
International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.4, September 2015

8

Comparative Study of Frequent Itemset Mining

Algorithms Apriori and FP Growth

Ritu Garg
Student MTECH (CS)

M.D.U Rohtak (Haryana, India)

Preeti Gulia, PhD
Associate Prof.

M.D.U Rohtak (Haryana, India)

ABSTRACT
Frequent itemset mining leads to the discovery of associations

among items in large transactional database. In this paper, two

algorithms[7] of generating frequent itemsets are discussed:

Apriori and FP-growth algorithm. In apriori algorithm

candidates are generated and testing is done which is easy to

implement but candidate generation and support counting is

very expensive in this because database is checked many

times. In the fp-growth, there is no candidate generation and

requires only 2 passes over the database but in this the

generation of fp-tree become very expansive to built and

support is counted only when entire dataset is added to fp-

tree. The comparison of these algorithms will tell which

algorithm is better to perform.

Keywords
Frequent itemset mining, Apriori, FP-Growth

1. INTRODUCTION
In recent years amount of data in the database has increased

rapidly. The increasing size of the database has led to growing

interest in extraction of useful information from the bulk of

data. Data mining is a technique useful for attaining useful

information from vast databases. Implicit information within a

database can be very useful in tasks such as marketing,

financial forecast etc. This information has to be derived

efficiently. Frequent itemset mining discovers significant

relationships among variables or items in a dataset.

Association rule mining[5] searches for relationships between

items in a dataset. It finds association among set of items in

transactional database. Each transaction is a list of items.

Association rules[4] is in form A⇒B which means customer

buys A also tends to buy B. To mine association rule, basic

concepts of support and confidence are needed. Support s is

the probability that a transaction contain (X, Y).Confidence C

is the measure of the strength of the association rule, suppose

the confidence of the association rule x⇒y is 90%, it means

that 90% of the transactions that contain X also contain Y

together. Also minimum support and minimum confidence is

needed to eliminate the unimportant association rules. Such

that the association rules is hold when it is greater than the

minimum support and minimum confidence.

T_id Items

100 a, b,c

200 a, c

300 a, d

400 b, e, f

Equation for support and confidence:

Support (A⇒ B) =Probability (A∩B).

Confidence (A⇒B) =Probability (B/A).

Let the min_support and min_confidence are 50%.for

association rule a⇒c, support (a, c)

=2/4*100%=50%.Confidence=Support (a, c)/Support (a)

=50%/75%=66.6%, means that customer buys a also have

66.6% chance to buy c.

2. APRIORI ALGORITHM
The apriori algorithm[2] is firstly proposed by R.Aggarwal

and R.Srikant in 1994 for mining frequent itemset. In data

mining, Apriori is a classic algorithm for learning association

rules. Apriori is designed to operate on databases containing

transactions (for example, collections of items bought by

customers, or details of a website frequentation).

Apriori algorithm follows two phases:

 Generate Phase: In this phase candidate (k+1)-

itemset is generated using k-itemset; this phase

creates Ck candidate set.

 Prune Phase: In this phase candidate set is pruned to

generate large frequent itemset using “minimum

support” as the pruning parameter. This phase

creates Lk large itemset

Fig 1 shows the pseudo code for apriori algorithm :

Apriori_Algo(L,C,k,)

Pass 1

1. Generate the candidate itemsets in C1

2. Save the frequent itemsets in L1

Pass k

1. Generate the candidate itemsets in Ck from the

frequent itemsets in Lk-1

i. Join Lk-1 p with Lk-1q, as follows:

insert into Ck

select p.item1, p.item2, . . . , p.itemk-

1, q.itemk-1

from Lk-1 p, Lk-1q

where p.item1 = q.item1, . . . p.itemk-

2 = q.itemk-2, p.itemk-1 < q.itemk-1

ii. Generate all (k-1)-subsets from the

candidate itemsets in Ck

iii. Prune all candidate itemsets

from Ck where some (k-1)-subset of the

candidate itemset is not in the frequent

itemset Lk-1

2. Scan the transaction database to determine the

support for each candidate itemset in Ck

3. Save the frequent itemsets in Lk

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.4, September 2015

9

Example of apriori algorithm:

• Consider a database, D , consisting of 9

transactions.

