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ABSTRACT 
The NTRU public key cryptosystem was first presented by J. 

Hoffstein, J. H. Silverman and J. Pipher in 1996. This system 

is based on shortest and closest vector problem in a lattice and 

operations based on objects in a truncated polynomial ring. In 

this paper we propose new variant of NTRU cryptosystem 

which is based on logical exclusive OR operator. This system 

works under the same general principles as that of the NTRU 

cryptosystem except the logical operators “exclusive OR" 

with the different bit size for encryption and decryption which 

are used in place of truncated polynomial in NTRU 

cryptosystem. We also calculate the time complexity which 

shows that this system is faster than NTRU cryptosystem. 
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1. INTRODUCTION 
NTRU is a public key cryptosystem presented by J. Hoffstein, 

J. pipher and J. Silverman [1]. The first version of the NTRU 

encryption system was presented at the crypto 96 conference; 

[1]. The computational basis of the NTRU lies in polynomial 

algebra. Two different modulo are used for reduction of 

polynomials as fundamental tools which is significantly 

speeds up its main competitors RAS and ECC. Polynomial 

algebra is the basic building block of the NTRU Encryption 

system. The truncated polynomials[2,3], in the ring 

1)- (X /  Z[x]= R n are basic objects and the reduction of 

polynomials with respect to relatively prime modulo i.e., p 

and q are the basic tool. NTRU polynomials a(x) are 

frequently reduced modulo p and q, the small and large 

modulo. The large modulus q is an integer, so reduction of 

x 1Na 1N.................x2a2xa1a0)x(a 
  mod q 

means just reduction of each  ai
 modulo q. The small 

modulus p can also be an integer. It is required that p and q 

are relatively prime i.e. gcd (p, q) = 1. The main objects in the 

systems are “small" polynomials i.e. polynomials with small 

coefficients. The public key h is defined by an equation f   h 

= p  g (mod q), where f and g are small polynomials. The 

polynomial f should always have inverses modulo p and q, f 

 fp = 1 (mod p) and f fq= 1 (mod q). Moreover, the 

parameters N, p and q are also public, and can be used as 

common domain parameters for all users. Polynomials f and g 

are private to the key owner. The polynomial g is needed only 

in key generation. Firstly Bob chooses two small polynomials 

f and g in the ring of truncated polynomials and keeps f and g 

private. He then computes inverse of f (mod p) [fp] and 

inverse of f (mod q) [fq], where p and q are relatively prime to 

each other. He then computes h = p fq  g (mod q), which 

becomes the public key for Alice the pair of polynomials f and 

fp forms his private key pair. The message is also represented 

in the form of a truncated polynomial. Let  it be m. The sender 

Alice encrypts using the public key  i.e. h as  e = h  r + m 

(mod q), where r is a random polynomial basically used to 

obscure the message. This encrypted message may be sent in a 

public channel. Alice decrypts the encrypted message using 

his private key pair by performing the following operations: 

a = f  e (mod q) 

b = a (mod p) 

c =  fp  b (mod p) and c is the original message: 

c =  fp [f  (p fq g  r + m) (mod q)](mod p) 

c =  m using the identities f fp = 1 and f  fq = 1 

 

2. PROPOSED ALGORITHM 
We extend the NTRU approach using XOR operation we give 
a brief introduction to logical operation [4, 5] on binary 
number. 
 

2.1. General Description: 
 
 We first present the logical operation on binary code. Let a 

and b  1,0 .Then their bit is defined as: 
 
 

a=1010 and b=1111. 

By the binary operation property therefore we get, 

1) 0101 babaY
  

[variation on ExOR] 

2) 1010 baabY
 
[variation on ExOR] 

(3) Y = 1 =1111                 [constant] 

(4) Y = 0 =0000                  [constant] 

(5) Y = a  = 0101                 [Inversion] 

(6) Y = a = 1010                 [No Inversion] 

(7) Y = a   b = 0101            [XOR] 

 

Normally the identities of boolean algebra are as follows: 

 X    X=0  [Inverse Law]  

 X    X   =1      [Inverse Law] 

 X    0 = X      [Identity law]  

  X   1 = X        [Complement law]  

 X    Y = Y  X   [Commutative law] 

Next , the algorithms for key generation, encryption and 

decryption following the above logical operation we give as 

follows: 

Key Generation 

Step1:  Bob randomly chooses two binary code f and g where 

the binary code f and g is private. He consider, 

f = X   X and  g = X X   ,  Since  X= A  B 

Where A and B is binary code of decimal. 
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Step2: Bob next step is to compute the inverse of f mod q 

which is fq and  the inverse of f mod p which is fp .Thus, 

f   fq = 1 (mod q)  

f   fp = 1 (mod p)  

and 

f  fq = 0 (mod q)  

f   fp = 0 (mod p) 

Step 3: Now Bob computes the product H = p  fq  g (mod 

q). Where fq and g is private key and public key is H. 
 

