
International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.2, September 2015

13

A Logical XOR Operation for NTRU Cryptosystem

Bhanu Pratap Tripathi
Department of Mathematics

Govt.N.P.G.College of Science
Raipur (C.G.) 492010 India

Khushboo Thakur
School of Studies in Mathematics
Pt.Ravishankar Shukla University

Raipur-492010 (C.G.)

ABSTRACT
The NTRU public key cryptosystem was first presented by J.

Hoffstein, J. H. Silverman and J. Pipher in 1996. This system

is based on shortest and closest vector problem in a lattice and

operations based on objects in a truncated polynomial ring. In

this paper we propose new variant of NTRU cryptosystem

which is based on logical exclusive OR operator. This system

works under the same general principles as that of the NTRU

cryptosystem except the logical operators “exclusive OR"

with the different bit size for encryption and decryption which

are used in place of truncated polynomial in NTRU

cryptosystem. We also calculate the time complexity which

shows that this system is faster than NTRU cryptosystem.

Keywords
NTRU, logical operator, Boolean function, Encryption,

Decryption.

1. INTRODUCTION
NTRU is a public key cryptosystem presented by J. Hoffstein,

J. pipher and J. Silverman [1]. The first version of the NTRU

encryption system was presented at the crypto 96 conference;

[1]. The computational basis of the NTRU lies in polynomial

algebra. Two different modulo are used for reduction of

polynomials as fundamental tools which is significantly

speeds up its main competitors RAS and ECC. Polynomial

algebra is the basic building block of the NTRU Encryption

system. The truncated polynomials[2,3], in the ring

1)- (X / Z[x]= R n are basic objects and the reduction of

polynomials with respect to relatively prime modulo i.e., p

and q are the basic tool. NTRU polynomials a(x) are

frequently reduced modulo p and q, the small and large

modulo. The large modulus q is an integer, so reduction of

x 1Na 1N.................x2a2xa1a0)x(a 
 mod q

means just reduction of each ai
 modulo q. The small

modulus p can also be an integer. It is required that p and q

are relatively prime i.e. gcd (p, q) = 1. The main objects in the

systems are “small" polynomials i.e. polynomials with small

coefficients. The public key h is defined by an equation f  h

= p  g (mod q), where f and g are small polynomials. The

polynomial f should always have inverses modulo p and q, f

 fp = 1 (mod p) and f fq= 1 (mod q). Moreover, the

parameters N, p and q are also public, and can be used as

common domain parameters for all users. Polynomials f and g

are private to the key owner. The polynomial g is needed only

in key generation. Firstly Bob chooses two small polynomials

f and g in the ring of truncated polynomials and keeps f and g

private. He then computes inverse of f (mod p) [fp] and

inverse of f (mod q) [fq], where p and q are relatively prime to

each other. He then computes h = p fq  g (mod q), which

becomes the public key for Alice the pair of polynomials f and

fp forms his private key pair. The message is also represented

in the form of a truncated polynomial. Let it be m. The sender

Alice encrypts using the public key i.e. h as e = h  r + m

(mod q), where r is a random polynomial basically used to

obscure the message. This encrypted message may be sent in a

public channel. Alice decrypts the encrypted message using

his private key pair by performing the following operations:

a = f  e (mod q)

b = a (mod p)

c = fp  b (mod p) and c is the original message:

c = fp [f (p fq g r + m) (mod q)](mod p)

c = m using the identities f fp = 1 and f  fq = 1

2. PROPOSED ALGORITHM
We extend the NTRU approach using XOR operation we give
a brief introduction to logical operation [4, 5] on binary
number.

2.1. General Description:

 We first present the logical operation on binary code. Let a

and b  1,0 .Then their bit is defined as:

a=1010 and b=1111.

By the binary operation property therefore we get,

1) 0101 babaY

[variation on ExOR]

2) 1010 baabY

[variation on ExOR]

(3) Y = 1 =1111 [constant]

(4) Y = 0 =0000 [constant]

(5) Y = a = 0101 [Inversion]

(6) Y = a = 1010 [No Inversion]

(7) Y = a  b = 0101 [XOR]

Normally the identities of boolean algebra are as follows:

 X  X=0 [Inverse Law]

 X  X =1 [Inverse Law]

 X  0 = X [Identity law]

  X  1 = X [Complement law]

 X  Y = Y  X [Commutative law]

Next , the algorithms for key generation, encryption and

decryption following the above logical operation we give as

follows:

Key Generation

Step1: Bob randomly chooses two binary code f and g where

the binary code f and g is private. He consider,

f = X  X and g = X X , Since X= A B

Where A and B is binary code of decimal.

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.2, September 2015

14

Step2: Bob next step is to compute the inverse of f mod q

which is fq and the inverse of f mod p which is fp .Thus,

f  fq = 1 (mod q)

f  fp = 1 (mod p)

and

f  fq = 0 (mod q)

f  fp = 0 (mod p)

Step 3: Now Bob computes the product H = p  fq  g (mod

q). Where fq and g is private key and public key is H.

Encryption:
Step 1: Alice wants to send a message to Bob using Bob's
public key H. She first put her message in the form of binary
code M and its size is same as private key f and g.

