Pn} where Pi

is a path from starting node to ending node. The search space

of given example is {{0,1,2,9,10}, {0,1,2,3,5,6,7,8,9,10},

{0,1,2,3,4,5,6,7,8,9,10}…}.

Encoding: It is a process of representing individual genes (i.e

nodes in the present case). GATCG uses binary vectors as

chromosomes to represent nodes in the OCFG. Each gene

(cell) in the binary vectored chromosome is mapped to its

corresponding node in OCFG, using the map function. Mfun :

i ϵ chromosome -> i ϵ nodes of OCFG, where i=1 represent

the presence of node in the path defined by chromosome and

i=0 represents absence of node from the chromosome path.

Length of the binary vector is equal to the total number of

nodes in the OCFG plus three extra bits. The extra three bits

represent start, loop and end node. First bit of the binary

vector chromosome represents start node, last bit of binary

vector chromosome represents end node. An extra bit is used

to represent the node initiating loop in the program. For

example the paths from the prime path set PP P1 {0, 1, 2, 9,

10} which is represented as {11100000011} in binary vector

chromosome.

Initial Population: Each chromosome represents a potential

prime path which is shown as binary vector. Number of

chromosomes in each generation is equal to a predefined

value POPSIZE. Initial population of the chromosome has the

bit value 1 for start, first and end nodes. For example the

initial population of chromosome C for program in Figure 1 is

Nodes 0 1 2 3 4 5 6 7 8 9 10

C = 1 1 0 0 0 0 0 0 0 0 1

Figure 2: CFG of Minimax

Figure 3: OCFG of Minimax

0

1

2/8

3

5

6

9

10

4

7

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

25

Fitness Function: The fitness function depends on the

concept of adjacent nodes in OCFG. It is the probability of the

adjacent nodes included in the path. The fitness function

defined is as follows.

FFN (Ci) =

where Ci is the chromosome for i=1,2,3,… POPSIZE. The

path Pi represented by chromosome Ci is an optimal solution

of the problem if its fitness value is 1. For example, let

chromosomes: C1 = (11000110111) and the corresponding

path is PC1 = (0, 1, 5, 6, 8, 9, 10). In PC1 there are 4 pairs of

adjacent nodes connected with a directed edge. There are 7

nodes present in PC1 hence, the fitness value of C1 is (4+1)/7

i.e. 0.71.

Selection: The selection of parent chromosomes is done on

the basis of their fitness values. After computing the fitness of

each chromosome (using fitness function) in the current

population, the algorithm uses the roulette wheel selection

method [23][30] to select fit chromosomes (test paths) from

the effective members of the current population that will

behave as parents for the new population.

Reproduction: The algorithm uses three operators: crossover,

mutation and expansion (a new operator to extend the

chromosomes to represent the complete path), which are the

key to the power of GAs. Crossover, mutation and expansion

operators create new individuals from the selected parent

chromosomes to form a new population.

(a) Crossover: Crossover operates at the individual or

chromosome level with a predetermined probability CP. In

one point crossover, two parent chromosomes exchange

substring information at a random position in the parent

chromosomes to produce two new offspring.

(b) Mutation: It operates after crossover operator and works

at cell level. In mutation each cell is changed with

predetermined mutation probability MP. If the cell value is 1

and the node representing that position has sibling, then the

present cell value is turned to zero and its sibling’s cell value

is made binary one irrespective of sibling’s previous value.

Cell value of nodes without sibling(s) is not altered.

(c) Expansion: Expansion operates after mutation operator

and works at cell level just like mutation. This operator

introduces the nodes and there successor in the existing

population to bring assortment in the current population. It is

applied periodically in all iterations of the proposed genetic

algorithm. For each chromosome in the population breeding

generates a random number pos in the range [2,…, L-1],where

L is the length of the chromosome. The node is expanded at

position pos by altering its bit value to one and also by

randomly selecting its successors and altering its bit value to

1.

Elitism: Best chromosome from the old population with a

survival probability SP is retained which replaces the worst

member of the current population.

Stopping Condition: GATCG algorithm stops under two

circumstances; once when the generated test paths (test cases)

satisfy all edge coverage condition, i.e., it covers all the edges

of the OCFG and second when the number of iterations

reaches the maximum number of generations.

4. EXPERIMENTAL RESULTS AND

DISCUSSION
To analyze the proposed GATCG algorithm’s performance,

the study is conducted using a combination of iterative

generation number and time required for generating test cases.