Encryption: 
Step 1: Alice wants to send a message to Bob using Bob's 
public key H. She first put her message in the form of binary 
code M and its size is same as private key f and g. 
 

Step 2: To create the encrypted message, Alice  chooses a 

Random binary code of decimal R =A  0,  where A .0 = 0 

[Law of Intersection] 

 

Step 3: Next Alice computes the encrypted message using R 

and Bobs public key as follows.  

           E = R HM (mod q) 
 
The binary code E is the encrypted message which Alice 

sends to Bob. 

 

Decryption 
Step 1: Now Bob where receives the Alice's encrypted 
message E and decrypt it. He begins by using his private 

binary code f to compute the binary code. A = f  E (mod q). 

 
Step 2:  Next, Bob next computes the binary code B =A       

(mod p).  
 
Step 3: Finally B is decrypted cipher text which should be 
equal to original message M. 

 

3. RESULT 
To Verify the proof of correctness we have to show that B = 

M so that its correctness can be prove as the same message 

received by the receiver send by the sender. For the steps for 

verification are as below: 

B = A (mod p) [since A= f   E (mod q] 

B= f  E (mod q) (mod p) 

B=[f R H M (mod q)] (mod p) [since E= R  H  M 

(mod q] 

B = [(f  R p fq  g M)  (mod q)] (mod p) 

                                    [Since H = p  fq  g (mod q)] 

B=[(p f  fq  R 1  M (mod q)] (mod p) [since g=1] 

B = [(p 1  R  1  M ] (mod p) 

B = [(p  1  1 R M ] (mod p) 

B = [(p 0  R M ] (mod p)  [Since (1  1 = 0)] 

B= [(p  R  M] (mod p)  

B= [p (mod p)   (R   M) mod p]  

B = [0  R  M] (mod p) [Since p (mod p=0] 

B= (R  M) mod p 

B= (A.0   M) mod p         [Since R=A.0] 

B= (0   M) mod p           [Since A.0=0] 

B=  M mod p 

 

4. EXAMPLE 
Example of key generation, encryption and decryption for 

proposed design with randomly choose value is as follows. 

 

Key generation: 
Let A=10010011, B=10010100. Let parameters p = 91, q = 
127 

X= [10010011  10010100] 

X = 00100111 

f= X X 

f = 00000000 

 

g= X  X   

g = 00100111  11011000 

g = 11111111 

fq = f (mod127) 

fq = 11111111 (mod127) 

fq = 00000001 
So, 

f fq= 000000000  00000001 

f  fq=00000001 

 

Now Bob generates the public key H as  

H= 01011011  00000001  00000001 

H= 01011011  00000000 

H=01011011 

Bob's private key is the pair of binary bit f and fq and his 

public key is H. 

 
Encryption: 

Now, suppose Alice want to send the message M to bob by 

using bob's public key. 

M = 00000001 

Let, R = A .0 

R = 00000000 

Therefore encrypted message E = (R H M) (mod q) is 

computed as 

E=[00000000 01011011 00000001](mod 127) 

E=[00000000 01011100] (mod 127) 

E = 01011100 (mod 127) 

E = 01011100 Thus, Alice sends this encrypted message E to 

Bob. 

Decryption: 
Bob has received the encrypted message from Alice. He uses 
his private key f to compute 

A = [f E] (mod q) 

A = [00000000 01011100] (mod 127) 

A = 01011100 (mod 127) 

A = 01011100  

Since Bob has computing A (mod q). So, Bob decrease the 

coefficients of A (mod p), we get 

B = A (mod p) 

B = [01011100] (mod 91) 

B = 00000001 
B = M 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 126 – No.2, September 2015 

15 

5. TIME COMPLEXITY 

CALCULATION 
The time complexity of an algorithm calculates the amount of 

time taken by an algorithm to run as a function of the length 

of the string representing the input. It is commonly expressed 

by big O notation, which excludes coefficients and lower 

order terms. In our paper the time complexity of binary to 
decimal, decimal to binary and binary to string conversion is 

)N(O log2 . Time complexity of length of binary string is 

O(N) because i varies from 1 to N. Also the time complexity 

of inverse of any binary number is O(1). The time complexity 
of addition of two binary number is O(N), Multiplication of 

two binary number is )N(O 2 Therefore the total time 

complexity of our scheme is O(log2(N)) + O(N) + O(1) +  

)N(O 2 = ))N((O log2  

 

6. CONCLUSION 
This paper propose a method, which is suitable to send large 
messages in the form of binary number and this method is 

more secure since binary number are only 0 and 1. As there is 

no method to know whether a coefficient of polynomial is 

only 0 and 1 we can use this method. Because a logical 

operator is bit value when its binary number is found. 
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