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ABSTRACT 

Mobile computing has developed during recent years. 

Location dependent services are most popular services that the 

mobile environments support. Data caching is a critical issue 

that plays an important role in improving these services and 

system performance. In mobile environments, due to the 

limited cache size of mobile devices, the main problem in data 

caching is cache replacement which is finding a suitable 

subset of items for eviction from cache. In this paper, to solve 

this problem, A Distance-Based Predicted Region Policy for 

Cache Replacement in Mobile Environments is proposed. The 

proposed policy uses the root-mean squared distance that 

based on the distance between a client current location and the 

locations of each object whose data is cached for predicted 

region. Simulation results show that the proposed policy 

improves the system performance compared to existing 

schemes. 
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1. INTRODUCTION 
The fast development of wireless communication systems and 

advancement in computer hardware technology has led to the 

research area called mobile computing. The mobile computing 

research area includes the effect of mobility on hardware, 

software, users, data and computing in computer applications. 

It is an umbrella term used to describe technologies that 

enable people to access network services from anywhere and 

at any time. Without doubt, mobile computing is becoming an 

important part of people daily life [1], [2]. 

However, mobile environments properties as limited 

bandwidth,  limited  client power,  frequent  network  

disconnections,  asymmetric communication,  and  limited  

client  capacities led to many challenging  problems  for  

mobile  data  applications  [3],  [4]. 

In mobile environments, a mobile client can move and access 

information ubiquitously (anywhere and at any time). So, to 

enable mobile data access there are several methods. One of 

the main uses of wireless data is data dissemination. Data 

dissemination refers to broadcasting of database items to 

mobile clients through one or more wireless channels. 

There are three mechanisms of data dissemination: push-

based Mechanism, On-demand (or pull-based) Mechanism, 

and Hybrid Mechanism. In the push based mechanism, a 

server disseminates information generally without any request 

from clients. For example, advertising, weather reports, and 

news reports scenarios. In the On-demand mechanism, a 

server disseminates information based on the outstanding 

requests submitted by clients. For example, finding the nearest 

restaurant, buying a music album, or bank account activity 

scenarios. In the hybrid mechanism, push based and on 

demand data are combined to complement each other. For 

example, advertising and selling music albums scenario. The 

advertisements are pushed and the mobile devices pull for 

buying the album. 

The important two optimization issues of data dissemination 

are: Minimizing access time (i.e. access latency) and 

Minimizing tuning time. Access time is the period of time 

elapsed from the moment a mobile client requesting a data 

item(s) to the moment when the requested data item(s) is 

received by the client. While the tuning time is the time that a 

client spends actively listening to the broadcast wireless 

channel to receive the requested data items [5], [6], [7].   

Client data caching is a common technique for minimizing 

access time, it is an effective technique to reduce access time 

by caching of frequently accessed data item on client side. 

When the client issues a query, it first searches the cache. If 

there is a valid copy of requested data in the cache, an answer 

is returned immediately. Otherwise, the client attempts to 

obtain the data item from a server.  

In mobile environments, client data caching is much more 

desirable due to the limitations of mobile environments. 

Therefore, there are two common issues involved in client 

cache management: Cache Invalidation and Cache 

Replacement. A cache invalidation  policy  maintains  data  

consistency  between client’s  cache  and  the  server  

database.  While  cache replacement  policy  determines  

which  suitable  subset  of  data items is replaced when it does 

not have enough free space to store a new data item [1], [2], 

[6], [8].  

Due to the limitations of cache size on mobile devices, there is 

a need to design an efficient cache replacement algorithm to 

find a suitable subset of data items for eviction from the 

cache. Also, the design of an efficient cache replacement 

policy becomes very crucial and challenging to ensure good 

cache performance [9], [10]. 

Several cache replacement policies have been proposed in the 

literature.  Most  of  these  cache  replacement  policies  are  

not suitable  if  the client  changes  its  movement's  direction  

quite often. To find most suitable cache replacement scheme, 

it is very important to take into account a current location of a 

client and the locations of each cached data for getting a 

predicted region of a client and a cached data. In this paper, A 

Distance-Based Predicted Region Policy for Data Cache 

Replacement in Mobile Environments (DPRP) is proposed. 

The proposed scheme uses the root-mean squared distance 

that is based on the distance between the client's current 

location and the locations of each cached data for a predicted 

region [2], [10], [11]. 
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The rest of this paper is organized as follows: section 2 

describes the related work. Section 3 describes the mobile 

system model. Section 4 describes the enhanced predicted 

region. In Section 5; the simulation model, the experimental 

results and analysis are presented. Conclusion and further 

work is given in Section 6. 