• Suppose min. support count required is 2 (i.e. min_sup

= 2/9 = 22 %)

TID List of items

T100 I1 ,I2 ,I5

T200 I2 ,I4

T300 I2 ,I3

T400 I1 ,I2 ,I4

T500 I1 ,I3

T600 I2 ,I3

T700 I1 ,I3

T800 I1 ,I2 ,I3 ,I5

T900 I1 ,I2 ,I3

Table 2: Database consisting 9 transactions

Step 1: Count the number of transactions in which each item

occurs (Table 3.a)

Step 2: In this step we remove all the items that are bought

less than 2 times from the table (Table 3.b)

C1

L1

 (A) (b)

Table 3: first scan of Apriori(Scan for count of each

candidate)

Step 3: Make all the pairs of items by using property JOIN L1

with L1and count how many times each pair is bought

together (Table 4.a)

Step 4: Remove all the item pairs with number of transactions

less than two (Table 4.b)

 (a) (b)

Table 4: The second scan of A-priori (Generate C2 and Scan

D for count of each Candidate).

Step 5: To make the set of three items we need one more rule

(it’s termed as self-join),

It simply means, from the Item pairs in the above table, we

find two pairs with the same first Item

C3

L3

Itemset Sup-count Comp

are

 Itemset

Sup-

count

I1 ,I2 ,I3 2

I1 ,I2 ,I3 2

 And

I1 ,I2 ,I5 2 Prune I1 ,I2 ,I5 2

(a) (b)

Table 5: The third scan of A-priori (Generate C3 and Scan D

for count of each Candidate)

 While we are on this, suppose you have sets of 3

items say ABC, ABD, ACD, ACE, BCD and you

want to generate item sets of 4 items you look for

two sets having the same first two alphabets.

 ABC and ABD -> ABCD

 ACD and ACE -> ACDE

Step 6: according to above statement I1, I2, I3, I5 is generated

whose minimum support is less than 2.so this is not frequent.

Thus the set of three items that are bought together most

frequently are I1, I2, I3 and I1, I2, I5

ADVANTAGES:

1. Use large itemset.

2. Easy to implement.

3. Easily parallelized.

DISDVANTAGE:

1. It may need to generate a huge no of candidate sets.

So its generation is expensive.

2. Assumes transactional database is memory resident.

3. Support count is expensive because require many

database scan.

3. FP-GROWTH ALGORITHM

The FP-Growth Algorithm[1], proposed by Han in, is an

efficient and scalable method for mining the complete set of

frequent patterns by pattern fragment growth, using an

extended prefix-tree structure for storing compressed and

crucial information about frequent patterns named frequent-

pattern tree (FP-tree). In his study, Han proved that his

method outperforms other popular methods for mining

frequent patterns [1],[8],[9],[10], e.g. the Apriori Algorithm

Itemset Sup-

count

I1 6

I2 7

I3 6

I4 2

I5 2

Itemset Sup-count

I1 6

I2 7

I3 6

I4 2

I5 2

Itemset Sup-

count

I1,I2 4

I1,I3 4

I1,I4 1

I1,I5 2

I2,I3 4

I2,I4 2

I2,I5 2

I3,I4 0

I3,I5 1

I4,I5 0

Itemset Sup-

count

I1,I2 4

I1,I3 4

I1,I5 2

I2,I3 4

I2,I4 2

I2,I5 2

Compa

re and

prune

Compare

and

prune

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.4, September 2015

10

Major steps in FP-growth is

Step1- It firstly compresses the database showing frequent

item set in to FP-tree. FP-tree is built using 2 passes over the

dataset.

Step2: It divides the FP-tree in to a set of conditional database

and mines each database separately, thus extract frequent item

sets from FP-tree directly. It consist of one root labeled as

null, a set of item prefix sub trees as the children of the root,

and a frequent .item header table. Each node in the item prefix

sub tree consists of three fields: item-name, count and node

link where--- item-name registers which item the node

represents; count registers the number of transactions

represented by the portion of path reaching this node, node

link links to the next node in the FP- tree. Each item in the

header table consists of two fields---item name and head of

node link, which points to the first node in the FP-tree

carrying the item name.

