
International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.14, September 2015

28

Water-Filling: A Novel Approach of Load Rebalancing

for File Systems in Cloud

Divya Diwakar
Department of Information

Technology

SATI College,

Vidisha (M.P.), India

Sushil Chaturvedi
Department of Information

Technology

SATI College,

Vidisha (M.P.), India

S.K. Shrivastava, PhD
Department of Information

Technology

SATI College,

Vidisha (M.P.), India

ABSTRACT

File systems serves as the backend for cloud computing and

load balancing is the relevant issue in context of resource

utilization for distributed file systems in cloud. Prior to this, it

is fruitful to identify the load on the storage servers (nodes)

which is equivalent to number of file chunks it stored. Here is

an extension of load balancing i.e. water-filling load

rebalancing operated on distributed approach based on water-

filling methodology, contrasting all the earlier algorithms that

were grounded on centralized and distributed approaches, is

used for balancing the load on servers by distributing file

chunks making it more amplified to perform map reducing

tasks. Water-filling approach enhances the scope of algorithm

by calculating the total load exchange cost and rejoining cost

in terms of file chunks migrated. Besides this, distributed

approach, which employs self reliant load balancing on each

node, is preferred due to its effortlessness. In distributed

approach the node having highest and the lowest load is

preferred to exchange chunks but often not on least possible

load exchange cost. In this paper, an improved load

distribution task based on physical network locality

significance is calculated by water-filling algorithm, is used as

metric for minimizing the load exchange cost to improve the

load balancing for overcoming the shortcomings of

centralized and distributed approach. Experimental results

reports that water-filling load balancing algorithm is 81%

better in load distribution than distributed load rebalancing,

coagulates less load movement cost and even predicting

reduced rejoining cost for migration of chunks in the panoptic

environment of cloud.

General Terms

Parallel and distributed systems, file systems, Algorithms

Keywords

Cloud computing, distributed file systems, load balance,

water-filling.

1. INTRODUCTION
Cloud computing is the enthralling technology in the field of

computer science. Cloud is the provider of dynamic services

and is a collection of computing and communication resources

located over distributed datacenters that is shared among

different users. Reliability and scalability are the key features

of cloud and is achieved by using the compelling technologies

of cloud such as Map Reducing programming [1], distributed

file systems [2], virtualization [3], etc. Distributed file

systems for cloud applications provide the nodes for the

storage of files and computation over them. A file in

distributed file system is divided into number of chunks

allocated to specific node in order to perform map reduce task

parallel over the nodes. Load balancing is the major issue in

distributed file system. Load of a node refers to the number

of chunks stored on the node. Since nodes in cloud can be

dynamically upgraded, deleted or added in the file system and

files are also created, deleted and appended so load on the

nodes can vary, resulting in the non uniform distribution of

file chunks over the nodes which leads to load imbalance

state. In order to utilize the resources well and maximize the

performance of map reduce task, load among the nodes has to

be balanced. Hadoop distributed file system [4] (HDFS) and

Google file system [5] (GFS) are used to overcome the issue

of load balancing but they rely on single name node or master

node to manage metadata of the file systems and to balance

the load. This centralized approach is though easy to

implement but inefficient if number of files and its access

increase resulting in extra workload over the single central

node and thus, central node will become performance

bottleneck. Multiple name nodes architecture in HDFS has

also been designed but failed, as workload among the name

nodes can also change over times which lead to load

imbalance state among the name node.

A distributive approach to solve this load balancing problem

in structured peer to per systems[6],[7],[8],[9] has also been

proposed to allocate the file chunks as uniformly as possible

without relying on central node for load balancing task. The

basic idea of distributives approach was to offload the load

balancing task to the storage node so that an extemporaneous

balancing can be done by nodes thus eliminating the

dependency on central nodes. This approach also aimed to

minimize the movement cost caused by rebalancing the loads

on nodes to maximize the network bandwidth. The storage

nodes in this approach were structured using distributed hash

tables (DHT) [10],[11],[12] network in order to discover file

chunks on nodes by providing unique identifier to each chunk.

Rebalancing among the nodes is performed without having

global knowledge about the load of other nodes. The

previously used method for load balancing does not

considered the movement cost and node heterogeneity which

incur network traffic.

