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ABSTRACT 
Frequent itemset mining leads to the discovery of associations 

among items in large transactional database. In this paper, two 

algorithms[7] of generating frequent itemsets are discussed: 

Apriori and FP-growth algorithm. In apriori algorithm 

candidates are generated and testing is done  which is easy to 

implement but candidate generation and support counting is 

very expensive in this because database is checked many 

times. In the fp-growth, there is no candidate generation and 

requires only 2 passes over the database but in this the 

generation of fp-tree become very expansive to built and 

support is counted only when entire dataset is added to fp-

tree. The comparison of these algorithms will tell which 

algorithm is better to perform.  
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1. INTRODUCTION 
In recent years amount of data in the database has increased 

rapidly. The increasing size of the database has led to growing 

interest in extraction of useful information from the bulk of 

data. Data mining is a technique useful for attaining useful 

information from vast databases. Implicit information within a 

database can be very useful in tasks such as marketing, 

financial forecast etc. This information has to be derived 

efficiently. Frequent itemset mining discovers significant 

relationships among variables or items in a dataset. 

Association rule mining[5] searches for relationships between 

items in a dataset. It finds association among set of items in 

transactional database. Each transaction is a list of items. 

Association rules[4] is in form A⇒B which means customer 

buys A also tends to buy B. To mine association rule, basic 

concepts of support and confidence are needed. Support s is 

the probability that a transaction contain (X, Y).Confidence C 

is the measure of the strength of the association rule, suppose 

the confidence of the association rule x⇒y is 90%, it means 

that 90% of the transactions that contain X also contain Y 

together. Also minimum support and minimum confidence is 

needed to eliminate the unimportant association rules. Such 

that the association rules is hold when it is greater than the 

minimum support and minimum confidence. 

T_id Items 

100 a, b,c 

200 a, c  

300 a, d 

400 b, e, f 

 

Equation for support and confidence: 

Support (A⇒ B) =Probability (A∩B). 

Confidence (A⇒B) =Probability (B/A). 

 

Let the min_support and min_confidence are 50%.for 

association rule a⇒c, support (a, c) 

=2/4*100%=50%.Confidence=Support (a, c)/Support (a) 

=50%/75%=66.6%, means that customer buys a also have 

66.6% chance to buy c. 

 

2. APRIORI ALGORITHM 
The apriori algorithm[2] is firstly proposed by R.Aggarwal 

and R.Srikant in 1994 for mining frequent itemset. In data 

mining, Apriori is a classic algorithm for learning association 

rules. Apriori is designed to operate on databases containing 

transactions (for example, collections of items bought by 

customers, or details of a website frequentation). 

Apriori algorithm follows two phases:   

 Generate Phase: In this phase candidate (k+1)-

itemset is generated using k-itemset; this phase 

creates Ck candidate set. 

 Prune Phase: In this phase candidate set is pruned to 

generate large frequent itemset using “minimum 

support” as the pruning parameter. This phase 

creates Lk large itemset 

 

Fig 1 shows the pseudo code for apriori algorithm : 

Apriori_Algo(L,C,k,) 

Pass 1 

1. Generate the candidate itemsets in C1 

2. Save the frequent itemsets in L1 

Pass k 

1. Generate the candidate itemsets in Ck from the 

frequent  itemsets in Lk-1 

i. Join Lk-1 p with Lk-1q, as follows:  

insert into Ck  

select p.item1, p.item2, . . . , p.itemk-

1, q.itemk-1  

from Lk-1 p, Lk-1q  

where p.item1 = q.item1, . . . p.itemk-

2 = q.itemk-2, p.itemk-1 < q.itemk-1 

ii. Generate all (k-1)-subsets from the 

candidate itemsets in Ck 

iii. Prune all candidate itemsets 

from Ck where some (k-1)-subset of the 

candidate itemset is not in the frequent 

itemset Lk-1 

2. Scan the transaction database to determine the 

support for each candidate itemset in Ck 

3. Save the frequent itemsets in Lk 
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Example of apriori algorithm: 

• Consider a database, D , consisting of 9 

transactions.  

