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ABSTRACT 

In this paper, fingerprint image is mathematically modeled by 

using a 2D sinusoidal function in a local window of size 

32x32. The estimated ridge distance is then found by using 

the Levenberg-Marquardt gradient descent method. From test 

images, it has been found that the error percentage is 5% or 

less for fingerprint images of good to moderate quality with 

ridge distances between five and 20 pixels corrupted with zero 

mean white Gaussian noise of variance levels between zero 

and 1. 
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1. INTRODUCTION 
Fingerprint ridge orientation estimation and ridge distance 

estimation remain two important steps in fingerprint image 

enhancement. Ridge distance refers to the average pixel 

distance between ridges. It can also be called ridge frequency 

obtained by computing the number of cycle per pixel. Finding 

the right ridges estimation algorithm for embedded 

environment is a vital part of automatic embedded fingerprint 

identification system (FIS) [1]. It is important to estimate the 

ridge distance for improving the performance of an automated 

FIS as ridge distance is one of the important parameter in 

fingerprint enhancement [2]. 

 

Many literature have proposed ridge distance estimation and 

can broadly be categorized into two methods: spatial domain 

and spectral domain. Both methods use image blocks, the 

latter in addition, transforms the blocks into frequency domain 

for the ridge distance estimation. In [3] geometric approach 

and spectral approach in estimating the ridge frequency were 

introduced. In the geometric approach the central points of the 

ridges have been estimated on a regular grid and a ridge 

direction have been extracted. The distance between two 

ridges is found along the line normal to the ridge direction. 

The spectral approach uses the harmonic coefficients of the 

discrete Fourier transform (DFT) based on a radial 

distribution function. This is different from the conventional 

spectral approach using the peak spectral power in computing 

the ridge frequency such as in [4]. 

 

While in [1,5], statistical method has been used. The statistical 

method determines the ridge distance distribution in each 

block image through a histogram. It detects all possible peaks 

and calculates the intervals in the histogram as the ridge 

distance. Other similar methods that used peak intervals as 

well as valley intervals by utilizing the wavelike signature of 

the fingerprint in the estimation of the ridge distance within an 

oriented local window can be found in [6,7,8].  From the work 

in [9], mathematical characterization using 2D sinusoidal 

signal has been used. The calculation of local frequency uses 

the magnitude of all partial derivatives up to the order of two. 

In this paper, fingerprint image is mathematically modeled by 

using a 2D sinusoidal function in a local window of size 

32x32. The estimated ridge distance is then found by using 

the Levenberg-Marquardt gradient descent method (LMGD). 

The method described is easy to formulate and understand as 

gradient descent method has been widely used in many 

applications. The LMGD algorithm is a heuristic to improve 

the convergence time and it especially useful in nonlinear 

optimization problem such as this.  

2. METHODOLOGY 
Let the intensity image in the range between zero and one of a 

fingerprint image be denoted by f(x,y). The image is 

partitioned into non-overlapping blocks of size wxw (in this 

work w=32). Each of the blocks can mathematically be 

modeled as a 2D sinusoidal function given by 

f(x,y;,,) = 0.5sin(a+)+0.5                                            (1) 

where a = xcos + ysin,  is the spatial frequency of the 

sinusoidal grating,  is the orientation of the normal to the 

grating, and  is the amount of phase shift. Note that  = 2/T 

where T is the ridge distance. 

Let the image I be a representation of a typical fingerprint 

image that has been corrupted by noise. Then the aim is to 

find estimations for,  and  which minimize the square 

error given by 

e(,,) = ( fI )2                                                                   (2) 

To solve the problem, let the vector X = [cos sin ]T. 

Hence, the vector representation of Eq. (1) is now given by 

f(A;X) = 0.5sin(AX)+0.5                                                        (3) 

where A = [x y 1]. It is well known that an estimation of the 

local orientation  using block operation can be computed by 

using 
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where u,vwxw defines all the points in the 2D region of size 

wxw while gx and gy are the gradients in the directions x and y, 

respectively [6,10,11]. As the parameter   can independently 

be computed, it can be taken out from the vector X and Eq. 