Distributive approach looked for the reduction of movement

cost and algorithm overhead of load distribution introduced in

distributed DHT network. In contrast to HDFS and GFS,

distributive approach of load rebalancing for distributed file

systems perform remarkably well in terms of load imbalance

factor, movement cost, and algorithm overhead. Therefore, we

propose a novel approach of load rebalancing using water

filling technique [13] for uniform load distribution same as

water distributes itself uniformly at uneven surface. Iterative

water filling algorithm is used in communication theory for

maximizing the power capacity on the sub channels of various

channel units in the network.

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.14, September 2015

29

 Water-filling algorithm is analogous to load balancing and

gives the idea of load distribution over light nodes to bring

their load at threshold by shedding load from heavy nodes

making even distribution of load on each node.

Contrasting all the other algorithms, this algorithm balances

the load of the nodes in distributed file systems with lesser

movement cost and less algorithm overhead. The idea

followed is that this algorithm introduced a method to search a

light node physically closet and having fewer loads to depart

thus reduces the iterations for load balancing in dynamic

environment. Lastly, the effectiveness of the proposed

algorithm is validated by various experiments and concludes

that the proposed algorithm can ultimately enhance the load

balancing ability of the distributive approach, decrease the

movement cost, algorithm overhead and finally reduce the

response time of the whole system.

2. RELATED WORKS
In context of load rebalancing for distributed file systems in

cloud several papers have been studied and few of them are

found relevant with our works which are summarized as

follows:

A. Rao et al. [14], worked for addressing the problem of load

balancing in heterogeneous p2p systems that provides DHT

abstraction distribute data among different peer nodes by

randomly selecting the nodes resulting in (OlogN)

imbalance. There work designs a load balancing algorithms

and presented three techniques of load balancing and their

optimality. First technique is implemented in the dynamic

systems involving continuous insertion and deletion of items.

Second technique is developing a theoretical underpinning of

proposed techniques and third technique is to build a

prototype of load balancing on top of Chord lookup system.

H. Shen et al. [15] presented the locality aware randomized

load balancing algorithm which took into account both

proximity [16] and dynamic features of DHTs [17]. For

dynamic feature randomized matching between heavy and

light nodes can be done .But they do not consider physical

proximity of node. There are locality-aware methods in load

balancing to deal with this problem but they are costly in

terms of network construction and maintenance. Their

algorithms distribute application load among the nodes by

“moving items” according to node capacities, as well as node

proximity information in topology-aware DHTs. They

provided a method. The proposed algorithm lifts up the

performance of key value caching system. They presented a

new scheme of load balancing for key value cache system in

cloud environment in consideration with the effect of load

balancing and the scope of invalid cache. Cache-invalidation-

scope model is established to improve the effect of load

balancing.randomized factor in the searching process to deal

with proximity. Also they improved the efficiency of load

balancing by d-way probing.

Hung-Chang Hsiao et al. [18], proposed the load rebalancing

algorithm for distributed file systems in cloud to cope up with

the problem of centralized approach of load balancing where

in the dynamic environment, nodes simultaneously serve

storage and computing, files are dynamically added, removed

and updated in the system ,load balancing done by central

load balancer by dividing the file into chunks and reallocating

on different nodes, is put under considerable workload,

becomes performance bottleneck and lead to single point

failure. They proposed the distributed load rebalancing

algorithm which is compared against a centralized approach in

terms of load imbalance factor, movement cost and

algorithmic overheads. Their simulation worked to search for

light and heavy weighted nodes where weight resembles the

number of file chunk on each node depending on threshold

and their algorithm outperforms to balance the load among the

nodes by chunks transfer among nodes without any central

load balancer.

 Revathy R et al. [19] gave new idea of efficient load

rebalancing for distributed system in cloud. Their other

objective was to reduce the network inconsistencies and

network traffic responsible to load imbalance factor among

hundreds of nodes. The reduction of network inconsistency

can result in maximization of network information measure in

order that large applications will run in it. Because of property

of quantifying they are able to add, delete, and update new

nodes in order that it supports heterogeneity of the system.

Their proposal worked to balance the load of nodes and scale

back the demanded movement price the maximum amount as

potential, whereas taking advantage of physical network

locality and node heterogeneity. Leave space for vendors to

boost and optimize a completely unique load balancing

algorithms to modify the load-rebalancing drawback in large-

scale, dynamic, and distributed file systems in clouds has been

conferred during their work. Best algorithmic rule is

commonly topology specific.