2. RELATED WORK 
Several location dependent cache replacement policies have 

been proposed. Most of these policies use cost functions, 

which take into account both the spatial and temporal 

properties of the client's movement, that incorporates different 

factors considered in cache replacement policies including 

access probability, valid scope area, data distance and data 

size. Access probability, is considered to be the most 

important factor that affects cache performance.  Data with the 

least access probability will have the highest priority to be 

replaced by the new data object. Valid scope area refers to the 

geometric area of the valid scope of a data value. The larger 

the valid scope area of the data, the higher the probability that 

the mobile client requests this data. This is because, generally,  

the mobile client  has  a  higher  chance  of  being  in large 

regions  than  small  regions.  Data distance refers to the 

distance between the current location of a mobile client and 

the valid scope of a data value. In a location-dependent data 

service, the server responds to a query with the suitable value 

of the data item according to the client’s current location. As 

such, when the valid scope of a data value is far away from 

the client’s current location, this data will have a lower chance 

to become usable again since it will take some time before the 

client enters the valid scope area again. Data size refers to the 

size of the data stored in the mobile client's cache. The 

amount of space required to  store  the  data  item  in  the 

cache  is used  to  select  an  item for replacement, so keeping 

smaller size data items in the cache helps to  accommodate a 

large  number  of  data  items [1], [2], [10], [11].  

The Manhattan Distance-based cache replacement policy 
considers the distance between a client’s current location and 

the location of each cached data item when there is need of 

cache replacement. The data items with the highest Manhattan 

distance are replaced. The Manhattan policy is limited 

because it considers the distance and spatial properties only. 

While the temporal properties and the direction of the client 

movement is not taken into account when making cache 

replacement decisions [11], [12]. 

The Farther Away Replacement (FAR) replacement policy 
considers the current location and direction of the mobile 

client to make the replacement decision. The replacement 

strategy is based on the fact that the data which are not in the 

moving direction and farthest away from the user will not be 

visited in the near future. Based on the direction of movement, 

the data is arranged as two sets, In–Direction and Out-

Direction. To replace data the Out-Direction set is considered 

first, when it is empty the furthest segment in the In-Direction 

set will be replaced. FAR considers only the spatial properties 

for cache replacement and the temporal properties are not 

taken into account, it is also not very useful when the mobile 

client frequently changes it's direction (random movement) 

[11], [13]. 

Probability Area (PA) policy considers only temporal 

property of data for replacement, the cost function for 

replacement is formed by considering the parameters access 

probability and valid scope area. The data with low access 

probability and a small valid scope area is evicted first. PA 

does not take into account the data distance and the size of the 

data object stored in cache. PA is ineffective when client 

changes its direction frequently (random movement) [1], [11]. 

Probability Area Inverse Distance (PAID) policy considers 

both spatial and temporal properties of data for replacement. 

The cost function for replacement is formed by considering 

the parameters access probability, valid scope area and data 

distance. The data with low access probability, a small valid 

scope area, and a long distance is evicted first. PAID 

considers temporal and spatial property, does not take into 

account the size of the data object stored in cache, considers 

only the clients current movement direction, and ineffective 

when client changes its direction frequently (random 

movement) [1], [11]. 

Mobility Aware Replacement Scheme (MARS) is also a cost 

based policy. It makes cache replacement decisions through a 

cost function which takes into account both the spatial and 

temporal properties of the client's movement. The cost 

function consists of the client location, movement's direction 

and access probability. The data item with the lowest value for 

the cost function is removed from the client’s cache and 

replaced by the new object. MARS is not very useful when 

mobile client frequently changes it direction (random 

movement) [11], [14]. 

None of these cache replacement policies is suitable if the 

client changes its movement's direction quite often. Existing 

cache replacement policies only consider the data distance 

(directional/undirectional) but not the distance based on 

region or area where the client may be in the near future. In 

Prioritized Predicted Region based Replacement Policy 

(PPRRP) instead of taking the direction of client’s movement 

they predict an area/region in which the client will be in the 

near future while selecting an item for replacement and the 

data items in the predicted region are not removed from the 

cache. PPRRP tried to get the benefit of both temporal and 

spatial properties, and it is also suitable when the mobile 

client frequently changes its movement's direction (random 

movement).   

