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ABSTRACT
Anonymity is one of the important services that must be avail-
able to users in the digital world as long as they behave hon-
estly. Users’ communication must be kept authenticated and anony-
mous unless malicious behaviors are detected. In this case the
accused user’s clear identity must be traced and revealed by the
system to solve accusations. Enterprise Digital Rights Manage-
ment (E-DRM) protects business digital applications by allowing
an author in an organization to securely upload his confidential
package/file(s) and store the contents in a private way on secure
servers. This is done in a way that – later – allows an autho-
rized user who is able to prove his authorization for the pack-
age to an authorization authority to download and use these con-
tents in a private way. In this paper, we extend our previously pro-
posed E-DRM protocols and propose an E-DRM protocol that al-
lows authorized users to upload, store and download packages in
an efficiently secure, anonymous and authenticated way. On the
other hand, in case of an accusation or a dispute, our system is
able to trace the user to his clear identity to solve accusations.
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1. INTRODUCTION
Digital Rights Management systems (DRM) in general deals with
the main issues [26, 45, 3, 2, 4, 7]: The ability to deliver digital
contents to authorized users in an efficient, robust and reliable way,
the ability to prevent access from unauthorized users and the ability
to prevent theft and illegal redistribution which may occur from au-
thorized access users. DRM mainly provides two types of systems:
(i) Systems for distributing contents to consumers in a controlled
way against piracy; (ii) Systems for managing access to sensitive
document contents within an enterprise. The first application is
called ”Pirates Tracing” while the second application is often called
”Enterprise Digital Rights Management (E-DRM)”. E-DRM plays
an extremely important role in fighting against information theft,
especially the theft due to insider threats.

Efforts have focused on rights-centric security policies and en-
hanced mechanisms. Consumer-centred security considerations is
receiving more attention. In a secure DRM system, digital con-
tents should be encrypted based on the cryptographic technology,
and then consumers acquire encrypted contents by means of the
Pull or Push mode. Much more DRM applications are requiring a
fine grained contents usage control and the rights definition, expres-
sion as well as interpretation. As a result , an inter-operable, well-
defined rights expression language is indispensable. Transmission
of the digital contents and of their licenses are both protected by
means of cryptographic mechanisms such as encryption and digi-
tal signature (e.g. [26, 25, 14, 45, 34, 35]). Besides, the execution
of the license needs a close or trust environment, which includes
trusted DRM agent, trusted key storage, trusted I/O, and so forth.
For copyrights protection and pirates tracing, it is needed to embed
a section of imperceptible data into contents by using the water-
marking and fingerprints technology [43, 12], whereas the embed-
ded data is authenticated only by special equipments or approaches.

Beside cryptographic mechanisms for robustness and authentic-
ity and beside watermarking and digital fingerprints, Display-Only
File-Servers can transparently and effectively stop information
theft by insiders in most cases, even if the insiders have proper
authorities to read/write the protected information. The DOFS ar-
chitecture ensures that bits of a sensitive file never leave a protected
server after the file is checked in and users can still interact with the
protected file in the same way as if it is stored locally. Essentially,
DOFS decouples ”display access” from other types of access to a
protected file, and provides users only the ”display image” rather
than bits of the file. Therefore, DOFS can have less dependency on
the trusted client software against information theft by insiders.

The challenging issue is that such protocols must satisfy a number
of security services that could be complex by their nature. In se-
cure E-DRM protocols, anonymity and traceability are two impor-
tant services, yet, achieving a satisfactory security level for both
of them –with acceptable complexity– is not an easy task due to
the contradicting requirements: anonymous transmission must not
be traceable by any individual while if a transmission is traceable,
then anonymity is threatened.

When anonymous and authenticated transmission is considered,
Group signatures (GS) come to play [28, 13, 9, 8]. This crypto-
graphic tool originally introduced in [16] allows members belong-
ing to a group to sign messages on behalf of the group such that,
the signature verifier (whether a group member or a non-member)
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is able to check that the signature is a valid group signature but can-
not trace the identity of the signer. In case of a dispute, the trusted
authority (group manager) can trace the identity of the signer.

Ring signatures introduced in [39] and further studied in [30] and
[11] do not require any group manager to form a group. For signa-
ture generation, every user builds a set of public keys that includes
his public key and the public keys of other users. A generated sig-
nature does not reveal the public key of the signer, but a set of pub-
lic keys of all possible signers. Therefore, ring signatures cannot
be used for a direct communication between a verifier and a signer.
Additionally, ring signatures provide unconditional anonymity, i.e.,
no party can reveal the signer’s identity. Although ring signatures
have many cryptographic applications, they are not suitable for our
system since traceability is impossible.

Democratic group signatures (DGS) [32] eliminates the role of
a group manager by (i) allowing the group members themselves
to initialize and setup the group, (ii) controlling it over dynamic
changes in a collective manner and (iii) distributing traceability
rights to each group individual. In this case, every group mem-
ber has the individual right to trace and disclose the identity of the
signer and hence, anonymity is provided against non-members. The
model in [32] requires unlinkability of signatures, i.e., the signa-
ture verifier cannot distinguish signatures issued by the same group
member without this member being traced and disclosed.

DGS schemes differ from threshold signature schemes (e.g. [18,
19, 23, 21, 20, 22]) in the sense that, in DGS each group member
is granted the right to generate a signature on a given message indi-
vidually; a non-member verifier recognizes the signature as anony-
mously generated by the group. On the other hand, in threshold
signatures, the signature on a given message is generated by the
majority of the group (exceeding a certain threshold), yet, no coali-
tion of minority (less than or equals the threshold) can generate the
signature.