Tao Wang et al. [20] presented a new approach in which load

balancing algorithm is combined with greedy algorithm; the

scheme provided a better and efficient load balancing

algorithm for various load cases (CLB). CLB algorithm uses

entropy and the scope of invalid cache as the rating basis of

load balancing outcome. In this paper, a cache-invalidation-

scope model based on the improved consistent hash algorithm

is taken into consideration. The overall objective was to

improve the existing consistent hash algorithm and make it

suitable for load balancing, besides, a cache invalidation-

scope model is proposed providing a favourable load

balancing method. The proposed algorithm increased the

performance of key value caching system. They put forth a

new scheme of load balancing for key value cache system in

cloud environment in consideration with the effect of load

balancing and the scope of invalid cache. Cache-invalidation-

scope model is established to improve the effect of load

balancing.

3. PROPOSED ALGORITHM
 Let the set of chunk servers denoted as C in distributed file

systems in a cloud, where the cardinality of C is |C| = n.

Typically, n can be 1,000, 10,000, or more. Let the set of files

is denoted as F stored in n chunk servers. Each file Ff  is

partitioned into a number of disjointed, fixed size chunks

denoted by Cf . The load of a chunk server is proportional to

the number of chunks hosted by the server.

Load distribution is the assigning of file chunks to the nodes

in order to achieve even number of chunks on each node.

Load exchange cost is the total number of file chunks

migrated from one node to another. Rejoining cost is the

number of hops a node traveled from its initial to new position

in DHT network.

Let Ã be the ideal number of Chunks that any Chunk server

is required to manage in any system-wide load-balanced state

That is,

 nÃ
Ff

fC


 (1)

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.14, September 2015

30

Then, our load rebalancing algorithm aims to minimize the

load imbalance factor in each chunk server i as follows:

 ÃLi  (2)

Where Li denotes the load of node i (the number of file

chunks hosted by i) and  represents the absolute value

function. The DHT lookup operation is performed to discover

the file chunk implemented with Chord or pastry protocol.

Nodes and chunks have unique id with adjacent node id are

geometrically close using space-filling curve technique [21].

If node departs, its load is migrated to its successor and if

node joins it allocates with load from its predecessor in DHT

network.

Nodes in network implements Gossip based aggregation

protocol [22] to collect the statuses of a sample of randomly

selected nodes and built a vector S. A vector consists of node

entries, node id and its load status. Using gossip-based

aggregation protocol nodes can share its vector entries with

neighbors.

The algorithm 1 and algorithm 2 detail waterfilling load

balancing proposal as follows:

3.1 Algorithm 1: Seek (heaviest node j

seek light node i to relieve its load)
Input: Vector S of s node entries, Average load A , ΔL and

ΔU are system parameters such that 10 ΔL  and

10 ΔU 

Output: Under loaded node i in S.

Step 1 Calculate the Average load A of s nodes in S as

estimation of Ã.

Step 2 Calculate whether the node in S is under loaded or

overloaded as follows:

A node is under loaded if Number of chunks <  A 1 ΔL

A node is over loaded if Number of chunks >  A 1 ΔU

Step 3 Let Ui be the sorted list of under loaded nodes with

load li and O j be the sorted list of overloaded nodes with

load l j in descending order in S.

Step 4 Calculate the load of top- O j (node with maximum

load) to shed on node i in Ui as follows:

Alj
exch
ol  (3)

Step 5 Calculate the load exchange cost between each node in

Ui and top- O j as follows:





m

1j
err(i)exch

ol)Hopcount(j(i)Costobj (4)

 Where Hop Count (j) is total the number of hopes the chunk

has to travel from top O j to i and m is number of nodes.

A err(j) ll i1i   (5)

Step 6 Find Minimum value of (i)Costobj from list of costs

and its linked node i .

Step 7 Output i

3.2 Algorithm 2: Migrate (file chunks

migrates from node j to node i)

 Input: An under loaded node i and an overloaded node j

Output: Al j 

Step1 i migrate its locally hosted chunks to i +1.

Step2 i leaves the system and re-join the system as j ’s

successor by having 1ji  .