The iterative generation number illustrates the convergence of

the algorithm and the time consumed during the generation

process, describes the generation efficiency. The experiments

were conducted on a system with configuration setup where

the hardware platform is a PC with 2.4 GHz Intel Core i3

CPU and 2 GB (1.86 GB usable) physical memory. The

experiments were conducted using Visual C++ 10

environment. The 5 test programs as PUT (Program Under

Test) that were used in the experiments are taken from the

existing literature. These 5 PUT are called Triangle

Classification (TC)[2,8,24-27], Minimax (MM)[2,28],

Insertion Sort (IS)[2,26], Binary Search (BNS)[2,24] and

Minimax Triangle Classification (MMT)[2]. The programs

under test (PUT) were selected because of representativeness

of their logical characteristics.

The convergence analysis of GATCG algorithm to find the

optimum solution is done by recording the number of

iterations required to generate prime paths and execution time

in seconds. The time is calculated from the execution of

proposed algorithm till the algorithm ends. The average

number of iterations and execution time in 20 runs of each

program are presented in Table 1 and 2 respectively.

Table 1 Number of Iterations for each program through

20 runs

Run# TC MM IS BNS MMT

1 5 5 5 8 20

2 5 5 9 10 16

3 6 3 6 12 13

4 6 3 6 8 15

5 8 4 6 7 18

6 6 5 7 10 14

7 6 6 4 9 24

8 5 5 7 9 21

9 7 4 6 7 15

10 5 7 8 9 16

11 14 7 5 8 20

12 5 6 6 7 15

13 6 7 7 14 15

14 3 4 6 7 16

15 6 5 7 13 20

16 4 5 5 10 12

17 5 5 5 9 34

18 6 5 6 12 17

19 12 4 5 7 18

20 5 4 6 7 16

Average 6.25 4.95 6.1 9.15 17.75

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

26

Table 2 Execution time for each program through 20 runs

Run#\P# TC MM IS BNS MMT

1 0.0381 0.0396 0.0305 0.0630 0.4197

2 0.0285 0.0485 0.0550 0.0803 0.3131

3 0.0336 0.0218 0.0397 0.0968 0.2558

4 0.0398 0.0310 0.0388 0.0659 0.2989

5 0.0452 0.0300 0.0415 0.0713 0.3542

6 0.0305 0.0473 0.0447 0.0831 0.2583

7 0.0380 0.0486 0.0285 0.0609 0.4820

8 0.0374 0.0323 0.0363 0.0739 0.4313

9 0.0461 0.0423 0.0432 0.0696 0.2782

10 0.0174 0.0429 0.0577 0.0660 0.3256

11 0.0713 0.0505 0.0386 0.0706 0.4127

12 0.0275 0.0451 0.0618 0.0643 0.2753

13 0.0350 0.0541 0.0525 0.1216 0.2818

14 0.0191 0.0361 0.0519 0.0675 0.2994

15 0.0304 0.0373 0.0595 0.1103 0.3902

16 0.0290 0.0307 0.0369 0.0823 0.2127

17 0.0327 0.0496 0.0280 0.0631 0.7021

18 0.0411 0.0455 0.0424 0.0986 0.3474

19 0.0534 0.0387 0.0430 0.0603 0.3497

20 0.0321 0.0350 0.0433 0.0599 0.2919

Average 0.0363 0.0403 0.0437 0.0765 0.3490

The results show that ‘MM’ program converges to the

solution in less than 5 iterations whereas TC, IS, BNS takes

more than 5 but less than 10 iterations to converge to the

solution in majority of the cases. Since MMT had more edges

to cover, therefore, it took on the average 17 iterations to

converge to the solution. The average time required to

generate test paths for the program with lesser iteration

number was also found to be less.

The proposed GATCG not only generates the optimum result

but also reduces the cost of testing [29]. Table 3 demonstrates

that the cost of testing by generating minimal set of prime

paths for all-edge coverage criteria is reduced by proposed

GATCG algorithm in comparison to the cost incurred for

covering all edges of the program’s CFG. The GATCG

technique covers a subset of statements in the form of

minimal set of prime paths that guarantees the coverage of all

edges of the OCFG of the tested program. The goal of

covering all edges of the program’s optimized control flow

graph can be reduced to covering the minimal set of prime

paths only. Thus, by applying GATCG technique, the cost of

testing is reduced by many folds.