• Suppose min. support count required is 2 (i.e. min_sup 

= 2/9 = 22 % )  

TID List of items 

T100 I1 ,I2 ,I5 

T200 I2 ,I4 

T300 I2 ,I3 

T400 I1 ,I2 ,I4 

T500 I1 ,I3 

T600 I2 ,I3 

T700 I1 ,I3 

T800 I1 ,I2 ,I3 ,I5 

T900 I1 ,I2 ,I3 

Table 2: Database consisting 9 transactions 

Step 1: Count the number of transactions in which each item 

occurs (Table 3.a) 

Step 2: In this step we remove all the items that are bought 

less than 2 times from the table (Table 3.b) 

 

C1                                                                  

L1 

 

 

 

 

 

 

 
           (A)                                                                        (b) 

Table 3: first scan of Apriori( Scan for count of each 

candidate) 

 

Step 3: Make all the pairs of items by using property JOIN L1 

with L1and count how many times each pair is bought 

together (Table 4.a) 

 

Step 4: Remove all the item pairs with number of transactions 

less than two (Table 4.b) 

 
 

 

 

 

 

 

  (a)                                                                         (b)                                                            

Table 4: The second scan of A-priori (Generate C2 and Scan 

D for count of each Candidate). 

Step 5: To make the set of three items we need one more rule 

(it’s termed as self-join), 

It simply means, from the Item pairs in the above table, we 

find two pairs with the same first Item 

C3 

    

L3 

  

      

Itemset Sup-count  Comp

are 

 Itemset 

Sup-

count  

I1 ,I2 ,I3 2 

  

I1 ,I2 ,I3 2 

 

 And    

I1 ,I2 ,I5 2  Prune  I1 ,I2 ,I5 2  

                              

(a)      (b)  

Table 5: The third scan of A-priori (Generate C3 and Scan D 

for count of each Candidate) 

 While we are on this, suppose you have sets of 3 

items say ABC, ABD, ACD, ACE, BCD and you 

want to generate item sets of 4 items you look for 

two sets having the same first two alphabets. 

 ABC and ABD -> ABCD 

 ACD and ACE -> ACDE 

 

Step 6: according to above statement I1, I2, I3, I5 is generated 

whose minimum support is less than 2.so this is not frequent. 

Thus the set of three items that are bought together most 

frequently are I1, I2, I3 and I1, I2, I5  

ADVANTAGES: 

1.  Use large itemset. 

2.  Easy to implement. 

3.  Easily parallelized. 

DISDVANTAGE: 

1. It may need to generate a huge no of candidate sets. 

So its generation is expensive. 

2. Assumes transactional database is memory resident. 

3. Support count is expensive because require many 

database scan. 

3. FP-GROWTH ALGORITHM 

The FP-Growth Algorithm[1], proposed by Han in, is an 

efficient and scalable method for mining the complete set of 

frequent patterns by pattern fragment growth, using an 

extended prefix-tree structure for storing compressed and 

crucial information about frequent patterns named frequent-

pattern tree (FP-tree). In his study, Han proved that his 

method outperforms other popular methods for mining 

frequent patterns [1],[8],[9],[10], e.g. the Apriori Algorithm 

 

 

Itemset Sup-

count 

I1 6 

I2 7 

I3 6 

I4 2 

I5 2 

Itemset Sup-count 

I1 6 

I2 7 

I3 6 

I4 2 

I5 2 

Itemset Sup-

count 

I1,I2 4 

I1,I3 4 

I1,I4 1 

I1,I5 2 

I2,I3 4 

I2,I4 2 

I2,I5 2 

I3,I4 0 

I3,I5 1 

I4,I5 0 

Itemset Sup-

count 

I1,I2 4 

I1,I3 4 

I1,I5 2 

I2,I3 4 

I2,I4 2 

I2,I5 2 

Compa

re and 

prune 

Compare 

and 

prune 
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Major steps in FP-growth is 

Step1- It firstly compresses the database showing frequent 

item set in to FP-tree. FP-tree is built using 2 passes over the 

dataset.  

Step2: It divides the FP-tree in to a set of conditional database 

and mines each database separately, thus extract frequent item 

sets from FP-tree directly. It consist of one root labeled as 

null, a set of item prefix sub trees as the children of the root, 

and a frequent .item header table. Each node in the item prefix 

sub tree consists of three fields: item-name, count and node 

link where--- item-name registers which item the node 

represents; count registers the number of transactions 

represented by the portion of path reaching this node, node 

link links to the next node in the FP- tree. Each item in the 

header table consists of two fields---item name and head of 

node link, which points to the first node in the FP-tree 

carrying the item name. 

3.1 FP-Tree structure 
The frequent-pattern tree (FP-tree)[6] is a compact structure 

that stores quantitative information about frequent patterns in 

a database. Han defines the FP-tree as the tree structure 

defined below: 

1. One root labeled as “null” with a set of item-prefix 

subtrees as children, and a frequent-item-header 

table: 

i. Each node in the item-prefix subtree 

consists of three fields: Item-name: 

registers which item is represented by the 

node; 

ii. Count: the number of transactions 

represented by the portion of the path 

reaching the node; 

iii. Node-link: links to the next node in the 

FP-tree carrying the same item-name, or 

null if there is none. 