Linkable democratic group signatures (LDGS) [33] realize linka-
bility of signatures issued by the group members in a way that pre-
serves the anonymity of the signer. More precisely, a non-member
verifier is able to distinguish signatures issued by the same signer
for future reference without being able to trace the identity of this
signer. To achieve this property, LDGS actually employs the idea
of pseudonym systems introduced in [31]. In this scenario, each
group member (in addition to his unique identity) will be assigned a
unique pseudonym. Given a certain group member, all signed mes-
sages generated by this particular member will carry his unique
pseudonym. A non-member verifier is able to link signed messages
of the same signer via his pseudonym, yet, the verifier gains no in-
formation about the signer’s identity from this pseudonym. On the
other hand, each group member knows the secret tracing trapdoor
parameter, by which, he is able to extract the identity of the signer
from the signer’s unique pseudonym.

LDGS consists mainly of four protocols/algorithms: protocol
setup, algorithm sign, algorithm verify and algorithm trace.
The setup protocol takes as input a security parameter l, and a
number of members n. For each member Mi, the public output is
an identity idi from the set of identities ID and a pseudonym psi
from the set of pseudonyms PS while the private output is the se-
cret signing key ski from the set of secret keys SK and the secret
tracing trapdoor parameter k known to each member. The proto-
col requires the existence of a PKI that allows the group members
to authenticate their messages during setup via their certified pub-
lic keys. Yet, there is no third party actively involved in the pro-
tocol. The sign algorithm takes as an input a secret key ski and

a message m and outputs a signature σ on m. The verify algo-
rithm takes as an input a signature σ, a message m and the set of
pseudonyms PS and outputs a pseudonym psi if it accepts the sig-
nature or ⊥ if the signature is rejected. Algorithm trace takes as
input a signature σ, a message m, the secret tracing trapdoor pa-
rameter k, and the set of pseudonyms PS and outputs either an
identity idi or ⊥ in case of failure.

During the setup algorithm, in the computation of the secret tracing
trapdoor parameter k, the LDGS employs an authenticated DH-
based group key agreement protocol as so-called the contributory
group key agreement (CGKA) protocols e.g. [29, 1]. In a CGKA
protocol, each member Mi of the group contributes his public key
yi for the interactive computation of the secret common key k.

In an improvement to the LDGS discussed above, in [24], we per-
formed modifications to the setup and trace protocols to allow
the group to withstand possible traitors members. Our idea is to
remove the CGKA protocol from the setup protocol and employ
efficient threshold cryptographic tools. In this case, the secret trac-
ing trapdoor parameter k will be shared among the members on a
threshold basis. The members are able to jointly share a secret pa-
rameter which allows the tracing to be performed by the majority
of the members. As a result, minority traitors will not be able to
perform the tracing and are prevented from disclosing the identity
of any signer without a legal reason. Also, the system must be ro-
bust against possible malicious behavior of the traitors during the
setup and trace protocols.

2. PREVIOUS WORK
The requirements of a well-designed DRM system have been stud-
ied in several subsequent publications: Arnab et al. [3, 2, 4], Bar-
tolini et al. [7], Mulligan et al. [34], and Park et al. [35]. Our recent
contribution of [26] is to device a stronger digital rights manage-
ment protocol for enterprise applications that overcomes the secu-
rity problems and efficiency drawbacks in previous protocols such
as [14, 45, 7, 35] and others. In [26], A different network topology
and communication model were considered to reduce the compu-
tation burden on the author, the authority, as well as the users and
provide efficient and robust storage of large files on the servers.
The protocol is secure against malicious behavior of a minority of
the servers. Some storage efficiency improvements to the protocol
of [26] was introduced in [42]. In [25], We refined and extended
the E-DRM protocol of [26] for better efficiency in retrieving files
of very large sizes. The protocol allows the user to search the en-
crypted archived contents for private keywords, then to download
and decrypt only those packages with contents matching the user’s
desired keywords. The protocol is robust, secure, provides efficient
storage of large files and reduces the computation and communica-
tion burden on the author, the authority as well as the users. How-
ever, none of the above proposals considered the availability of the
anonymity service to the users.

3. MOTIVATIONS AND CONTRIBUTIONS
3.1 Motivations
Anonymity service is one of the important services that must be
provided to the users by an E-DRM system. In an E-DRM system,
the users may wish to keep their behavior/activities anonymous to
others as long as they behave legally. The attempt of uploading
packages by the author and downloading these packages by the au-
thorized users must be kept anonymous to everyone unless there
are accusations (e.g. a dispute). The previously proposed E-DRM
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protocols such as [26, 25, 14, 45, 7, 35] do not provide such ser-
vice since the identities of the users as well as the identities of the
uploaded/downloaded files are known to the authority and all other
entities within the organization.

3.2 Our contribution
In this paper we study previously proposed E-DRM systems and
extend our recent protocols of [26, 25] for robust and secure E-
DRM to allow transfer of packages among legitimate users in a
completely anonymous and authenticated manner where the users
identities are kept anonymous yet traceable in case of raised accusa-
tions. We employ ideas from [33, 32, 24], threshold cryptographic
tools from [41, 17, 36, 19, 27, 10], information dispersal tools from
[37, 38] and proofs of knowledge tools from [15, 40, 5, 24] to allow
the users to securely and anonymously sign and upload/download
the packages they are authorized for. On the other hand, with the
help of a distributed tracing trapdoor parameter, the package servers
are able to (jointly) trace and identify any user in case of raised ac-
cusations.