Step3 if 2Alj 

 then At 

 else

 Al jt 

i Allocates t chunks with consecutive ids from j

Step4 j removes the chunks allocated to i and renames its id

in response to the remaining chunks it manages.

Algorithm 1 seeks the light node in the system for shedding

the load of heavy node using water-filling technique of

calculating the total amount of water to spread over the

uneven surface and amount of surface area to shed to bring it

to unique water level.

Algorithm 2 migrate the load of the heavy load onto the

searched light node in same way as water-filling technique

spread the water to fill the particular area of uneven surface .

This proposal is distributed since all the nodes perform both

the algorithm simultaneously without any global knowledge.

Both the algorithm repeats iteratively for each heavy node in

system by all the nodes to release the extra load in system.

Load balancing algorithm is performed periodically and in

parallel by nodes in the system and put their best effort to

minimize the movement cost and time complexity in

performing the algorithm in dynamic environment.

Example: Fig 1 shows a working example of our proposed

work. There are 10 chunk servers N1, N2, N3, N4 ,N5 ,N6,

N7, N8, N9, N10 and assume ΔL and ΔU be 0. Each node

perform load balancing independently and we choose N1 as

example to explain the work. Let N1 generate its sample

vector with node entries {N3, N6, N8, N9}.Based on this

sample calculate average load,

5N9N8N6N3N1A  (6)

and finds the heavy node to share its load. Let N9 found itself

as heavy node, then it search for all light node to shed its load,

here N1 and N3 are light node. It calculate the load exchange

cost with both light node and request the load having

minimum load exchange cost to share its load. Here N3 has

min exchange cost so it shed its load to its successor N4 and

rejoin the system as successor of N9. N3 allocate minimum

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.14, September 2015

31

Fig1. An example illustrating proposed algorithm where (a) initial load on storage nodes N1, N2….N10 (b) N1 sample the load

of N3, N6, N8, N9 (c) N 3 leaves and transfer its load to its successor N4 and rejoins as successor of N9 by allocating A chunks

from N9 (d) N4 collect sample N2, N5, N7, N8 (e) N4 migrate and transfer its load to N5 and then rejoin as successor of N8 by

allocating A chunks.

Min A}A,LN9{  chunks from N9. Suppose N4 is also

performing load balancing with random samples {N2, N5, N7,

N8} and N8 determine to shed its load with N4 and N4

transfer its load to N5 and rejoin as successor of N8.

4. EXPERIMENTAL RESULTS AND

ANALYSIS
The performance of the proposed waterfilling algorithm is

evaluated to rebalance the load for distributed file system

through simulation on MATLAB 2013rb implemented on

Intel (R) Core (TM)2 Duo CPU T6600@ 2.2 GHz, 2 GB

RAM and 64 bit Window 7 home basic operation system.

This proposal is carried out based on Chord DHT protocol

[10] and gossip-based aggregation protocol [21]. To the best

of our knowledge, no realistic workload s available .So, the

number of nodes and file chunks in system may vary. In the

default setting, number of nodes n= 50 and number of file

chunks f = 500. System parameters ΔL = 0.3 and ΔU = 0.2.

Sample vector S of each node consist of 10 sample nodes. The

nodes simulated have identical capacity. The simulating result

of load distribution for given workload is shown in Fig 2.

Indicating uniformity of load distribution in waterfilling

proposal is more than the previous approach.

The proposed waterfilling algorithm is compared with the

previous distributed approach of load rebalancing for

distributed file system. The simulation results in Fig 3.shows

that the proposed waterfilling algorithm remarkably

outperforms pervious distributed load rebalancing algorithm

in terms of load imbalance factor. A variance near to zero

indicates that the number of chunks on each node is identical.

The waterfilling proposal converge in 60 iterations while

previous approach took 200 iterations to complete the

balancing with 6 times more variance value, indicating more

the response time and less uniform distribution than the

waterfilling approach.

Fig. 2 Load Distribution

Fig 4 shows the load exchange cost at nth iteration of

distributed algorithm and waterfilling load rebalancing

algorithm. Distributed algorithm has 4 times more load

exchange cost than waterfilling algorithm. The proposed

waterfilling algorithm search for most physically closed

underloaded node in Chord ring and prior calculate and select

the consequent extra load on its successor resulting in

minimum load exchange cost in this waterfilling design.