Table 3 Cost Reduction percentage of all edge testing

Program # Minimum

set of

Prime

Paths

Total

Number

of Edges

in CFG

Cost Reduction %

=(1- minimum set

of prime paths/

Number of Edges)

* 100

1 4 14 71.43%

2 3 16 81.25%

4 3 13 76.92%

5 4 17 76.47%

8 5 25 80.00%

Table 3 shows the cost reduction percentage of all edge

testing requirements. Column#2 shows the minimum set of

prime paths which fulfils the all-edge coverage criterion,

column#3 shows the total edges in the program’s Control flow

graph and column#4 gives the percentage of cost reduced by

using prime paths for covering all edges.

Figure 4: Total Number of Edges v/s Generated Prime

Paths

The sum of edges and number of prime paths for test

programs are 85 and 19 respectively. Therefore, the cost of all

edge testing is reduced by 77.6%. Figure 4 shows the

effectiveness of the proposed GATCG technique to reduce the

cost of all-edge testing by using the reduced number of the

prime paths set instead of all-edges of the OCFG of the test

programs.

5. CONCLUSIONS
In software testing, the generation of testing cases is one of

the key steps which have a great impact on the automation of

software testing. The challenging task of testing is to find a

subset of target paths that adequately represents the complete

set of all paths. In this paper GATCG algorithm based on the

principles of genetic algorithm has been proposed to generate

test cases (a subset of all the paths of the program) that

provide good coverage for all-edge testing criteria.

Experiments and results show that proposed GATCG not only

generates prime paths but also reduces the cost of testing. The

GATCG technique based on Genetic Algorithms, proposed in

the present work is an effective and efficient method of

generating test cases. However, some limitations of the

proposed technique have been found which are as follows:

The test case generation process starts with building CFG of

the program. In the present work, the CFG and OCFG of the

test program are manually constructed, which consumes more

85

19

0

10

20

30

40

50

60

70

80

90

Number of Edges Generated Prime Paths

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

27

time and reduces the test case generator’s proficiency. The

time required in the process could be reduced if a technique

for generating the CFG and OCFG through an automatic

process is developed. The fitness function used in the present

work evaluates the chromosomes and promotes the

chromosomes with high percentage of connected paths, to

pass on to the next generation. In future work, the authors

proposes to include some improvements in the fitness function

by including the identification and elimination of infinite

paths from the subset of prime paths, so as to improve the

existing testing criteria. The rundown of future work is also

likely to devise a system that generates test data to exercise

the prime paths.

6. REFERENCES
[1] Girgis, M. R., Ghiduk, A. S., & Abd-Elkawy, E. H.

(2014). Automatic Generation of Data Flow Test Paths

using a Genetic Algorithm. International Journal of

Computer Applications, 89(12), 29-36.

[2] Ahmed, M. A., & Hermadi, I. (2008). GA-based multiple

paths test data generator. Computers & Operations

Research, 35(10), 3107-3124.

[3] Groce, A. (2009). (Quickly) testing the tester via path

coverage. In Proceedings of the Seventh International

Workshop on Dynamic Analysis (pp. 22-28). ACM.

[4] Sy, N. T., & Deville, Y. (2001). Automatic test data

generation for programs with integer and float variables.

In Automated Software Engineering, 2001.(ASE 2001).

Proceedings. 16th Annual International Conference on

(pp. 13-21). IEEE.

[5] Gotlieb, A., & Petit, M. (2010). A uniform random test

data generator for path testing. Journal of Systems and

Software, 83(12), 2618-2626.

[6] Harman, M., & McMinn, P. (2007). A theoretical &

empirical analysis of evolutionary testing and hill

climbing for structural test data generation. In

Proceedings of the 2007 international symposium on

Software testing and analysis (pp. 73-83). ACM.

[7] Gupta, N., Mathur, A. P., & Soffa, M. L. (2000).

Generating test data for branch coverage. In Automated

Software Engineering, 2000. Proceedings ASE 2000.

The Fifteenth IEEE International Conference on (pp.

219-227). IEEE.

[8] Pargas, R. P., Harrold, M. J., & Peck, R. R. (1999). Test-

data generation using genetic algorithms. Software

Testing Verification and Reliability, 9(4), 263-282.

[9] Jones, B. F., Eyres, D. E., & Sthamer, H. H. (1998). A

strategy for using genetic algorithms to automate branch

and fault-based testing. The Computer Journal, 41(2), 98-

107.

[10] Lu, S., Zhou, P., Liu, W., Zhou, Y., & Torrellas, J.

(2006). Pathexpander: Architectural support for

increasing the path coverage of dynamic bug detection.

In Microarchitecture, 2006. MICRO-39. 39th Annual

IEEE/ACM International Symposium on (pp. 38-52).