4. OUR TOOLS
In this section we describe the basic tools that will be used to build
our E-DRM protocol. These tools are partitioned into three cat-
egories: threshold cryptography tools, proofs of knowledge tools
and information dispersal tools. The reader must be familiar with
these tools in order to follow the description of our protocol.

4.1 Threshold Cryptography Tools
Secret sharing over a prime field. Let s ∈ Zq be a secret held
by the dealer where the group Zq is a prime field. In order to
share this secret among a set P={P1, ..., Pn} of n>t players
[19], the dealer defines a polynomial f(x) =

∑t

j=0
ajx

jmodq,
he sets a0=s and each other coefficient aj 6=0∈RZq . ∀i= 1, ...,n,
the dealer secretly delivers f(i) to player P i. In the reconstruction
phase, each player Pi broadcasts f(i), the players are able to com-
pute s from any t+1 shares using Lagrange interpolation formula,
s=f (0) =Σi∈Bλif (i) modq where B ⊂ P , |B| =t+1 and λi is
Lagrange coefficient for player Pi.

Verifiable secret sharing. Verifiable secret sharing (VSS) extends
polynomial secret sharing in a way that allows the recipients of
the shares to verify that their shares are consistent (i.e., that any
subset of t+1 shares determines the same unique secret). Assum-
ing n> 2t, the protocol can tolerate malicious behaviors (e.g., ille-
gal collaboration, sending wrong values, deleting values, etc.) of at
most t players. We distinguish two different contributions of VSS;
the conditionally secure VSS due to Feldman [20] and the uncondi-
tionally secure VSS due to Pedersen [21]. To achieve best security
[22], both of them will be used in our protocol. In Feldman’s VSS,
two large primes p and q are chosen such that q|p−1. The primes p
and q and an element g ∈ Z∗p of order q are published as the system
public parameters. The dealer shares the secret s among the play-
ers on a t-degree polynomial f(x) =

∑t

j=0
ajx

jmodq, the dealer
also broadcasts the t+1 commitments cj=gaj modp ∀j= 0, ...,t.
These commitments allow each player Pi to verify the consistency
of his share f(i) by checking that, gf(i)=

∏t

j=0
ci

j

j modp. If this
check fails for any share f(i), Pi broadcasts a complaint. If more
than t players broadcasted a complaint, then at least one of them
is honest and consequently the dealer is disqualified. Otherwise
the dealer reveals the share f(i) for each complaining player Pi,
if the share is correct, Pi is disqualified, otherwise, if the share

does not satisfy the commitments or if the dealer does not re-
spond, the dealer is disqualified. During reconstruction of the se-
cret, any player can check the validity of the share broadcasted
by any other player via the published commitments to filter out
bad shares and safely perform the interpolation. When it comes
to the distributed generation of a secret key k and the joint com-
putation of gkmodp, Feldman’s VSS alone is not secure due to
the attacks described in [19]. In Pedersen’s VSS, the idea is to
use double exponentiation which allows randomization. The pub-
lic parameters are p, q, g and h where p, q and g are as in Feld-
man’s VSS and h is another element in Z∗p subject to the condi-
tion that loggh is unknown and assumed hard to compute. In ad-
dition to the polynomial f(x) =

∑t

j=0
ajx

j modq which holds
the secret s as the free term, the dealer sets up a randomizing
t-degree polynomial r(x) =

∑t

j=0
bjx

jmodq. He secretly deliv-
ers (f(i),r(i)) to player Pi ∀i= 1, ...,n. The dealer also pub-
lishes the commitments cj=gajhbj modp ∀j= 0, ...,t. Each player
Pi verifies the consistency of his share f(i) by checking that,
gf(i)hr(i)=

∏t

j=0
ci

j

j modp. If this check fails for any share f(i),
Pi broadcasts a complaint. If more than t players broadcast a
complaint, then at least one of them is honest and consequently
the dealer is disqualified. Otherwise the dealer reveals the pair
(f(i),r(i)) for each complaining player Pi, if the pair is correct,
Pi is disqualified, otherwise, if the pair does not satisfy the com-
mitments or if the dealer does not respond, the dealer is disquali-
fied. During reconstruction of the secret, any player can check the
validity of the share broadcasted by any other player via the pub-
lished commitments to filter out bad shares and safely perform the
interpolation.

Joint secret sharing. Joint secret sharing allows the players to
jointly share some secret among themselves without the help of
the dealer. Joint random secret sharing (JRSS) [27] allows a set
of n players to jointly share a random secret without the help of
the dealer. Each player Pi ∈ P picks a random integer ki ∈ Zq
and plays the role of the dealer to share ki among the players over
a t-degree polynomial fi(x) =ki+

∑t

j=1
ajx

jmodq. Each player
Pi ∈ P simply sums the shares he receives from the other play-
ers to compute a share f(i) =

∑n

j=1
fj(i) which is a point on a

t-degree polynomial f(x) with its free term equals a random secret
k=

∑n

i=1
kimodq. Joint random verifiable secret sharing (JRVSS)

is to withstand malicious behavior of at most t<n/2 players dur-
ing the JRSS, JRVSS combines the JRSS with Feldman’s VSS for
computational security or Pedersen’s VSS for unconditional secu-
rity. Simply, each player Pi ∈ P picks a random secret integer
ki ∈ Zq and plays the role of the dealer in the VSS protocol to
share this secret among the other players. Complaints are solved as
in the VSS protocol. Finally, each player sums what he has to com-
pute his share on a t-degree polynomial, f(x) with its free term
f(0) =

∑n

i=1
kimodq. Joint zero secret sharing (JZSS) is a spe-

cial case of the JRSS in which the random secret shared by each
player is a zero. At the end of the JZSS, each player holds a share
f(i) on a t-degree polynomial f(x) with its free term f(0) = 0.
Joint zero verifiable secret sharing (JZVSS) is as in the JRVSS, to
withstand malicious behavior of at most t<n/2 players during the
JZSS, JZVSS combines the JZSS with Feldman’s VSS for com-
putational security or Pedersen’s VSS for unconditional security.
Simply, each player Pi ∈ P plays the role of the dealer in the VSS
protocol to share a zero among the other players. Complaints are
solved as in the JRVSS protocol. Finally, each player sums what he
has to compute his share on a t-degree polynomial, f(x) with its
free term f(0) = 0. Notice that, from the published commitments,
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each player can verify that the shared secret is really a zero. This is
true since the commitment to a zero will be g0= 1.