Associated with each cached data item is the replacement 

cost; the cost function in PPRRP is calculated based on the 

access probability, valid scope area, data size in cache and 

distance of data based on the predicted region. When a new 

data item needs to be cached and there is insufficient cache 

space, the data item out of the predicted region with lowest 

value for cost function is removed from the client’s cache and 

replaced by the new data item [10], [11]. 

3. MOBILE SYSTEM MODEL  
A mobile system consists of two distinct sets of entities: 

mobile clients and fixed hosts (see Figure 1). A mobile client 

(MC) is a mobile unit which is capable of connecting to fixed 

network via a wireless link (or wireless channel). Fixed 

networks are classified as either fixed hosts or base stations, 

and connected together via a fixed high-speed wired network. 

Base stations (BS) are gateways of the mobile units to the 

fixed network, they are equipped with a wireless interface and 

offer network access services of which mobile units are 

clients. A fixed host (data server) is a computer in the fixed 

network which is not capable of connecting to a mobile unit.  

The wireless channel between MC and BS is logically 

separated into two sub-channels: an uplink channel and a 

downlink channel. The uplink channel is used by MCs to 

submit queries to the server via a BS, while the downlink 

channel is used by BSs to disseminate information or to 

forward the answers from the server to a target client.  
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To manage the units' mobility, the entire geographical area is 

divided into one or more domains called cells, each of which 

is supported by at least one base station. An MC movement 

from one cell to another, while retaining its wireless 

connection is called hand-off. After hand-off, its wireless 

connection is switched to the new cell [1], [15]. 

 
Fig 1: A Mobile System Model [15] 

The mobile system model provides location dependent 

services to mobile clients. When the client issues a query, a 

data item can show different values when it is queried from 

different locations. Note that, data item and data value are 

different. A data item value for a data item is valid for a 

certain geographical area (valid scope). The valid scope of an 

item value is defined as the area (set of cells) within which the 

data item value is valid. For example (see Figure 2), the 

“nearby-restaurant” is a data item, the data item value for this 

data item is {A} with the valid scope {1, 2} or {B} with the 

valid scope {3, 4}. Note that, a data item value varies when it 

is queried from different locations [2], [10]. 

 
Fig 2: Data instance and valid scope representation. 

4. AN ENHANCED PREDICTED REGION 

BASED CACHE REPLACEMENT  
In this section, a new cache replacement scheme based on a 

predicted region is proposed. Firstly, a predicted region which 

is defined in PPRRP [10] will be described. Secondly, the 

proposed distance-based predicted region will be introduced. 

Thirdly, the replacement cost function will be introduced. 

Finally, the proposed cache replacement scheme will 

described.  

4.1 Predicted region 
Predicted regions play an important role in improving the 

system performance. One of the main advantages of predicted 

regions is that unrestricted mobility is considered and the 

performance of the system that uses the predicted region is 

enhanced. Using the predicted region of user influence, the 

data values in the vicinity of the client’s current position are 

not purged from cache.  

The predicted region is based on current client's movement 

pattern. For random movement the duration between the 

change in direction and the velocity is known as the Moving 

Interval (MI). Let vc be the velocity in current moving interval 

MIc, LMIc be the length of MIc along direction θc (see Figure 

3), and (xs,ys) and (xe,ye) be the starting and end points of MIc 

respectively (see Figure 4). The predicted region of user 

presence in the near future is the circle with radius LMIc and 

centre (xe,ye) (see Figure 5) [10], [11]. This predicted region is 

called prioritized predicted region (PPR). 

The main disadvantage for this PPR is using length of MIc as 

radius of predicted region because it will produce a huge 

computation overhead. MI requires to know a start point of 

MI, an end point of MI, the mobile node's velocity, and 

movement's direction. 

 
Fig 3: The discrete movement of a mobile user with MI of 

t seconds [10] 

 

Fig 4: The starting and end point of MIc [10] 

 
Fig 5: The predicted region [10] 

4.2 Proposed distance-based predicted 

region 
To avoid the disadvantages of PPR, a distance-based predicted 

region (DPR) will be proposed. With DPR, Instead of using 
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length of MIc as radius of PPR, we will use the root-mean 

squared distance that is based on the distance between a 

client’s current location and the locations of each object 

whose data is cached.   

Let the radius r be calculated as the root-mean squared 

distance (see Figure 6). So, if the current location (center of 

the predicted region) is c, the radius of the predicted region 

is:  
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Where: 

r             Radius of the predicted region. 

)( cci     Distance (di) between the current location (c) 

               and valid scope (ci). 