Step 2: To create the encrypted message, Alice chooses a

Random binary code of decimal R =A  0, where A .0 = 0

[Law of Intersection]

Step 3: Next Alice computes the encrypted message using R

and Bobs public key as follows.

 E = R HM (mod q)

The binary code E is the encrypted message which Alice

sends to Bob.

Decryption
Step 1: Now Bob where receives the Alice's encrypted
message E and decrypt it. He begins by using his private

binary code f to compute the binary code. A = f E (mod q).

Step 2: Next, Bob next computes the binary code B =A

(mod p).

Step 3: Finally B is decrypted cipher text which should be
equal to original message M.

3. RESULT
To Verify the proof of correctness we have to show that B =

M so that its correctness can be prove as the same message

received by the receiver send by the sender. For the steps for

verification are as below:

B = A (mod p) [since A= f E (mod q]

B= f E (mod q) (mod p)

B=[f R H M (mod q)] (mod p) [since E= R  H  M

(mod q]

B = [(f  R p fq  g M) (mod q)] (mod p)

 [Since H = p  fq  g (mod q)]

B=[(p f  fq  R 1  M (mod q)] (mod p) [since g=1]

B = [(p 1  R  1 M] (mod p)

B = [(p  1  1 R M] (mod p)

B = [(p 0  R M] (mod p) [Since (1  1 = 0)]

B= [(p R  M] (mod p)

B= [p (mod p)  (R  M) mod p]

B = [0 R M] (mod p) [Since p (mod p=0]

B= (R  M) mod p

B= (A.0  M) mod p [Since R=A.0]

B= (0  M) mod p [Since A.0=0]

B= M mod p

4. EXAMPLE
Example of key generation, encryption and decryption for

proposed design with randomly choose value is as follows.

Key generation:
Let A=10010011, B=10010100. Let parameters p = 91, q =
127

X= [10010011 10010100]

X = 00100111

f= X X

f = 00000000

g= X  X

g = 00100111 11011000

g = 11111111

fq = f (mod127)

fq = 11111111 (mod127)

fq = 00000001
So,

f fq= 000000000  00000001

f  fq=00000001

Now Bob generates the public key H as

H= 01011011 00000001 00000001

H= 01011011 00000000

H=01011011

Bob's private key is the pair of binary bit f and fq and his

public key is H.

Encryption:

Now, suppose Alice want to send the message M to bob by

using bob's public key.

M = 00000001

Let, R = A .0

R = 00000000

Therefore encrypted message E = (R H M) (mod q) is

computed as

E=[00000000 01011011 00000001](mod 127)

E=[00000000 01011100] (mod 127)

E = 01011100 (mod 127)

E = 01011100 Thus, Alice sends this encrypted message E to

Bob.

Decryption:
Bob has received the encrypted message from Alice. He uses
his private key f to compute

A = [f E] (mod q)

A = [00000000 01011100] (mod 127)

A = 01011100 (mod 127)

A = 01011100

Since Bob has computing A (mod q). So, Bob decrease the

coefficients of A (mod p), we get

B = A (mod p)

B = [01011100] (mod 91)

B = 00000001
B = M

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.2, September 2015

15

5. TIME COMPLEXITY

CALCULATION
The time complexity of an algorithm calculates the amount of

time taken by an algorithm to run as a function of the length

of the string representing the input. It is commonly expressed

by big O notation, which excludes coefficients and lower

order terms. In our paper the time complexity of binary to
decimal, decimal to binary and binary to string conversion is

)N(O log2 . Time complexity of length of binary string is

O(N) because i varies from 1 to N. Also the time complexity

of inverse of any binary number is O(1). The time complexity
of addition of two binary number is O(N), Multiplication of

two binary number is)N(O 2 Therefore the total time

complexity of our scheme is O(log2(N)) + O(N) + O(1) +

)N(O 2 =))N((O log2

6. CONCLUSION
This paper propose a method, which is suitable to send large
messages in the form of binary number and this method is

more secure since binary number are only 0 and 1. As there is

no method to know whether a coefficient of polynomial is

only 0 and 1 we can use this method. Because a logical

operator is bit value when its binary number is found.

7. REFERENCES
[1] J. Hoffstein, J. Pipher and J. H. Silverman, “NTRU: A

Ring-Based Public Key Cryptosystem". Algorithmic

Number Theory (ANTS III), Springer- Verlag, 1998, pp.

267-288.

[2] J. Hoffstein, D. Lieman, J. Silverman “Polynomial Rings

and Efficient Public Key Authentication", Proceeding of

the International Workshop on Cryptographic

Techniques and E-Commerce, 1999.

[3] P. Prapoorna Roja, P.S. Avadhani. and E .V .Prasad, “An

Efficient Method of Shared Key Generation Based

on Truncated Polynomials". IJCSNS International

Journal of Computer Science and Network Security,

VOL.6 No.(8B), 2006, pp. 156-161.

[4] Steven G., and Paul H.,”Introduction to Boolean

Algebras". Springer-Verlag, 2009.

[5] Whitesitt Eldon J. “Boolean Algebra and its

Application". Springer, 2010.

IJCATM : www.ijcaonline.org