Each entry in the frequent-item-header table consists of 

two fields: 

i. Item-name: as the same to the node; 

ii. Head of node-link: a pointer to the first 

node in the FP-tree carrying the item-

name. 

Procedure of fp-growth algorithm: 

Input: constructed FP-tree  

Output: complete set of frequent patterns  

Method: Call FP-growth (FP-tree, null).  

Procedure FP-growth (Tree, α)  

{  

1. If Tree contains a single path P then  

2. 
with support = minimum support of nodes in β.  

3. Else for each header ai in the header of Tree do {  

4. 
ai.support;  

5. Construct β.s conditional pattern base and then β.s 

conditional FP-tree Tree β  

6. If Tree β = null  

7. Then call FP-growth (Tree β, β)}  

} 

 

 

Example: 

 

Let us create the FP-tree for the example from Table 2: 

 

• First we scan the database and determine the set of 

frequent items (1-itemsets) and their support 

counts(frequencies): 

L={{I2:7},{I1:6},{I3:6},{I4:2},{I5:2}}  

 

• Then we create the root of the FP-tree and label it 

with “null”  

 

• We take each transaction, sort the items according 

to descending support count, and create a branch for 

it. For example the scan of the first transaction 

“T100:I1, I2, I5”, which contain tree items: I2, I1 

and I5 in sorted descending, leads to the 

construction of the first branch of the tree: (I2:1), 

(I1:1), (I5:1).  

 

• The second transaction T200 contains the items I2 

and I4. This would result a branch where I2 is  

• linked to the root and I4 is linked to I2. However 

this branch would share a common prefix, i2, with 

the existing path for T100. Therefore we instead 

increment the count of the 12 node by 1 and create a 

new node (I4:1), which is linked as a child of (I2:2).  

 

In general when considering the branch to be added for a 

transaction, the count of each node along a common prefix is 

incremented by 1 and nodes for the items following the prefix 

are created and linked accordingly. 

To facilitate tree traversal, an item header table is built so that 

each item points to its occurrences in the tree via a chain of 

node-links. In this way the problem of mining frequent pattern 

in database is transformed to that of mining the FP-tree. 

 

 

 

 

 

 

 

 

 

The FP-tree is mined as follows: Start from each frequent 

length-1 pattern, as an initial suffix pattern, construct its 

conditional pattern base, a sub-database, which consists of the 

set of prefix paths in the FP-tree co-occurring with the suffix 

pattern, then construct its conditional FP-tree and perform 

mining recursively on such a tree. The pattern growth is 

achieved by the concatenation of the suffix pattern with the 

frequent patterns generated from a conditional FP-tree. 
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 Let us consider I5, which is the last item in L. I5 

occurs in two branches of the FP-tree:  

o (I2, I1, I5:1)  

o (I2, I1, I3, I5:1)  

 I5 is a suffix, so its corresponding two prefix paths 

are  

o (I2, I1:1)  

o (I2, I1, I3:1)  

 Its conditional FP-tree contains only a single path: 

(I2:2, I1:2); I3 is removed because its support count 

of 1 is less than the minimum support count  

 The single path generates all the combinations of 

frequent patterns:  

o {I2,I5:2}  

o {I1,I5:2} 

o {I2, I1, I5:2}  

 For I4 exist 2 prefix path, which form the 

conditional pattern base:  

o {{I2, I1:1},{I2:1}}  

 This generates a single-node conditional FP-tree:  

o (I2:2)  

 The frequent pattern: {I2, I1:2}  

The following table shows the frequent pattern generated for 

each node: 

 

Item 

Conditional 

Pattern Base 

Conditional 

FP-tree 

Frequent Pattern 

Generated 

    

    

I5 

{{I2, I1:1}, 

{I2, I1, (I2:2, I1:2) 

{I2, I5:2}, {I1, 

I5:2}, {I2, 

 I3:1}}  I1, I5:2} 

    

I4 

{{I2, I1:2}, 

{I2:1}} (I2:2) {I2, I4:2} 

    

I3 

{{I2, I1:2}, 

{I2:2}, 

(I2:4, I1:2), 

(I1:2), 

{I2, I3:4}, {I1, 

I3:4}, {I2, 

 {I1:2}} (I2:4) 

I1, I3:2}, {I2, 

I1:4} 

    

I1 {{I2:4}} (I2:4) {I2, I1:4} 

    
 

ADVANTAGES: 

1. It compresses the database. 

2. Require only 2 pass over database. 

3. There is no candidate generation. 

4. Faster than apriori. 

5. Reduces search cost 

 

DISADVANTAGE: 

1. It may not fit in main memory. 

2. FP tree is expensive to build. 

i. takes time to build but once built frequent 

itemset can be obtained easily. 

ii.  Support can only be calculated once the 

entire dataset is added to fp-tree. 