K           Number of object whose data is cached. 

 
Fig 6: Distance-based predicted region 

One of the advantages of using the DPR is that it reduces 

computation overhead and also takes into account the random 

movement of the client. Reducing the computation overhead 

is critical and plays an important role in improving the overall 

performance of cache replacement schemes. The cost function 

in DPR is calculated the same way as PPR.  It is calculated 

based on the access probability, valid scope area, data size in 

the cache and the distance between the mobile client's current 

location and the locations of objects whose data is cached. 

The distance is calculated such that the data values within the 

predicted region are given higher priority than the data values 

outside the predicted region. When a new data item needs to 

be cached and there is insufficient cache space, the data value 

out of the predicted region with lowest value for cost function 

is removed from the client’s cache and replaced by the new 

data value [10], [11]. 

4.3 The cost function for replacement 
The cost of data value j of data item i in client’s cache is 

calculated as [10], [11]: 
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Where  

Pi            The access probability of data item i.  

A(vs'i,j)    The area of the valid scope vs'i,j for data 

                value j.  

Si,j 
          The size of data value j and valid scope vs'i,j.  

D(vs'i,j)    The distance of the valid scope vs'i,j from 

                the current user position. 

D'(vs'i,j)    The distance of the valid scope vs'i,j from 

                 the centre of the predicted region.  

DPR          The distance-based predicted region. 

The distance of data items in the cache is calculated as 

follows: 

 The distance of data items outside DPR is calculated 

from the centre of the circle. 

 The distance of data items inside DPR is calculated as 

the minimum of {r, distance of the valid scope from the 

current position of the user}. 

Calculating the distance of data items in this way ensures 

that: 

 Items outside DPR always have the lower priority than 

those inside the predicted region. 

 Items inside DPR are closer to the user and thus have 

higher priority. 

4.4 The proposed cache replacement scheme 
Here, based on DPR, a new scheme called a Distance-Based 

Predicted Region Policy for Data Cache Replacement in 

Mobile Environments (DPRP) is proposed. In DPRP, data is 

cached at the mobile client. When the client issues a query, it 

first searches its cache. If there is a valid copy in the cache, an 

answer is returned immediately. Otherwise, the client attempts 

to obtain the data value from the server and store it on its 

cache [16]. If the cache does not have enough free space to 

store a new data value, DPRP does the following procedure 

for the cached data items in the mobile client:  

 Compute the access probability, valid scope area, data 

size and distance of data based on DPR. 

 Compute the radius (r) of DPR by using the root-mean 

squared distance.  

 Determine which data values inside or outside the DPR 

If di >r     then the data valuei outside DPR. 

If di <=r   then the data valuei inside DPR. 

di  is the distance between the client current 

location and the valid scope of data valuei.  

 Compute the cost function, Costi,j, for each data value j 

of each data item i that exists out DPR, the data item 

with lowest cost function value is removed from the 

client’s cache and replaced by the new data item.  

Algorithm 1 shows the steps of DPRP. 

 

Algorithm 1: Steps of DPRP Algorithm 

 

Mobile Client (MC) requests for data item Di 

if Di is valid and in cache then validate and return Di 



International Journal of Computer Applications (0975 – 8887) 

Volume 126 – No.7, September 2015 

5 

else if cache misses Di then 

   send the request to the server 

   get Di from DB server 

   server send Di to MC 

   if enough free space in cache then store Di in cache 

  else if not enough free space in cache then 

create enough space by replacing data value (s) 

from cache which: 

 out of predicted region 

 has lowest cost function value 

end if 

end if 
 

5. SIMULATION AND RESULTS  
This section describes the simulation model which is used to 

evaluate the performance of DPRP. To show the effectiveness 

of DPRP, it is compared with PPRRP [10]. The discrete-time 

simulation package OMNeT++ [17] was used to implement 

this simulation model. 

5.1 Simulation Model Description   
The simulation model consists of three main entities: network 

entity, mobile client entity, and sever entity. These entities are 

described as follows [1]. 

(a) Network entity is a cellular network that consists of many 

cells and provides seamless handoffs from one cell to another 

when mobile clients move across different cells. As such, the 

network can be considered as a single large service area, the 

clients can move freely and obtain location-dependent 

information services. The service area is represented by a 

rectangle of fixed size. The database contains items and every 

item may display different values for different client locations 

within the service area. The wireless network is modeled by 

an uplink channel and a downlink channel. The uplink channel 

is used by the client to query the server and the downlink 

channel is used by the server to respond to the query. 