The distributed multiplication protocol. Given two secrets a and
b shared over t-degree polynomials A(x) and B(x) respectively,
the multiplication protocol [10] computes ξ=abmodq in a ro-
bust way with no information revealed about a or b. Each player Pi
locally computes C(i) =A(i)B(i)modq. In this case, each C(i)
is a share on a 2t-degree polynomial C(x) =A(x)B(x) modq
with C(0) =ξ. However, publishing and interpolating the shares
C(1), ..., C(n) reveals information about A(x) and B(x) [10],
consequently, randomizing the shares of C(x) is necessary. To
randomize the shares of C(x) without changing C(0) the play-
ers run a JZVSS to share a zero over a 2t-degree polynomial R(x)
with R(0) = 0. Finally, each player P (i) computes and publishes
D(i) =C(i)+R(i). The result ξ could be reached by interpolating
the 2t-degree polynomial D(x) with the help of the Berlekamp-
Welch decoding scheme [44] to filter out corrupted shares. Since
we are interpolating a polynomial of degree deg= 2t and we
have a maximum of t malicious players (i.e. at most t possible
faults), using the Berlekamp-Welch bound, the number of shares
needed in order to correctly interpolate the polynomial is at least
deg+2faults+1 = 4t+1. Hence, we need n> 4t.

The distributed reciprocal protocol. In the tracing process of our
protocol we are faced with the following problem. Given a secret
k which is shared among the players, generate a sharing of the re-
ciprocal of k modulo q with no information revealed about k. Each
player Pi holds a share f(i) which is a point on a t-degree poly-
nomial f(x) with f(0) =k. To compute shares of k−1, we need
n> 4t, the n players run the reciprocal protocol [19, 10, 6] as fol-
lows:

—The players run the JRVSS, at the end each player holds a share
v(i) of a random secret v over a polynomial of degree t.

—The players run the multiplication protocol and reconstruct
the value ξ=kvmodq.

—Finally each player Pi computes his share of the reciprocal as
ξ−1v(i)modq, which is a share over a t-degree polynomial with
its free term equals k−1modq.

4.2 Proofs of Knowledge Tools
Proof of equality of two discrete logarithms. We review the pro-
tocol of [15, 40] and also in [24] that is believed to be a zero knowl-
edge proof of equality of two discrete logarithms. In this protocol,
the public parameters are two large primes p and q such that q|p−1,
two elements α, β ∈ Z∗p and the two quantities G1, G2 ∈ Z∗p. The
prover (P ) proves to a verifier (V ) that he knows x ∈ Z∗q such that
G1=αxmodp and G2=βxmodp. The protocol is as follows:

— P → V : Choose r∈RZ∗q and send (A=αr modp,
B=βrmodp).

— V → P : Choose c∈RZ∗q and send c.
— P → V : Send y=r+cxmodq.
— V : Check that αy=AGc1modp and βy=BGc2modp.

The above protocol can be made non-interactive (we denote it
by ΠLogEq ← PLogEq(α, β,G1, G2, x) ) using a sufficiently
strong hash function H(.) [5] and setting c=H(A,B). The pro-
tocol ΠLogEq becomes as follows:

— P → V : Choose r∈RZ∗q and send (A=αrmodp, B=βrmodp,
c=H(A,B) and y=r+cxmodq).

— V : Check that αy=AGc1modp and βy=BGc2modp.

Proof of existence of a discrete log equality. Let yi=αximodp for
i= 1, ..,n and let z=βximodp for some i ∈ {1, ...,n}. A prover P
demonstrates to a verifier V that he knows one of the logarithms
of yi (i ∈ {1, ...,n}) to the base α and that logαyi=logβzmodq
without revealing which i. Let wlog the relation holds for i= 1 (i.e.
x1=logαy1=logβzmodq). The protocol is as follows [5, 24]:

—P → V : Choose ki∈RZ∗q for i= 1, ...,n, cj∈RZ∗q for j= 2, ...,n
and compute:

—r1=αk1modp, ri=αkiy
−ci
i modp for i= 2, ...,n.

—t1=βk1modp, ti=βkiz−cimodp for i= 2, ...,n.

Send the values (r1, ..., rn, t1, ..., tn).

—V → P : Choose and send c∈RZ∗q .

—P → V : Calculate c1=c−
∑n

i=2
modq, s=x1c1+k1modq and

set si=ki for i= 2, ...,n. Send (c1, ..., cn, s1, ..., sn).
—V : Check that c=

∑n

i=1
ci and that ∀i= 1, ...,n,

αsi=ycii rimodp and βsi=zcitimodp.

The above interactive proof can be transformed into a non-
interactive proof that we will denote it by,
Π∃LogEq ← P∃LogEq(α, β, y1, ..., yn, z) using a strong hash func-
tion H(.) [5]. This can be done by setting,

c = H(y1, ..., yn, α, z, β, α
s1y−c11 , ..., αsny−cnn , βs1z−c1 , ..., βsnz−cn).