3.1 FP-Tree structure
The frequent-pattern tree (FP-tree)[6] is a compact structure

that stores quantitative information about frequent patterns in

a database. Han defines the FP-tree as the tree structure

defined below:

1. One root labeled as “null” with a set of item-prefix

subtrees as children, and a frequent-item-header

table:

i. Each node in the item-prefix subtree

consists of three fields: Item-name:

registers which item is represented by the

node;

ii. Count: the number of transactions

represented by the portion of the path

reaching the node;

iii. Node-link: links to the next node in the

FP-tree carrying the same item-name, or

null if there is none.

Each entry in the frequent-item-header table consists of

two fields:

i. Item-name: as the same to the node;

ii. Head of node-link: a pointer to the first

node in the FP-tree carrying the item-

name.

Procedure of fp-growth algorithm:

Input: constructed FP-tree

Output: complete set of frequent patterns

Method: Call FP-growth (FP-tree, null).

Procedure FP-growth (Tree, α)

{

1. If Tree contains a single path P then

2.
with support = minimum support of nodes in β.

3. Else for each header ai in the header of Tree do {

4.
ai.support;

5. Construct β.s conditional pattern base and then β.s

conditional FP-tree Tree β

6. If Tree β = null

7. Then call FP-growth (Tree β, β)}

}

Example:

Let us create the FP-tree for the example from Table 2:

• First we scan the database and determine the set of

frequent items (1-itemsets) and their support

counts(frequencies):

L={{I2:7},{I1:6},{I3:6},{I4:2},{I5:2}}

• Then we create the root of the FP-tree and label it

with “null”

• We take each transaction, sort the items according

to descending support count, and create a branch for

it. For example the scan of the first transaction

“T100:I1, I2, I5”, which contain tree items: I2, I1

and I5 in sorted descending, leads to the

construction of the first branch of the tree: (I2:1),

(I1:1), (I5:1).

• The second transaction T200 contains the items I2

and I4. This would result a branch where I2 is

• linked to the root and I4 is linked to I2. However

this branch would share a common prefix, i2, with

the existing path for T100. Therefore we instead

increment the count of the 12 node by 1 and create a

new node (I4:1), which is linked as a child of (I2:2).

In general when considering the branch to be added for a

transaction, the count of each node along a common prefix is

incremented by 1 and nodes for the items following the prefix

are created and linked accordingly.

To facilitate tree traversal, an item header table is built so that

each item points to its occurrences in the tree via a chain of

node-links. In this way the problem of mining frequent pattern

in database is transformed to that of mining the FP-tree.

The FP-tree is mined as follows: Start from each frequent

length-1 pattern, as an initial suffix pattern, construct its

conditional pattern base, a sub-database, which consists of the

set of prefix paths in the FP-tree co-occurring with the suffix

pattern, then construct its conditional FP-tree and perform

mining recursively on such a tree. The pattern growth is

achieved by the concatenation of the suffix pattern with the

frequent patterns generated from a conditional FP-tree.

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.4, September 2015

11

 Let us consider I5, which is the last item in L. I5

occurs in two branches of the FP-tree:

o (I2, I1, I5:1)

o (I2, I1, I3, I5:1)

 I5 is a suffix, so its corresponding two prefix paths

are

o (I2, I1:1)

o (I2, I1, I3:1)

 Its conditional FP-tree contains only a single path:

(I2:2, I1:2); I3 is removed because its support count

of 1 is less than the minimum support count

 The single path generates all the combinations of

frequent patterns:

o {I2,I5:2}

o {I1,I5:2}

o {I2, I1, I5:2}

 For I4 exist 2 prefix path, which form the

conditional pattern base:

o {{I2, I1:1},{I2:1}}

 This generates a single-node conditional FP-tree:

o (I2:2)

 The frequent pattern: {I2, I1:2}

The following table shows the frequent pattern generated for

each node:

Item

Conditional

Pattern Base

Conditional

FP-tree

Frequent Pattern

Generated

I5

{{I2, I1:1},

{I2, I1, (I2:2, I1:2)

{I2, I5:2}, {I1,

I5:2}, {I2,

 I3:1}} I1, I5:2}

I4

{{I2, I1:2},

{I2:1}} (I2:2) {I2, I4:2}

I3

{{I2, I1:2},

{I2:2},

(I2:4, I1:2),

(I1:2),

{I2, I3:4}, {I1,

I3:4}, {I2,

 {I1:2}} (I2:4)

I1, I3:2}, {I2,

I1:4}

I1 {{I2:4}} (I2:4) {I2, I1:4}

ADVANTAGES:

1. It compresses the database.

2. Require only 2 pass over database.

3. There is no candidate generation.

4. Faster than apriori.

5. Reduces search cost

DISADVANTAGE:

1. It may not fit in main memory.

2. FP tree is expensive to build.

i. takes time to build but once built frequent

itemset can be obtained easily.

ii. Support can only be calculated once the

entire dataset is added to fp-tree.