(b) Mobile client entity is modeled with two independent 

processes: the query process and the move process. The query 

process continuously generates location-dependent queries for 

different data items. After the current query is completed, the 

client waits for a query interval, QI, before the next query is 

issued. To answer a query, the client’s cache is checked first. 

If the data value for the requested item with respect to the 

current location is available, the query is satisfied locally. 

Otherwise, the client gives the query and its current location 

to the server and retrieves the data from the server through the 

downlink channel. The move process controls the client's 

movement pattern using the parameter MovingInterval (Table 

1). After the client keeps moving at a constant velocity for a 

time period, it changes the velocity in a random way for next 

MI. The next speed is selected randomly between the 

parameter MinSpeed and the parameter MaxSpeed and the 

next moving direction (represented by the angle relative to the 

x axis) is selected randomly between 0 and 360. The client is 

assumed to have a fixed size cache, which is a ratio of the 

database size. 

(c) Server entity is modeled by a single process that offers to 

the requests from clients. To answer a location-dependent 

query, the server locates the correct data value with respect to 

the specified location. 

5.2 Performance Evaluation   
In this subsection, PPRRP [10] and DPRP are evaluated by 

using the described simulation model. Table 1 shows the 

default parameter settings of the simulation model. To 

compute the data distance between valid scope and current 

location, a reference point is selected for each valid scope and 

calculate the Euclidean distance between the current location 

and this reference point. The reference point is defined as the 

endpoint that is closest to the current location. To compute the 

access probability, two parameters are maintained for each 

data item i: a running probability (Pi) and the time of the last 

access to item (ti'). Initially, Pi is set to 0. When a new query 

is issued for data item i, Pi is updated using the following 

formula: 

Where, tc is the current system time and α is a constant factor 

to weight the importance of most recent access in the 

probability estimation. 

In the performance evaluation, "cache hit ratio", "access time" 

and "energy consumption" are used as performance evaluation 

metrics. The cache hit ratio can be defined as the ratio of the 

number of queries answered by the client’s cache to the total 

number of queries generated by the client. The access time is 

the period of time elapsed from the moment a mobile client 

requests a data item to the moment when the requested data 

item is received by the client [1], [10]. 

Table 1. The default parameter settings of the simulation 

model 

Parameter Description Setting 

Size 
Size of the rectangular 

service area 

1000*1000 

m 

MCNum 
Number of mobile clients in 

the service area 
5 

LNum 
Number of location in the 

service area 
25 

ItemNum 
Number of data items in the 

database 
250 

UplinkBand 
Bandwidth of the uplink 

channel 
1 Mbps 

DownlinkBand 
Bandwidth of the downlink 

channel 
2 Mbps 

Query Interval 

(QI) 

average time interval 

between two consecutive 

queries 

25 s 

Moving 

Interval (MI) 

Time duration that the client 

keeps moving at a constant 

velocity 

50 s 

MinSpeed 
minimum moving speed of 

the client 
1 , 3 m s-1 

MaxSpeed 
maximum moving speed of 

the client 
2 , 6 m s-1 

CacheSizeRatio 
Ratio of the cache size of the 

database size 
4% = 10 

α 
Weight factor for computing 

the access probability. 
0.25 

 

In the rest of this section, to prove the efficiency of the DPRP 

compared to the PPRRP [10], the effect of query interval, 

moving interval, cache size, number of queries, and number of 

clients by changing their values will be shown in details.  

5.2.1 Effect of Changing the Query Interval 
The query interval is the time interval between two 

consecutive client queries. In this set of experiments, the mean 

query interval was increased from 20 to 100 seconds. Table 2 

shows the default parameters settings for changing the query 

interval. 



International Journal of Computer Applications (0975 – 8887) 

Volume 126 – No.7, September 2015 

6 

Table2. The default parameter settings for changing query 

interval. 

Moving 

 Interval (MI) 

Cache  

Size 

Number  

of clients 

50 s 4% 5 

Figure 7 shows the performance results of cache replacement 

policies for query interval versus the cache hit ratio. As shown 

in Figure 7, as the query interval increases, the cache hit ratio 

decreases. This is because, the client would make more 

movements between two successive queries, thus the client 

has a lower probability of residing in one of the valid scopes 

of the previously queried data items when a new query is 

issued. Consequently, the cached data are less likely to be re-

used for subsequent queries. This leads to a decreased 

performance of the cache hit ratio with increase in the query 

interval. Also, the cache hit ratio of DPRP is higher than its 

value in PPRRP. This is because DPRP uses DPR instead of 

PPR. 