4.3 Information Dispersal Tools
Consider a large sized fileM (e.g. multimedia file) of size s = |M |
stored on some server S and that we want to protect this file from
an adversary that has the power to compromise this server by either
disclosing its contents or destroying it permanently. The privacy
of M could be achieved by simply encrypting M as C = Ek(M)
using any secure symmetric cryptosystem (where |C| = |M | = s)
and storing the key k in a safe place, yet, still the file is vulnerable to
corruption! One may suggest copying the ciphertext C on multiple
servers (say n servers) where the amount of occupied memory be-
comes ns which is of significant concern assuming s is large. Using
the well-known perfectly secure Shamir’s secret sharing scheme
(SSS) to share M [41] will not help reducing the memory usage
since, it is well-known that for an SSS to be secure, the size of the
share is at least equal to the size of the shared secret which is still s
and hence, we are still faced with an inefficient storage space (ns).

As long as computational security is of concern, the information
dispersal algorithm (IDA) [37] will help to provide efficient storage
of information. Given a threshold t and n > t servers, S1, . . . , Sn,
a simple implementation of the IDA algorithm (which is slightly
different but equivalent to the original scheme) is as follows: In
the disperse phase, partition M into t+ 1 segments (m0, . . . ,mt),
such that, mi < p ∀i for a selected prime p and a threshold t.
Notice that the size of each mi is s/(t + 1). The algorithm pro-
ceeds by constructing a polynomial f (x) =

∑t

j=0
mjx

j mod p.
A share f(i) of size s/(t+ 1) is assigned to server Si for storage.
The memory space occupied by all servers is now ns/(t + 1) in-
stead of the inefficient ns. In the reconstruction phase, each server
Si publishes his share f(i), the original file M is reconstructed us-
ing Lagrange interpolation or matrix elimination method. Finally,
notice that the IDA does not provide confidentiality service, yet, we
achieve confidentiality by simply dispersing the encrypted version,
C of M instead of M.

The information dispersal algorithm introduced in [38] combines
the ”all-or-nothing-transform” (AONT) and the IDA of [37] to pro-
vide slightly better storage efficiency over that of [37] and also
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incorporates the Reed-Solomon (RS) codes for error control. The
AONT-RS in [38] can straight forward replace the IDA of [37] used
in our protocol, however, for a better understanding of our protocol,
we apply only the original IDA introduced in [37].

5. ASSUMPTIONS AND MODEL
We follow the network topology and communication model of [26,
25]: There is a set of n servers (or package servers) S={S1, ..., Sn}
which are fully connected via private and authenticated channels.
There is a special server S0 (the gateway, authority or URL) which
is responsible for the communication between S and the users in
the network. There are a set of users U={u1, ..., um} and a special
user u ∈ U which is the author of the confidential file M . Any
user can be the author at any time. User u is able to deposit his file
M to the servers in an efficient, robust and secure way. Only an
authorized user in U is allowed to retrieve and access M from S
through S0 in a fully authenticated and private way. The users in U
are not allowed to interact with each other by any means, neither
with any of the servers in S, they only interact with the gateway S0

which communicates any of the users to the servers in S.

We assume the existence of a public key infrastructure (PKI) to
realize private and authenticated channels for all entities. Each user
u ∈ U has his own public/private key pair (pku , sku) of a public
key cryptosystem where every pku is registered on the server S0

with u’s identity idu. Let (pkS , skS) be the public/private key pair
assigned for S. The public key pkS is published to all users in the
network, while the private key skS is shared among the n servers on
a threshold basis using an efficient (t, n)- verifiable distributed key
generation protocol where t is the threshold [18, 19]. Our protocol
assumes the number of servers in S to be n= 4t+1 with at most t
of them could behave maliciously. This lower bound on n could be
reduced to n> 3t and further to n> 2t but with a dramatic increase
in complexities. Let skSi

be the private key share assigned to server
Si of the private key skS .

For the purpose of our protocol we also assume that the employed
public key cryptosystem has a homomorphic property (e.g. El-
gamal cryptosystem) to allow blind decryption of messages. We
assume that the authorized user u who retrieves the file M will
not misuse it by any means (e.g. will not redistribute the contents
to unauthorized users) or else we are facing a traitor tracing prob-
lem that requires watermarking and fingerprint techniques [43, 12].
Although such techniques can be easily integrated with our proto-
col, the development of such techniques is beyond the scope of this
paper. The authority S0 is assumed honest-but-curious (or semi-
honest) in the sense that, she follows the execution steps of the pro-
tocol word for word but she is willing to know and use any sensitive
information that could be leaked during execution. For clarity and
simplicity, in the description of our protocol, we assume a single
group of users and authors. However, the protocol could be eas-
ily extended to allow multiple groups of users each with their own
authorization attributes.

6. OUR PROTOCOL CONCRETE DESCRIPTION
We are ready to describe the details of our E-DRM. We assume
that there exists n> 4t servers with at most t ≥ 1 possible ma-
licious servers. Also we assume that each server and user has his
own private and certified public keys to realize authenticated and
confidential communications. The initial public parameters of the
system are: two large primes p, q such that q|p−1 and two gener-
ators g, h ∈ Z∗p such that loggh is unknown and assumed hard to
compute.

6.1 Identities setup by users
The users setup their identities, each user ui ∈ U performs as fol-
lows:

—Picks a private key xi∈RZq .
—Computes and publishes the corresponding authenticated iden-

tity (or public key) yi=gximodp and a proof of knowledge of xi.

At the end, we have the set ID={y1, ..., ym} of published clear
identities. Notice that authentication of user ui in publishing his
identity yi is achieved using his private key skui

of a conventional
digital signature scheme.