4. COMPARISON OF APRIORI AND

FP-GROWTH ALGORITHMS

Parameters Apriori

Algorithm

FP-growth

Algorithm

Technique Use Apriori

property and join

and prune

property

It constructs

conditional

frequent pattern

tree and

conditional

pattern base from

database which

satisfy minimum

support.

Memory utilization Due to large no.

of candidate

generation require

large memory

space.

Due to compact

structure and no

candidate

generation require

less memory.

Number of scans Multiple scans for

generating

candidate set.

Scan the database

only twice and

twice only.

Time Execution time is

more as time is

wasted in

producing

candidate every

time.

Execution time is

lesser than the

Apriori algorithm.

5. CONCLUSION
Frequent itemset mining is an important task in association

rule mining. It has been found useful in many applications

like market basket analysis, financial forecasting etc. We have

discussed about classical algorithm Apriori and Fp growth

with their pros and cons. using the horizontal approach ,owing

to all candidate itemset for each level has to be discovered ,the

longer the length of the frequent itemset ,more the number of

candidate generation. Projected tree method is efficient in

terms of speed but utilizes more space. These disadvantages

can be overcome by using techniques like hashing,

partitioning etc. In this paper study of itemset mining

algorithms is done and on the basis of that study comparison

is given between them.

6. REFERENCES
[1] J. Han, H. Pei, and Y. Yin. Mining Frequent Patterns

without Candidate Generation. In: Proc. Conf. on the

Management of Data (SIGMOD’00, Dallas, TX). ACM

Press, New York, NY, USA 2000.

[2] Agrawal, R. and Srikant, R. 1994. Fast algorithms for

mining association rules. In Proc. 1994 Int. Conf. Very

Large Data Bases (VLDB’94), Santiago, Chile, pp. 487–

499.

[3] Agarwal, R., Aggarwal, C., and Prasad, V.V.V. 2001. A

tree projection algorithm for generation of frequent

itemsets. Journal of Parallel and Distributed Computing,

61:350–371.

[4] B.Santhosh Kumar and K.V.Rukmani. Implementation

of Web Usage Mining Using APRIORI and FP Growth

Algorithms. Int. J. of Advanced Networking and

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.4, September 2015

12

Applications, Volume: 01, Issue: 06, Pages: 400-404

(2010).

[5] Cornelia Gyorödi and Robert Gyorödi. A Comparative

Study of Association Rules Mining Algorithms.

[6] F. Bonchi and B. Goethals. FP-Bonsai: the Art of

Growing and Pruning Small FP-trees. Proc. 8th Pacific-

Asia Conference on Knowledge Discovery and Data

Mining (PAKDD’04, Sydney, Australia), 155–160.

Springer-Verlag, Heidelberg, Germany 2004.

[7] Christian Borgelt. Keeping Things Simple: Finding

Frequent Item Sets by Recursive Elimination. Workshop

Open Source Data Mining Software (OSDM'05,

Chicago, IL), 66-70. ACM Press, New York, NY, USA

2005

[8] Aiman Moyaid, Said and P.D.D., Dominic and Azween,

Abdullah. A Comparative Study of FP-growth

Variations. International journal of computer science and

network security, 9 (5). pp. 266-272.

[9] Liu, G., Lu, H., Yu, J. X., Wang, W., & Xiao, X..

AFOPT: An Efficient Implementation of Pattern Growth

Approach, In Proc. IEEE ICDM'03 Workshop FIMI'03,

2003.

[10] Grahne, G., & Zhu, J. Fast Algorithm for frequent

Itemset Mining Using FP-Trees. IEEE Transactions on

Knowledge and Data Engineer, Vol.17, NO.10, 2005.

IJCATM : www.ijcaonline.org