 
Fig 7: Cache hit ratio vs query interval 

Figure 8 shows the performance results of cache replacement 

policies for query interval versus access time. As shown in 

Figure 8, as the query interval increases, the access time 

decreases. This is because, the client would make more 

movements between two successive queries, thus the client 

has a lower probability of residing in one of the valid scopes 

of the previously queried data items when a new query is 

issued. Consequently, the cached data are less likely to be re-

used for subsequent queries. This leads to the access time 

increased as the query interval increased, but the total number 

of queries is decreased with MI and cache size not changed. 

For all these reasons, the access time decreased as the query 

interval increased. Also, access time of DPRP is lower than its 

value in PPRRP. This is because DPRP uses DPR instead of 

PPR.  

 
Fig 8: Access time vs query interval 

Figure 9 shows the performance results of cache replacement 

policies for query interval versus energy consumption. As 

shown in Figure 9, as the query interval increases, the energy 

consumption decreases. This is because, the client would 

make more movements between two successive queries, thus 

the client has a lower probability of residing in one of the 

valid scopes of the previously queried data items when a new 

query is issued. Consequently, the cached data are less likely 

to be re-used for subsequent queries. This leads to the energy 

consumption increased as the query interval increased, but the 

total number of queries is decreased with MI and cache size 

invariant. For all these reasons, the energy consumption 

decreased as the query interval increased. Also, the energy 

consumption of DPRP is lower than its value in PPRRP. This 

is because DPRP uses DPR instead of PPR. 

 
Fig 9: Energy consumption vs query interval 

As shown, when the two cache replacement policies are 

compared, the DPRP has a better performance when the query 

interval is changed. 

5.2.2 Effect of Changing the Moving Interval 
This subsection examines the performance of the replacement 

policy when the moving interval is varied. MI is the time 

duration that the client keeps moving at a constant velocity 

and direction. In this set of experiments, the moving interval 

was varied from 25 seconds to 225 seconds. Table 3 shows 

the default parameters settings for changing MI. 

Table 3. The default parameter settings for changing 

moving interval 
 

Query 

Interval (QI) 

Cache 

Size 

Number 

of Queries 

Number 

of clients 

25 s 4% 200 5 

Figure 10 shows the performance results of the cache 

replacement policies for MI versus cache hit ratio. As shown 

in Figure 10, as MI increases, the cache hit ratio decreases. 

This is because, there is a high probability of the client leaving 

one valid region and entering another. Consequently, the 

cached data are less likely to be re-used for subsequent 

queries. This leads to a decreased performance of cache hit 

ratio with increase in MI. Also, cache hit ratio of DPRP is 

higher than its value in PPRRP. This is because DPRP uses 

DPR instead of PPR.  
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Fig 10: Cache hit ratio vs moving interval 

Figure 11 shows the performance results of the cache 

replacement policies for MI versus access time. As shown in 

Figure 11, as MI increases, the access time increases. This is 

because, there is a high probability of the client leaving one 

valid region and entering another. Consequently, the cached 

data are less likely to be re-used for subsequent queries. This 

leads to, with query interval and cache size invariant, the 

access time increased as the MI increased. Also, access time 

of DPRP is lower than its value in PPRRP. This is because 

DPRP uses DPR instead of PPR. 

 
Fig 11: Access time vs moving interval 

 

Figure 12 shows the performance results of cache replacement 

policies for MI versus energy consumption. As shown in 

Figure 12, as MI increases, the energy consumption increases. 

This is because, there is a high probability of the client leaving 

one valid region and entering another. Consequently, the 

cached data are less likely to be re-used for subsequent 

queries. This leads to, with query interval and cache size not 

changed, the energy consumption increased as the MI 

increased. Also, energy consumption of DPRP is lower than 

its value in PPRRP. This is because DPRP uses DPR instead 

of PPR. 

 
Fig 12: Energy consumption vs moving interval 

For large MI, there is a less frequent change in the velocity of 

the client. Hence, there is less random client's movement. 

While, for small MI, the randomness in client movement is 

more as compared to larger MI. After the moving interval 

reaches 175 seconds, such an influence is eliminated and, 

hence, the performance becomes flat but when the two cache 

replacement policies are compared, the DPRP has a better 

performance for both small and large MI. 