6.2 Distributed key generation by the servers
The set S={S1, . . . ,Sn} of package servers join together to com-
pute shares of an El-gamal and DSS private key skS=x ∈
Z∗q of bit-length κ and publicize the corresponding public key
pkS=y=gxmodp as follows [18, 19]:

—Run a JRVSS with Pedersen’s VSS as the VSS in place. At
the end, each server Si holds a share X(i) of a random secret
x∈RZ∗q over a t-degree polynomial X(z) with X(0) =x.

—The servers that are not disqualified in the JRVSS in the
previous step broadcast the commitments to their shared
polynomial based on Feldman’s VSS. More precisely, if
Xi(z) =xi+

∑t

j=1
a
(i)
j zj is the polynomial of server Si then

Si broadcasts gxi and ga
(i)
j modp ∀j= 1, ...,t.

—For any server Si who receives at least one valid complaint in the
previous step, the other servers join to reconstruct his polynomial

Bi(z) and values gxi and ga
(i)
j modp ∀j= 1, ...,t in the clear.

—For the remaining n good servers, each server
Si holds a share X(i) =

∑n

j=1
Xj(i)modq of

the private key x=
∑n

i=1
ximodq on a t-degree

polynomialX(z) =x+
∑t

i=1
aiz

imodq. Each server also

computes the commitments gai=Πn
j=1g

a
(j)
i ∀i= 0, ...,t

where ga0=gx=y.

Finally, each server Si holds the tuple, 〈X(i),gx, ga1 , ..., gat〉
which consists of his share X(i) of the private key x, the public
key y=gx and the commitments to the coefficients of the private
key polynomial X(z). Notice that gX(i)=Πt

j=0g
aji

j
modp.

6.3 Tracing parameter setup by the servers
— The servers in S run a JRVSS with Pedersen’s VSS as the VSS

in place. At the end, each server Si ∈ S holds a share K(i)
of a random secret k∈RZ∗q over a t-degree polynomial K(x)
with K(0) =k.

—The servers that are not disqualified in the JRVSS in the
previous step broadcast the commitments to their shared
polynomial based on Feldman’s VSS. More precisely, if
Ki(x) =ki+

∑t

j=1
aj is the polynomial of server Si, Si broad-

casts gki and gaj modp ∀j= 1, ...,t.
—For any server Si who receives at least one valid complaint in

the previous step, the other Servers join to reconstruct his poly-
nomial Ki(x) and values gki and gaj modp ∀j= 1, ...,t in the
clear.

—Finally, the remaining good servers join to safely
compute gk=

∏n

i=1
gki .
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At this point, the servers in S share the tracing trapdoor param-
eter k over a t-degree polynomial and have jointly computed the
blinded tracing trapdoor, bk=gkmodp. As a preparation for the
tracing protocol, the servers need to compute shares of k−1modq,
so they proceed:

—The servers run the reciprocal protocol, at the end, each server
holds a share D(i) on a t-degree polynomial, D(x) with its free
term D(0)=k−1modq.

—Each server broadcasts Feldman’s VSS commitments (i.e. to the
base g) of all his chosen random polynomials during the recip-
rocal protocol. These commitments allow the servers to validate
the quantities, Gi=gD(i)modp ∀i.

6.4 Generating pseudonyms by the users
Next, the users compute their pseudonyms, each user ui performs
as follows:

(1) Computes y∗i= (bk)ximodp .
(2) Parses his pseudonym as psi= (bk, y∗i ).

This finalizes the setup protocol, each user ui sets his secret infor-
mation ski as ski= (xi,D(i),psi). Notice that, psi will be used by
user ui for transmission instead of his clear identity, hence the map-
ping of psi to the corresponding clear identity must be kept secret.
The public parameters are the set of identities, ID={y1, ..., ym},
the set of commitments, G={G1, ..., Gn} where Gi=gD(i)modp
and the blinded tracing trapdoor parameter, bk.

6.5 Package anonymous uploading by the author
The author ui possessing a file/package M , provided with the pub-
lic key pkS of the set of servers S, performs as follows:

—Picks a random symmetric secret key K for a secure symmetric
cryptosystem.

—Using K encrypts M as CM=EK(M).
—Using pkS of S, encrypts k as CK=EpkS (K).

The author proceeds to anonymously sign as follows:

—Picks an integer r∈RZ∗q , computes the hash
H=H(CM , CK , idf , r) and computes z=Hximodp.

—Generates a NIZK proof ΠLogEq ← PLogEq(H, bk, z, y
∗
i , xi),

which proves that logH(z) =logbk(y∗i ).
—Generates a NIZK proof,

Π∃LogEq ← P∃LogEq(g, bk, y1, ..., ym, y
∗
i ), which proves

that there exists some index i ∈ {1, ...,m} such that
loggyi=logbky

∗
i .

—Parses σui
as (r, z, psi,ΠLogEq,Π∃LogEq).

The author ui completes his upload by sending to the authority
server S0 the tuple, Tui

=〈CM , CK , idf , σui
〉.

6.6 Author’s signature verification by the authority
On the reception of Tui

, the authority S0:

—Parses σui
as (r, z, psi,ΠLogEq,Π∃LogEq) and parses psi as

(bk, y∗i ).
—Computes H = H(CM , CK , idf , r).
—Runs the verification algorithm, VLogEq(H, bk, z, y∗i ,ΠLogEq),

if not successful then reject Tui
and abort. Else,

—Runs the verification algorithm,
V∃LogEq(g, bk, y1, ..., ym, y

∗
i ,Π∃LogEq), if not successful then

reject Tui
and abort. Else, accept Tui

.