(3) can be remodeled such that X = [ ]T  and A = 

[xcos+ysin  1]. To solve for  and , LMGD method 

[12,13] is used. The algorithm in general, is as follows: 

1. Let an initial guess to the solution be X(0) = [(0) (0)]T. 
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Let an initial tuning parameter be  = (0). 

2. For j>0, the subsequent X is found by using  

X(j+1)=X(j)-[H+diag(H)]-1D                                      (5) 

where H = ffT  represents the Hessian matrix and D = 

(fI)f  is the derivative of e.  is an adjustable 

parameter according to the rules below. 

3. If e(X(j+1))>e(X(j)), then X(j+1) = X(j) and  = 10. 

Else,  = /10. 

4. Repeat step 2. Stop when X has converged. 

The initial guess X(0)  to be employed in the algorithm is 

crucial while the parameter  is actually a tunable step size for 

this convergence to occur. To make sure an appropriate initial 

guess is used, the space of  and  is first partitioned 

according to: 1) partition of  = {2/T|5T20} valid for 

T={5,6,8,11,15,20} and 2) partition of  = {0o,90o,180o,270o}.   

An estimation to [(0) (0)] taken at discrete points of the 

partitions are found by solving Eq. (6). 

Min e(,) = ( fI )2                                                              (6) 

Finally from the estimated value of  after applying LMGD 

method, the estimated ridge distance (or the ridge period Te) is 

as revealed in Eq. (7). 

Te = 2/ (in pixels)                                                              (7) 

Note that although by definitions, the ridge distance and ridge 

period are not the same [3]. In this paper, it is used 

interchangeably as is commonly found in most literatures. 

3. RESULTS AND DISCUSSION 
2D sinusoidal functions corresponding to locally windowed 

fingerprint images have been generated as test images and 

then corrupted by additive zero mean white Gaussian noise 

(ZWGN) of variance 2 as given by Eq. (8). 

I(x,y) = f(x,y) + ZWGN(2)                                                   (8) 

where ZWGN(2)~N(0, 2).  The range of each variable used 

to generate the test images is:  

i) range of  = {2/T|5T20} with step size of 0.5,  

ii) range of   = {0o<180o} with step size of 10o,  

iii) range of  = {0o<360o} with step size of 10o, and  

iv) range of 2 = {021} with step size of 0.1. 

Ridge distances of three to 20 pixels, and three to 25 pixels, 

respectively are stated to be reasonable values to be used in 

typical 500 dpi fingerprint images [3,6]. Adjacent ridges are 

expected to be located eight to 12 pixels apart [14] in 500dpi 

images and 10 pixels has been observed as the average ridge 

distance [6,7,14,15,16]. In this paper, the range T used was 

Tmin=5 pixels and Tmax=20 pixels, which was based on half 

and doubling of the average ridge frequency 1/T which was 

also used in [16]. This range stood comfortably within the 

common ridge distances mentioned. 

For each ridge distance at different levels of noise variance, 

the percentage of error is calculated by averaging over all  

and  given by Eq. (9). 

%error% 100



T

TT e
                                              (9) 

Fig. 1 shows the test images generated via ridge distance of 10 

pixels, orientation of 0o, phase shift of 0o and corrupted by 

different levels of noise variance.  

 

Fig. 1: Test images with noise levels 2=0 (top-left), 2=0.2 

(top-right), 2=0.5 (bottom-left) and 2=0.8 (bottom-right).  

Fig. 2 shows the graphs of error percentage corrupted by 

different levels of noise variance of 0, 0.2, 0.5 and 0.8. It also 

shows the error percentage of other commonly used methods 

(for comparison) as described in Table 1. The complete data 

of all ridge distances and noise levels are as attached in Table 

2, Table 3, Table 4, and Table 5. 

Table 1. Methods and descriptions 

Methods Descriptions 

 

 

 

A 

A spectral analysis method using Fourier 

transform (FT). The estimated ridge distance is 

found by using 

Te =1/f , 22 )()( opkopk vvuuf   

where (upk,vpk) and (uo,vo) are the coordinate 

points corresponding to the peak FT spectral 

and the DC value, respectively. For example, 

similar work can be found in [3,4]. 