5.2.3 Effect of Changing the Cache Size 
This subsection examines the performance of the replacement 

policy when the cache size is varied. In this set of 

experiments, the cache size was varied from 4% to 20%. 

Table 4 shows the default parameters settings for changing 

cache size. 

Table 4. The default parameter settings for changing 

cache size 

Query 

Interval (QI) 

Moving 

Interval (MI) 

Number 

of Queries 

Number 

of clients 

25 s 50 s 200 5 

Figure 13 shows the performance results of cache replacement 

policies for the cache size versus the cache hit ratio. As shown 

in Figure 13, as the cache size increases, the cache hit ratio 

increases. This is because, the cache can hold a large number 

of data items. Consequently, the cached data are likely to be 

re-used for subsequent queries which increases the probability 

of getting a cache hit. This leads to an increased performance 

of cache hit ratio with the increase in cache size. Also, cache 

hit ratio of DPRP is higher than its value in PPRRP. This is 

because DPRP uses DPR instead of PPR. 

 
Fig 13: Cache hit ratio vs cache size 
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Figure 14 shows the performance results of cache replacement 

policies for the cache size versus the access time. As shown in 

Figure 14, as the cache size increases, the access time 

decreases. This is because, the cache can hold large number of 

data items. Consequently, the cached data are likely to be re-

used for subsequent queries. This, with query interval and MI 

invariant, leads to the access time decreases as the cache size 

increases. Also, the access time of DPRP is lower than its 

value in PPRRP. This is because DPRP uses DPR instead of 

PPR. 

 

Fig 14: Access time vs cache size 

Figure 15 shows the performance results of the cache 

replacement policies for the cache size versus the energy 

consumption. As shown in Figure 15, as the cache size 

increases, the energy consumption decreases. This is because, 

the cache can hold large number of data items. Consequently, 

the cached data are likely to be re-used for subsequent queries. 

This, with query interval and MI invariant, leads to the energy 

consumption decreases as the cache size increase s. Also, 

energy consumption of DPRP is lower than its value in 

PPRRP. This is because DPRP uses DPR instead of PPR. 

 

Fig 15: Energy consumption vs cache size 

As shown, when the two cache replacement policies are 

compared, the DPRP has a better performance when the cache 

size is changed from small to large size cache. 

5.2.4 Effect of Changing the Number of Queries 
This subsection examines the performance of the replacement 

policy when the number of queries is varied. In this set of 

experiments, the number of queries was varied from 50 to 

250. Table 5 shows the default parameters settings for 

changing the number of queries. 

Table 5. The default parameter settings for changing 

number of queries 

Moving 

Interval (MI) 

Cache 

Size 

Number 

of clients 

50 s 4% 5 
 

Figure 16 shows the performance results of cache replacement 

policies for the number of queries versus the cache hit ratio. 

As shown in Figure 16, as the number of queries increases, the 

cache hit ratio increases. This is because, with MI invariant, 

there is a high probability of the client would make more two 

successive queries one valid region, thus the cached data are 

likely to be re-used for subsequent queries which increase the 

probability of getting a cache hit. This leads to an increased 

performance of cache hit ratio with the increase in number of 

queries. Also, the cache hit ratio of DPRP is higher than its 

value in PPRRP. This is because DPRP uses DPR instead of 

PPR. 

 
Fig 16: Cache hit ratio vs number of queries 

Figure 17 shows the performance results of the cache 

replacement policies for a number of queries versus the access 

time. As shown in Figure 17, as the number of queries 

increases, the access time increases. This is because, with MI 

invariant, there is a high probability that the client would 

make more two successive queries on the valid region, thus 

the cached data are likely to be re-used for subsequent queries. 

This leads to the access time decreased as the number of 

queries increased, but the total number of queries is increased 

with MI when the cache size invariant. For all these reasons, 

the access time increased as the number of queries increased. 

Also, access time of DPRP is lower than its value in PPRRP. 

This is because DPRP uses DPR instead of PPR.  

 
Fig 17: Access time vs number of queries 
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Figure 18 shows the performance results of the cache 

replacement policies for a number of queries versus the 

energy consumption. As shown in Figure 18, as the number of 

queries increases, the energy consumption increases too. This 

is because, with MI invariant, there is a high probability that 

the client would make more two successive queries on the 

valid region, thus the cached data are likely to be re-used for 

subsequent queries. This leads to the energy consumption 

decreases as the number of queries increases, but the total 

number of queries is increases with MI and cache size 

invariant. For all these reasons, the energy consumption 

increases as the number of queries increases. Also, the energy 

consumption of DPRP is lower than its value in PPRRP. This 

is because DPRP uses DPR instead of PPR. 