Load >A Node Overloaded

Load<A Node Underloaded

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.14, September 2015

32

Fig. 3 Load Distribution Variance

Fig 4 Load exchange cost at nth iteration

In contrast to distributed approach where top overload and top

underloaded node exchange the load without considering

physical network locality resulting in more movement cost.

Fig 5 describes the result of load exchange cost up to nth

iterations indicating that waterfilling proposal took 60

iterations to converge near to zero value with lesser load

exchange cost for uniformity in contrast to previous

algorithm.

Fig 5 Load exchange cost after n iterations

Both the approaches depends on Chord DHT network where

nodes may leave and join the network for load rebalancing

thus increasing the overhead of rejoining operations. Fig 6

shows the rejoining cost at nth iteration in distributed

approach and the proposed waterfilling algorithm. It shows

that distributed approach has 0.5 times more rejoining

operation than proposed waterfilling algorithm. Since

waterfilling algorithm rejoins light nodes as successor of

heavy node more precisely than distributed algorithm. Fig 7

describes the result of rejoining cost up to nth of iterations,

showing convergence of waterfilling proposal in 60 iterations

with less rejoining cost than previous algorithm still striving

to converge in 200 iterations.

Both the distributed approach and proposed waterfilling

algorithm have similar message overhead since both

algorithm gather partial system information about their

neighbors. For each experimental run calculation was done to

evaluate the time elapsed to complete the load rebalancing

algorithms, both for waterfilling proposal and distributed

algorithm. Approx 10 experimental runs were performed for a

given workload and calculated the average time required for

executing a load rebalancing algorithm. It was find that on the

Fig 6 Rejoining cost at nth iteration

Fig 7 Rejoining Cost after n iterations

basis of the number of storage nodes and number of file

chunks distributed, the proposed waterfilling algorithm

performs well by less time consumed than previous algorithm

because the number of iterations our proposal took to balance

the load completely is much lesser than the previous

algorithm resulting in less time to generate the results.

Three replicas of file chunks is assumed and average values of

load exchange cost , rejoining cost, variance and time elapsed

in experimental run has been calculated for 10 runs in

waterfilling experiment. For different workload, number of

file chunks nodes can be changed in waterfilling proposal for

further experiments.

5. CONCLUSION AND FUTURE WORK
Load balancing is prone to more research and development in

areas of distributed file systems in cloud. There are numerous

load balancing approaches among which distributed approach

is preferred most favorably by researchers due to its clarity

and easy convergence. Despite of having these characteristics,

Distributed approach has some shortcomings. In distributed

approach, the node which is having maximum and minimum

load is chosen for exchanging load. But, there is no surety that

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.14, September 2015

33

these be the nodes nearest in the network. Moreover, the load

on the successor light node is unpredictable and prone to

increase the rejoining cost. Both the method, distributed and

centralized ensures optimal load balancing but the accuracy is

not remarkable; also this method cannot accommodate large

number of file accesses in the real world workload.

The concept of the novel and enhanced load rebalancing

based on water-filling model has been proposed. Here, the

movement cost and rejoining cost are added to calculate the

total load exchange cost. The main objective to reduce the

movement cost of file chunks incurred during load balancing

in the physical network by prior calculating the cost of

exchanging the load and error (extra) load in future. Though

this fusion of water-filling and distributed approach cannot

tolerate possible workload in real world but it results in better

load distribution as compared to the algorithms in file systems

like HDFS, GFS, and all discussed in the previous section. In

the future, load balancing can further be enhanced using node

heterogeneity and replica of file chunk management into

consideration in the panoptic environment of cloud.

6. REFERENCES
[1] J. Dean and S. Ghemawat Dec. 2004. “MapReduce:

Simplified Data Processing on Large Clusters,” In Proc.

6th Symp. Operating System Design and Implementation

(OSDI’04), 137–150.

[2] “Hadoop Distributed File System”, http:// hadoop.

apache. org/hdfs/.

[3] “VMware”, http://www.vmware.com/.

[4] “Hadoop Distributed File System”, “Rebalancing

Blocks,”http://developer.yahoo.com/hadoop/tutorial/mod

ule2.html#rebalancing.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung Oct. 2003,

“The Google File System,” In Proc. 19th ACM Symp.