 

 

 

 

B 

A spectral analysis method using FT. The 

estimated ridge distance is found by using radial 

distribution according to 
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where Cr is the number of elements in the set 

of coordinates (u,v) satisfying 

22 )()( oo vvuur    and  G(u,v) is the 

FT. For example, similar work can be found in 

[3,5]. 

 

 

 

 

C 

A spatial domain method. The ridge lines are 

either projected along its orientation direction or 

its grey-levels profile is found in the direction 

orthogonal to the orientation [1,3,5,6,7]. This 

method is used due to the periodic nature of the 

ridges. The estimated ridge period may be found 

by using 




N

i
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)( where Ri and Vi 

are the ridge width and valley width [3] . 
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(a)  

 

(b)  

 

(c) 

 

(d) 

Fig. 2: Percentage of error for ridge distances 5 to 20 with 

noise variance a) 2=0, b) 2=0.2, c) 2=0.5, d) 2=0.8 

 

Fig. 3:  Overall percentage error based on noise variance 

for ridge distance 5 to 20 pixel 

It has been observed that the proposed method consistently 

scored at percentage of error of at most 5% which is lower as 

compared to other methods as shown in Fig. 2(a-c) with the 

exception when the images are highly corrupted (noise 

variance 0.7 and above) in Fig. 2d. The overall error 

percentage averaged over all the ridge distances is as 

illustrated in Fig. 3 and shows low error (5%) below noise 

variance of around 2=0.7. Shorter and larger ridge distances 

might not occurred as frequently as the average ridge distance 

is about 10 pixels, and thus the error percentage might be 

much lower than observed. Adjacent ridges are expected to be 

located eight to 12 pixels apart in 500dpi images with an 

average of 10 pixels [14]. The proposed method is 

consistently better than Methods A, B and C unless the noise 

variance gets too high (0.7 and above). With the assumption 

that majority fingerprint images are of good to moderate 

qualities, the proposed method would on average be the best 

in keeping the error in ridge distance low. 

The time complexity graph is as shown in Fig. 4. The average 

time consumed is 6.9ms, 22.4ms, 6.7ms and 8.1ms, 

respectively. The proposed method shows increment in time 

complexity as noise variance increases. Method A is 

consistent in its time complexity while although Method C is 

the faster, the error percentage increases almost linearly 

beyond a certain noise variance. This is due to the difficulty to 

reliably detect consecutive peaks of gray-levels in noisy 

fingerprint images using the spatial projection method [17]. 

 

Fig. 4: Time complexity 
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Fig. 5: Fingerprint F0001_01 NIST-SD4 

 

Fig. 6: Fingerprint F0002_05 NIST-SD4 

Fig. 5 and Fig. 6 show the results on two real fingerprint 

images taken from NIST special database 4 (NIST-SD4) [18]. 

In real fingerprint images, where the quality of the blocks may 

vary, interpolation and lowpass filtering may be used to 

estimate the ridge distance over a neighborhood of the 

corrupted regions [6]. The final estimated ridge distances 

depicted have been median filtered about its neighborhood 

and then rounded for display. Segmentation has also been 

done to omit background regions. All simulations are carried 

in Matlab using 32-bit, 2038MB RAM, Duo 1.5GHz Intel 

Core Windows Vista. 