 

 
Fig 18: Energy consumption vs number of queries 

As shown, when the two cache replacement policies are 

compared, the DPRP has a better performance when the 

number of queries is changed from a small to large number of 

queries. 

5.2.5 Effect of Changing the Number of Clients  
This subsection examines the performance of the replacement 

policy when the number of clients is varied. In this set of 

experiments, the number of clients was varied from 5 to 25 

clients. Table 6 shows the default parameters settings for 

changing the number of clients.  

Table 6. the default parameter settings for changing 

number of clients. 

Query 

Interval (QI) 

Moving 

Interval (MI) 

Cache 

Size 

Number 

of Queries 

25 s 50 s 4% 80 

Figure 19 shows the performance results of the cache 

replacement policies for the number of clients versus the 

cache hit ratio. As shown in Figure 19, as the number of 

clients increases, the cache hit ratio increases. This is because, 

the total number of queries is increased, and the total size of 

cache is increased. Consequently, the cache hit ratio is likely 

to be increased as the number of clients increased. Also, the 

cache hit ratio of DPRP is higher than its value in PPRRP. 

This is because DPRP uses DPR instead of PPR.  

 
Fig 19: Cache hit ratio vs number of clients 

Figure 20 shows the performance results of the cache 

replacement policies for a number of clients versus the access 

time. As shown in Figure 20, as the number of clients 

increases, the access time decreases. This is because, the total 

number of queries is increased, and the total size of cache is 

increased. Results show that, the increase in the number of 

clients and the cache size affect the access time more than the 

increase in the total number of queries. Consequently, the 

access time is likely to be decreased as the number of clients 

increases. Also, the access time of DPRP is lower than its 

value in PPRRP. This is because DPRP uses DPR instead of 

PPR.  

 
Fig 20: Access time vs number of clients 

Figure 21 shows the performance results of the cache 

replacement policies for a number of queries versus the 

energy consumption. As shown in Figure 21, as the number of 

clients increases, the energy consumption decreases. This is 

because, the total number of queries increases, and the total 

size of cache increases. Results show that, the increases in the 

number of the clients and cache size are affect the energy 

consumption more than increases in the total number of 

queries. Consequently, the energy consumption is likely to 

decrease as the number of clients increases. Also, the energy 

consumption of DPRP is lower than its value in PPRRP. This 

is because DPRP uses DPR instead of PPR. 

0.80

1.80

2.80

50 100 200 250

Number of queries

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

PPRRP DPRP 

0.08

0.20

0.32

5 10 15 20 25

Number of Clients

C
a
c
h

e
 H

it
 R

a
ti

o

PPRRP DPRP 

0.08

0.10

0.12

0.14

5 10 15 20 25

Number of Clients

A
c
c
e
s
s
 T

im
e

PPRRP DPRP



International Journal of Computer Applications (0975 – 8887) 

Volume 126 – No.7, September 2015 

10 

 
Fig 21: Energy consumption vs number of clients 

Also, before the number of clients reaches 10 clients the cache 

hit ratio decreases and the total access time and the total 

energy consumption are increased. This is because, before the 

number of clients reaches 10 clients, the randomness in the 

client movement increases. After the number of clients 

reaches 10 clients, such an influence is eliminated and, hence, 

the performance of the cache hit ratio increases, the total 

access time and the total energy consumption decreases.  

As shown, when the two cache replacement policies are 

compared, the DPRP has a better performance when the 

number of clients is changed from a small to a large number 

of clients. 

6. CONCLUSION AND FURTHER 

WORK 
In this paper, a distance-based predicted region policy for 

cache replacement is introduced (DPRP). DPRP is based on 

an enhanced predicted region and a cost function for selecting 

data items to be replaced from the cache. PPRRP uses MI as a 

radius of the predicted region. On the contrary, DPRP uses the 

root-mean squared distance that based on the distance between 

a client’s current location and the locations of each cached 

data. In addition, DPRP uses the cost function that considers 

access probability, data distance, valid scope area and the data 

size in the cache in replacement.  A number of simulation 

experiments have been conducted to evaluate the performance 

of the DPRP. The simulation results demonstrate that DPRP, 

with different system settings, gives better performance in 

comparison with PPRRP. In the further work, the use effect of 

the future location prediction accompanied with the cost 

function and the enhanced predicted region in improving the 

cache replacement issue will be studied.  
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