4. COMPARISON OF APRIORI AND 

FP-GROWTH ALGORITHMS 
 

Parameters Apriori 

Algorithm 

FP-growth 

Algorithm 

Technique Use Apriori 

property and join 

and prune 

property 

It constructs 

conditional 

frequent pattern 

tree and 

conditional 

pattern base from 

database which 

satisfy minimum 

support. 

Memory utilization Due to large no. 

of candidate 

generation require 

large memory 

space. 

Due to compact 

structure and no 

candidate 

generation require 

less memory. 

Number of scans Multiple scans for 

generating 

candidate set. 

Scan the database 

only twice and 

twice only. 

Time Execution time is 

more as time is 

wasted in 

producing 

candidate every 

time. 

Execution time is 

lesser than the 

Apriori algorithm. 

 

5. CONCLUSION 
Frequent itemset mining is an important task in association 

rule mining. It has been found useful in many applications 

like market basket analysis, financial forecasting etc. We have 

discussed about classical algorithm Apriori and Fp growth 

with their pros and cons. using the horizontal approach ,owing 

to all candidate itemset for each level has to be discovered ,the 

longer the length of the frequent itemset ,more the number of 

candidate generation. Projected tree method is efficient in 

terms of speed but utilizes more space. These disadvantages 

can be overcome by using techniques like hashing, 

partitioning etc. In this paper study of itemset mining 

algorithms is done and on the basis of that study comparison 

is given between them. 

 

6. REFERENCES 
[1] J. Han, H. Pei, and Y. Yin. Mining Frequent Patterns 

without Candidate Generation. In: Proc. Conf. on the 

Management of Data (SIGMOD’00, Dallas, TX). ACM 

Press, New York, NY, USA 2000.  

[2] Agrawal, R. and Srikant, R. 1994. Fast algorithms for 

mining association rules. In Proc. 1994 Int. Conf. Very 

Large Data Bases (VLDB’94), Santiago, Chile, pp. 487–

499.  

[3] Agarwal, R., Aggarwal, C., and Prasad, V.V.V. 2001. A 

tree projection algorithm for generation of frequent 

itemsets. Journal of Parallel and Distributed Computing, 

61:350–371. 

[4] B.Santhosh Kumar and K.V.Rukmani. Implementation 

of Web Usage Mining Using APRIORI and FP Growth 

Algorithms. Int. J. of Advanced Networking and 



International Journal of Computer Applications (0975 – 8887) 

Volume 126 – No.4, September 2015 

12 

Applications, Volume: 01, Issue: 06, Pages: 400-404 

(2010). 

[5] Cornelia Gyorödi and Robert Gyorödi. A Comparative 

Study of Association Rules Mining Algorithms. 

[6] F. Bonchi and B. Goethals. FP-Bonsai: the Art of 

Growing and Pruning Small FP-trees. Proc. 8th Pacific-

Asia Conference on Knowledge Discovery and Data 

Mining (PAKDD’04, Sydney, Australia), 155–160. 

Springer-Verlag, Heidelberg, Germany 2004. 

[7] Christian Borgelt. Keeping Things Simple: Finding 

Frequent Item Sets by Recursive Elimination. Workshop 

Open Source Data Mining Software (OSDM'05, 

Chicago, IL), 66-70. ACM Press, New York, NY, USA 

2005  

[8] Aiman Moyaid, Said and P.D.D., Dominic and Azween, 

Abdullah. A Comparative Study of FP-growth 

Variations. International journal of computer science and 

network security, 9 (5). pp. 266-272. 

[9] Liu, G., Lu, H., Yu, J. X., Wang, W., & Xiao, X.. 

AFOPT: An Efficient Implementation of Pattern Growth 

Approach, In Proc. IEEE ICDM'03 Workshop FIMI'03, 

2003. 

[10] Grahne, G., & Zhu, J. Fast Algorithm for frequent 

Itemset Mining Using FP-Trees. IEEE Transactions on 

Knowledge and Data Engineer, Vol.17, NO.10, 2005. 

 

IJCATM : www.ijcaonline.org 