4. CONCLUSION 
The authors have applied mathematical modeling for the 

estimation of ridge distance using test images that represent 

local characteristic of fingerprints using LMGD method. The 

performance is evaluated with the test images corrupted with 

ZWGN over noise variance between 0 and 1 using the 

percentage error as the indicator. The proposed method has on 

average 5% or less in percentage of error for good and 

moderate quality images over a range of ridge distances 

between five and 20 pixels, suitable for typical for fingerprint 

images at 500 dpi of resolution with average ridge distance of 

10 pixels. 
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6. APPENDIX 

Table 2. Error percentage of ridge distance corrupted by different noise variance for Method A 

 Noise variance 

Ridge distance 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

5 3.02 3.04 3.09 3.05 3.08 3.07 3.12 3.10 3.04 3.07 3.14 

6 3.81 3.70 3.64 3.61 3.55 3.49 3.47 3.36 3.46 3.43 3.24 

7 2.59 2.92 3.01 3.09 3.12 3.03 3.03 3.03 3.08 3.05 3.21 

8 3.64 3.14 2.98 3.14 2.94 2.99 3.01 2.86 3.07 2.80 2.98 

9 2.49 3.03 3.13 3.19 3.11 3.18 3.36 3.01 3.16 3.38 3.37 

10 1.53 1.98 2.31 2.48 2.51 2.72 2.61 2.93 2.65 2.70 2.74 

11 2.23 2.33 2.48 2.50 2.65 2.81 2.91 2.91 2.78 2.83 2.99 

12 3.15 2.67 2.84 2.77 3.00 3.06 3.11 3.07 3.13 3.10 3.14 

13 4.81 4.28 3.99 3.81 3.78 3.77 3.63 3.84 3.83 3.62 3.22 

14 2.12 2.08 2.01 2.13 2.07 2.11 2.19 2.39 2.52 2.63 2.58 

15 4.79 4.78 4.57 4.44 4.06 3.81 3.78 3.79 3.79 3.80 3.58 

16 1.22 1.38 1.51 1.68 2.02 1.96 2.27 2.09 2.07 2.45 2.09 

17 4.56 4.06 3.98 3.94 3.74 3.97 3.62 3.96 3.55 3.82 3.66 

18 3.64 3.58 3.76 3.70 3.52 3.64 3.35 3.36 3.07 3.44 3.36 

19 2.24 2.65 2.73 2.84 2.90 3.07 3.16 3.17 3.25 3.27 3.28 

20 3.28 2.78 2.65 2.63 3.06 2.78 2.94 2.81 2.63 3.04 2.66 

 

Table 3. Error percentage of ridge distance corrupted by different noise variance for Method B 

 Noise variance 

Ridge distance 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

5 3.56 3.62 2.91 2.77 1.57 9.12 11.91 26.76 24.98 54.33 38.95 

6 2.00 2.73 3.92 4.72 5.28 1.92 0.82 6.25 9.74 7.65 20.24 

7 2.57 2.37 3.20 3.76 6.00 4.90 0.63 2.19 1.87 0.46 1.77 

8 3.27 3.01 2.22 4.76 5.09 5.01 5.18 5.33 4.86 5.93 4.13 

9 2.18 2.13 2.68 3.86 5.74 4.51 6.62 7.80 3.21 7.77 3.57 

10 3.10 1.18 0.82 1.93 2.38 2.50 4.33 3.65 5.69 6.66 2.52 

11 1.07 0.87 0.72 0.35 0.98 2.25 3.66 1.11 1.24 3.95 3.17 

12 2.36 1.95 1.24 1.19 0.41 0.71 1.74 3.61 3.28 6.31 6.50 

13 1.84 0.84 1.00 1.16 1.73 2.26 3.26 4.64 4.23 3.58 4.94 

14 1.80 1.31 1.00 0.97 1.59 1.55 1.64 2.75 2.11 1.57 2.62 

15 1.11 0.54 1.10 0.13 1.23 1.03 2.19 0.78 1.61 1.80 3.05 

16 0.26 0.35 1.01 2.72 1.83 1.38 1.72 1.75 3.70 0.18 0.92 

17 3.61 3.13 2.20 3.07 2.83 2.44 2.63 3.98 0.78 1.34 0.83 

18 7.23 7.07 6.58 6.06 5.38 4.76 3.56 4.24 2.94 2.62 1.04 
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19 4.36 3.82 3.74 3.54 3.33 3.61 3.42 3.39 2.37 2.60 1.43 

20 2.72 2.80 3.15 3.23 3.88 3.35 3.79 3.72 3.25 3.20 2.88 

 