On the acceptance of Tui
, S0 sendsCM ,CK , and idf to all servers

in S. Notice that the forwarded message must be signed by S0’s
personal private key for authenticity purpose.

6.7 Deposit and dispersal of the author’s package
Each server in S runs the IDA algorithm as in [26, 42, 25], the
servers agree on a dispersal strategy (i.e. the prime p and the
polynomial f(x)), each server Si performs as follows (in a non-
interactive way):

—Segments CM into t+1 segments (C
(0)
M , ..., C

(t)
M ).

—Sets the polynomial f(x) =
∑t

`=0
C

(`)
M x`modp.

—Computes f(j) andH(f(j)) ∀j= 1, ...n.
—Stores f(i) and H(f(j)) ∀j= 1, ...,n. Erases all other f(j 6= i)

shares.

The IDA algorithm is performed only for the file ciphertext CM ,
as it is assumed a large ciphertext. Applying the IDA algorithm
on the symmetric secret key ciphertext CK does not worth the ef-
fort since it is already small (usually one group element). There-
fore, each server in S stores a copy of CK as it is. Finally,
each server Si ∈ S ends up storing for each package the tuple,
〈f(i),H(f(1)), ...,H(f(n)),CK , idf 〉.

6.8 Package request and retrieval
Package request. The user ui requests a package/file idf that he is
authorized for as follows:

— Picks a blinding parameter r and using S’s pkS encrypts r
as Cr=EpkS (r).

—Prepares a request for the file idf he wants to download and
proceed to anonymously sign his request,

—Computes the hash H = H(req, idf , Cr) and computes
z=Hximodp.

—Generates a NIZK proof, ΠLogEq ← PLogEq(H, bk, z, y
∗
i , xi),

which proves that logH(z) =logbk(y∗i ).
—Generates a NIZK proof,

Π∃LogEq ← P∃LogEq(g, bk, y1, ..., ym, y
∗
i ), which proves

that there exists some index i ∈ {1, ...,m} such that
loggyi=logbky

∗
i .

—Parses σui
as (z, psi,ΠLogEq,Π∃LogEq).

—Sends to S0 the tuple Tui
=〈req, idf , Cr, σui

〉.
—On the reception of Tui

, S0 verifies the signature and ensures
that ui of pseudonym psi is authorized for idf .

—The authority S0 forwards a signed version of idf and Cr to all
servers in S.

Package retrieval. Next, the set of servers S and the authority S0

reconstruct CM of identity idf and decrypt for the blinded sym-
metric secret key rK as follows:

Retrieval of CM:

—To S0, each server Si ∈ S sends his segment f(i) and the hashes
H(f(j)) ∀j= 1, ...,n signed by his personal private key.

—S0 collects the segments, hashes them and decides on their in-
tegrity by comparison to all other received hashes (on a majority
basis).
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—From any valid t+1 segments, S0 is able to recover CM .

Retrieval of the symmetric secret key:

—Each server Si ∈ S computes the ciphertext, CrK=CrCK .
—The set S runs a verifiable distributed threshold decryption pro-

tocol to decrypt CrK . At the end, each server Si ∈ S holds a
partial decryption εSi

of Esks(CrK).
—Each Si signs his partial decryption εSi

using his personal pri-
vate key.

—The signed partial decryptions are sent to S0 to reconstruct the
blinded key, rK.

Finally, S0 sendsCM and rK to the anonymous user of pseudonym
psi signed with S0’s private key. User ui verifies the signature, ex-
tracts K from rK (since he knows r) and decrypts for M .

6.9 Tracing an accused user
In case of – for example – a dispute, S0 requests the servers
in S to join to reveal the identity of the signer from the argued
pseudonym psj= (bk, y∗j). Each server Si:

—Broadcasts Y i= (y∗j)
D(i)modp, where D(i) is Si’s share of

k−1modq.
—Broadcasts ΠLogEq ← PLogEq(g, y

∗
j , Gi, Yi,D(i)) a prove

that loggGi=logy∗
j
Yimodq.

From any t+1 quantities, Yi’s, that pass the proof ΠLogEq suc-
cessfully, each server can perform interpolation in the exponent to
compute (y∗j)

1/k=yj . Interpolation in the exponent is as simple as

computing:
∏
i∈B (y∗j)

D(i)λi= (y∗j)

∑
i∈B

D(i)λi= (y∗j)
k−1=yj ,

where |B| =t+1 and λi is Lagrange coefficient of server Si.

7. SECURITY ANALYSIS
In the core of our protocol, over that in [26, 25], the generation
of the tracing trapdoor parameter (which is a random, uniformly
distributed value k) and the private decryption key (which is a ran-
dom, uniformly distributed value x) are distributed on a threshold
basis and the values bk=gk and y=gx are made public. The proto-
col is called t-secure, that is, in the presence of at most t malicious
servers:

—All subsets of t+1 valid shares reconstruct to the same unique
secret parameter k and private key x.

—Each server is able to compute the common public values bk=gk

and y=gx.
—The parameters k and x are uniformly distributed in Zq and

hence, bk and y are uniformly distributed in the subgroup gener-
ated by g.

—No information on k or x can be learned by the coalition of at
most t servers except for what is implied by the values bk=gk

and y=gx.