Operating Systems Principles (SOSP’03), 29–43.

[6] D. Karger and M. Ruhl June 2004. “Simple Efficient

Load Balancing Algorithms for Peer-to-Peer Systems,”

In Proc. 16th ACM Symp. Parallel Algorithms and

Architectures (SPAA’04), 36–43.

[7] J. W. Byers, J. Considine, and M. Mitzenmacher Feb.

2003. “Simple Load Balancing for Distributed Hash

Tables,” In Proc. 1st Int’l Workshop Peer-to-Peer

Systems (IPTPS’03), 80–87.

[8] G. S. Manku July 2004. “Balanced Binary Trees for ID

Management and Load Balance in Distributed Hash

Tables,” In Proc. 23rd ACM Symp. Principles

Distributed Computing (PODC’04), 197-205.

[9] Q. H. Vu, B. C. Ooi, M. Rinard, and K.-L. Tan, Jan.

1959. “Histogram-Based Global Load Balancing in

Structured Peer-to-Peer Systems,” IEEE Transactions on

Knowledge and Data Engineering, 11(1), 34–39.

[10] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M.

F. Kaashoek, F. Dabek, and H. Balakrishnan Feb. 2003.

“Chord: a Scalable Peer-to-Peer Lookup Protocol for

Internet Applications,” IEEE/ACM Transactions on

Networks, 11(1), 17–21.

[11] A. Rowstron and P. Druschel Nov. 2001. “Pastry:

Scalable, Distributed Object Location and Routing for

Large-Scale Peer-to-Peer Systems,” LNCS 2218, 161–

172.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian Oct. 2007.

P. Vosshall, and W. Vogels, “Dynamo: Amazon’s

Highly Available Key-value Store,” In Proc. 21st ACM

Symp. Operating Systems Principles (SOSP’07), 205–

220.

[13] Daniel Pérez Palomar, Member, and Javier Rodríguez

Fonollosa Feb 2005. “Practical Algorithms for a Family

of Waterfilling Solutions,” IEEE Transactions on signals

processing, 53(2), 686-695.

[14] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I.

Stoica Feb. 2003. “Load Balancing in Structured P2P

Systems,” In Proc. 2nd Int’l Workshop Peerto- Peer

Systems (IPTPS’02), 68–79.

[15] H. Shen and C.-Z. Xu June 2007. “Locality-Aware and

Churn-Resilient Load Balancing Algorithms in

Structured P2P Networks,” IEEE Transactions on

Parallel and Distributed Systems, 18(6), 849–862.

[16] Y. Zhu and Y. Hu Apr. 2005. “Efficient, Proximity-

Aware Load Balancing for DHTBased P2P Systems,”

IEEE Transactions on Parallel and Distributed Systems,

16(4), 349–361.

[17] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp,

and I. Stoica Mar. 2006. “Load Balancing in Dynamic

Structured P2P Systems,” Performance Evaluation,

63(6), 217–240.

[18] Hung-Chang Hsiao, Hsueh-Yi Chung, HaiyingShen, and

Yu-Chang Chao May 2013. “Load Rebalancing for

Distributed File Systems in Clouds,” IEEE Transactions

on Parallel and Distributed Systems, 24(5), 951-961.

[19] Revathy R, A.Illayarajaa May. 2013. “Efficient Load Re

Balancing Algorithm for Distributed File Systems,”

International Journal of Innovative Technology and

Exploring Engineering, 2(6), 135-138.

[20] Tao Wang, Xin Lv, Fang Yang, Wenhuan Zhou,

Rongzhi Qi, HuaiZhi Su Nov 2014 . “A Load balancing

scheme for distributed key-value caching system in cloud

environment,” In Proc. 13th Symp. Distributed

Computing and Applications to Business, Engineering

and Science (DCABES’14), 63-67.

[21] H. Sagan 1994. “Space-Filling curves,” Springer.

[22] M. Jelasity, A. Montresor, and O. Babaoglu Aug. 2005.

“Gossip-Based Aggregation in Large Dynamic

Networks,” ACM Transactions on Computer Systems,

23(3), 219–252.

IJCATM : www.ijcaonline.org

http://www.vmware.com/