Table 4. Error percentage of ridge distance corrupted by different noise variance for Method C 

 Noise variance 

Ridge distance 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

5 0.32 0.21 0.31 0.50 1.02 1.52 2.55 4.13 5.24 5.07 7.23 

6 0.32 0.09 0.02 0.24 0.99 2.23 3.73 6.41 8.76 11.60 13.45 

7 0.28 0.11 0.03 0.24 1.55 3.44 7.01 10.55 13.18 15.50 18.36 

8 0.51 0.27 0.17 0.50 2.33 4.59 9.76 13.86 18.72 21.51 24.36 

9 0.62 0.14 0.30 0.86 3.58 7.22 13.91 18.92 23.41 26.73 29.91 

10 0.63 0.51 0.23 1.50 5.10 10.55 16.17 22.98 28.01 32.03 34.15 

11 0.76 0.58 0.19 1.96 7.06 14.35 20.74 27.56 32.76 34.65 41.35 

12 0.83 0.54 0.00 3.11 8.88 16.40 23.62 32.10 37.62 40.86 44.87 

13 0.59 0.56 0.85 5.17 12.63 20.38 29.75 36.46 42.77 45.78 49.77 

14 0.82 0.79 1.52 5.79 14.47 22.47 33.82 39.12 44.74 48.94 52.61 

15 0.80 0.67 1.54 8.06 18.08 30.09 39.16 43.96 47.09 53.28 54.94 

16 1.11 0.46 2.51 10.91 21.88 29.99 39.66 47.42 52.57 56.37 56.99 

17 1.27 0.66 4.16 13.72 25.18 34.64 45.18 49.30 54.29 58.83 61.26 

18 1.85 0.75 3.69 15.97 26.16 37.73 45.87 52.43 55.57 61.52 61.85 

19 1.66 0.14 4.93 17.94 31.03 43.31 50.22 55.42 59.07 62.48 64.15 

20 1.70 0.16 6.73 19.91 36.04 46.11 52.70 57.93 61.76 61.59 64.84 

 

Table 5. Error percentage of ridge distance corrupted by different noise variance for the Proposed Method 

 Noise variance 

Ridge distance 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

5 0.02 0.02 0.02 0.03 0.06 0.99 2.70 8.65 11.40 16.07 24.95 

6 0.01 0.02 0.04 0.01 0.04 0.48 1.59 3.72 5.74 10.65 14.78 

7 0.01 0.06 0.16 0.28 0.74 2.67 5.84 8.39 12.62 11.46 16.97 

8 0.00 0.02 0.05 0.13 0.07 0.51 1.61 3.64 5.66 6.23 8.86 

9 0.00 0.06 0.08 0.10 0.01 1.57 2.95 3.92 8.45 7.49 8.16 

10 0.00 0.09 0.21 0.35 0.48 1.84 1.26 2.68 5.09 5.18 6.25 

11 0.00 0.03 0.14 0.33 0.74 1.70 1.41 1.82 2.79 3.45 3.85 

12 0.00 0.01 0.03 0.27 0.55 1.94 2.85 2.49 2.03 2.67 2.61 

13 0.00 0.13 0.35 0.86 1.49 2.10 1.36 1.84 0.22 0.12 1.59 

14 0.00 0.11 0.40 0.62 1.46 0.10 0.60 0.92 2.81 2.42 4.65 

15 0.00 0.04 0.35 0.76 0.68 0.67 2.61 2.63 3.59 6.16 6.82 

16 0.00 0.05 0.33 0.59 0.44 1.10 2.59 5.30 8.52 8.61 10.16 

17 0.00 0.08 0.48 0.93 0.58 1.49 3.33 6.97 6.07 9.94 11.81 

18 0.00 0.25 0.81 1.27 0.89 2.16 4.59 7.36 8.38 11.07 12.40 

19 0.00 0.26 0.95 0.85 0.19 2.65 4.58 7.17 11.50 13.86 15.11 

20 0.00 0.22 1.40 0.65 0.82 5.34 6.87 9.79 11.65 14.03 14.83 
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