Performing JRVSS with Feldman’s VSS alone is insecure, since,
traitors can influence the distribution of the result of Feldman’s
VSS to a non-uniform distribution [19]. More precisely, the at-
tack works as follows: Assume that two traitors – say S1 and S2

– want to bias the distribution towards values bk whose last bit is
0. S1 gives members, S3, ..., St+2 shares which are inconsistent
with his broadcast values, the rest of the members receive consis-
tent shares. Thus, there will be t complaints against S1, yet t com-
plaints are not enough for disqualification. The traitors compute

α=
∑n

i=1
gki and β=

∑n

i=2
gki . If α ends with 0 then S1 will do

nothing and continue the protocol as written. If α ends with 1 then
force the disqualification of S1, this is achieved by asking S2 to
also broadcast a complaint against S1, which brings the number of
complaints to t+1. This action sets the public value bk to β which
ends with 0 with probability 1/2. One must notice that synchronous
broadcast does not prevent such attack to take place. Hence, the
third requirement for correctness and the secrecy requirement dra-
matically fail. In Pedersen’s VSS, the view of the traitors is inde-
pendent of the value of the secret k, and therefore the secrecy of
k is unconditional; this eliminates the possibility of the described
attack. The security of the JRVSS can be proven via simulation as
in [19].

In our protocol, when the verifier receives a signed message
from a signer for the first time, the signer must prove that the
included pseudonym is valid (i.e. related to an identity in the
set ID={y1, ..., ym}), hence, the signer ui includes the proof
P∃LogEq(g, bk, y1, ..., ym, y

∗
i ) which proves to the verifier that

there exists some index i ∈ {1, ...,m} such that loggyi=logbky
∗
i

with no information revealed about the exponent xi or the index i.

In the verification algorithm, since ΠLogEq is ZK, a veri-
fier that receives a signed message with a certain pseudonym
psi= (bk, (bk)xi) is faced with the computational Diffie-Hellman
problem (CDHP) to compute xi given bk and (bk)xi . Given the
set of identities ID, anonymity of the signer is preserved, since
Π∃LogEq is ZK. The verifier is faced with the decisional Diffie-
Hellman problem (DDHP), that is, given, g, gk, gkxi , distinguish
gxi from gxj for a random xj 6=i ∈ Z∗q .

The tracing protocol is t-resilient, that is at most tmalicious servers
cannot trace the identity of the signer. This statement follows from
the properties of threshold structures [19, 10].

Our protocol assumes that the authority S0 is semi-honest (honest-
but-curious) in the sense that, it follows the execution steps of the
protocol word for word (as written) but she is willing to learn and
misuse any private information that could be leaked during exe-
cution. This assumption reduces the complexity by allowing the
authority to issue digital signatures on behalf of the servers to au-
thenticate the servers to the users and also to issue receipts to the
author. If the authority is assumed malicious, then she is not trusted
to sign information and hence all the digital signatures issued in
our protocol are insecure. In this case, digital signatures are to be
performed by the servers in S on a threshold basis using thresh-
old distributed verifiable digital signature schemes (e.g. [18]). In
some situations, even if the authority is assumed honest, the au-
thority may not trust the servers (e.g. the authority and the servers
are from different organizations), in the sense that , she does not is-
sue any receipts to the author unless she is sure that his package is
dispersed on the servers. In this case, the servers must jointly sign
a receipt for the package ciphertext to the authority. Assuming that
S0 is semi-honest is essential since a malicious S0 may replace the
encryption Cr=EpkS (r) with another value Cr′=EpkS (r′) where
she knows r′ and since the servers return r′K, she is able to know
the private keyK. We emphasize that S0 is assumed semi-honest or
else, the signature by u on Cr must be forwarded to be verified by
all servers in S. Time-stamp embedded with the signature disables
the possibility of replay attacks.

8. COMPARISONS AND DISCUSSION
Since we add a new security service to the protocol of [26, 25], it
is predictable that the computations and communications complexi-
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ties will increase accordingly. In the setup protocol by the servers, a
verifiable secret sharing scheme is used to share k and to resist pos-
sible malicious behaviors attempted by at most t servers. There is
an increase in the computations and communications complexities
due to the need to compute and publicize polynomial commitments
chosen by each server. As a result of the setup protocol, the group
public parameters increases over that in [26, 25] by n group ele-
ments (contained in the set of public commitments, G). One must
notice that the setup protocol is performed only once.

In the anonymous signature algorithm, the length of the signature
(as a first signature from this group signer) increases due to the
need to include Π∃LogEq in the signature. However, this proof is
performed by the signer only once per verifier to prove that the
signer’s pseudonym is a valid pseudonym related to some anony-
mous identity yi, once the verifier successfully verifies the correct-
ness of the pseudonym; he simply stores the pseudonym for future
messages from this particular signer. Hence, Π∃LogEq is included
only in the first signed message to this verifier and removed from
the future messages. The increase of complexity in the algorithm
‘verify’ is also due to the need to perform the verification step,
V∃LogEq(.) for each new group signer.

In the tracing protocol, which is not supposed to be frequently per-
formed unless there is a legal reason (e.g. a dispute) agreed by the
majority of the servers, the complexities increase due to the need
to perform the proof ΠLogEq for each broadcasted quantity yi and
the need to perform interpolation in the exponent.

Finally we notify that our proposed protocol could be implemented
over other number theoretic settings of groups over finite fields
such as Elliptic cure [20].

9. CONCLUSIONS
In this paper we proposed an E-DRM protocol that allows autho-
rized users to upload, store and download packages in an efficiently
secure, anonymous and authenticated way. On the other hand, in
case of an accusation or a dispute, our protocol is able to trace
the user to his clear identity to solve accusations. The power to
trace and identify the signer is distributed among the servers on a
threshold bases to resist traitors and prevent them from violating
anonymity of the users. Due to the new security service we pro-
vided, the complexities increase accordingly, yet, our solution still
efficient and practical.
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