IEEE.

[11] Hermadi, I., Lokan, C., & Sarker, R. (2010). Genetic

algorithm based path testing: challenges and key

parameters. In Software Engineering (WCSE), 2010

Second World Congress on (Vol. 2, pp. 241-244). IEEE.

[12] Parnami, S., Sharma, K. S., & Chande, S. V. (2012). A

Survey on Generation of Test Cases and Test Data Using

Artificial Intelligence Techniques. International Journal

of Advances in Computer Networks and its Security,

2(1), 16-18.

[13] Faezeh, S. Babamir, Esmaeil Amini, S. Mehrdad

Babamir, Ali Norouzi and Berk Burak Ustundag(2010),

Genetic Algorithm and Software Testing based on

Independent Path Concept, International Conference on

Genetic and Evolutionary Methods-GEM'10, The 2010

World Congress in Computer Science, Computer

Engineering and Applied Science, Las Vegas, Nevada,

USA, July 2010.

[14] Ghiduk, A. S. (2014). Automatic generation of basis test

paths using variable length genetic algorithm.

Information Processing Letters, 114(6), 304-316.

[15] Ahmed, M. A., & Hermadi, I. (2008). GA-based multiple

paths test data generator. Computers & Operations

Research, 35(10), 3107-3124.

[16] Sthamer, H., Wegener, J., & Baresel, A. (2002). Using

evolutionary testing to improve efficiency and quality in

software testing. In Proc. of the 2nd Asia-Pacific

Conference on Software Testing Analysis & Review.

[17] Sthamer, H. H. (1995). The automatic generation of

software test data using genetic algorithms (Doctoral

dissertation, University of Glamorgan).

[18] Gold, R. (2010). Control flow graphs and code coverage.

International Journal of Applied Mathematics and

Computer Science, 20(4), 739-749.

[19] Beizer,B. (1990), Software Testing Techniques, Second

Edition, Van Nostrand Reinhold Company Limited,

ISBN 0-442-20672-0.

[20] Singh, H. (2004). Automatic generation of software test

cases using genetic algorithms. a thesis in Thapar

University Patiala may2004.

[21] Faezeh, S. Babamir, Esmaeil Amini, S. Mehrdad

Babamir, Ali Norouzi and Berk Burak Ustundag(2010),

Genetic Algorithm and Software Testing based on

Independent Path Concept, International Conference on

Genetic and Evolutionary Methods-GEM'10, The 2010

World Congress in Computer Science, Computer

Engineering and Applied Science, Las Vegas, Nevada,

USA, July 2010.

[22] Gerritsen, M. (2008). Extending T2 with prime path

coverage exploration (Doctoral dissertation, Master’s

thesis, Dept. Inf. and Comp. Sciences, Utrecht Univ.,

2008. Available at: http://www. cs. uu.

nl/wiki/WP/T2Framework).

[23] Goldberg,D.E. (1989), Genetic Algorithms in Search,

Optimization and Machine Learning. Addison-Wesley,

Reading, Mass.

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

28

[24] Jones, B. F., Sthamer, H. H., & Eyres, D. E. (1996).

Automatic structural testing using genetic algorithms.

Software Engineering Journal, 11(5), 299-306.

[25] Lin, J. C., & Yeh, P. L. (2000). Using genetic algorithms

for test case generation in path testing. In Test

Symposium, 2000.(ATS 2000). Proceedings of the Ninth

Asian (pp. 241-246). IEEE.

[26] Alba, E., & Chicano, F. (2008). Observations in using

parallel and sequential evolutionary algorithms for

automatic software testing. Computers & Operations

Research, 35(10), 3161-3183.

[27] Sagarna, R., & Yao, X. (2008). Handling constraints for

search based software test data generation. In Software

Testing Verification and Validation Workshop, 2008.

ICSTW'08. IEEE International Conference on (pp. 232-

240). IEEE.

[28] Pei, M., Goodman, E. D., Gao, Z., & Zhong, K. (1994).

Automated software test data generation using a genetic

algorithm. Michigan State University, Tech. Rep, (1), 1-

15.

[29] Ghiduk, A. S., & Girgis, M. R. (2010). Using genetic

algorithms and dominance concepts for generating

reduced test data. Informatica, 34(3).

[30] Kumar, R. (2012). Blending roulette wheel selection &

rank selection in genetic algorithms. International

Journal of Machine Learning and Computing, 2(4), 365.

IJCATM : www.ijcaonline.org

