
International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.7, September 2015

31

A Novel Composite Approach for Software Clone

Detection

Gurvinder Singh
Research Scholar

Punjab Technical University

Jahid Ali, PhD
Director

SSICMIT, Badhani

ABSTRACT

In recent decades, the branch of Clone Detection has undergone

a great advancement. This progress is due to the development of

various methods, which involves the implementation of complex

algorithms and tool chains to offer clone detection. Various

clone detection methods that are already available include

textual comparison, token comparison, and comparison of

Abstract Syntax trees, Suffix trees and Program Dependency

Graphs. Moreover, these Clone Detection techniques are limited

to a particular programming language environment only. The

aim of the paper is to present a survey of the various existing

techniques and to develop a tool which is user friendly, easy to

maintain and is not limited to small and big software. This

method of clone detection can also be implemented to more

complex applications such as web based applications. i.e a

website code related to PHP or JSP or it can be an application

which is linked with internet not a standalone application. In

addition to this, the proposed approach is applicable to all the

languages and platforms. Hence the proposed system is a

platform independent system..

General Terms

Software Cloning

Keywords

Clone detection, Textual comparison, Hybrid approach, code

cloning.

1. INTRODUCTION
Clone detection is an area of dynamic research where several

tools already exist to encourage code clone detection. Most

research has explicitly or implicitly expected that code cloning is

destructive and has concentrated on systems for refactoring or

expelling code clones from the source code without considering

the first choices prompting the code clone. Regardless of an

extensive research, there is still need of potential work in the

investigation and analysis of near-miss software clones

specifically minor to broad alterations have been made to the

replicated sections. Software maintenance is the principle driver

of aggregate expenses in the lifecycle of long-living software

systems. The maintenance phase consists of those changes that

are made to a software system after it has been deployed to the

client upon client acceptance. The studies show that the major

fraction of the annual software expenditure is being spent for

maintaining existing software systems. The replication of code

fragments across the system often diminishes maintainability as

it expands the code size and hinders manual code change,

review, and investigation. With the increasing levels of

sophistication and complexity of software systems, the standards

for software quality and productivity are also getting up to that.

Developers continually look for various procedures, tools, and

practices to accelerate software development without resulting

into additional software defects.

The copied code is called a software clone and the process is

called software cloning. A bug detected in one section of code

therefore requires correction in all the replicated fragments of

code.A code clone is a section of code in source files, identical

or similar to another code section. It is a very common practice

by developers to copy existing code and pasting it in somewhere

else with major or minor edits to increase productivity. This

reuse mechanism results in duplicate or very similar code

fragments in the code base which are commonly known as code

clones. If the presence of clones in program artifacts causes the

artifacts to be more frequently changed and the cloned code

shows unstable behavior, then clones are considered harmful.

Due to huge measure of data involved, it becomes highly

difficult to detect code duplication in large code bases or across

project boundaries. Clones are connections between different

projects. Duplicated fragments often results in significantly

increase the work to be done during code optimization. Recent

related studies also show that inconsistent changes to cloned

code are frequent and lead to severe unexpected behavior.

Subsequently, it gets more difficult to maintain the software

systems with code clones and can lead to include subtle errors.

Hence, while cloning is frequently deliberate and can be helpful

in many perspectives still it can also be destructive in software

maintenance and evolution.

2. REASONS OF CODE CLONING
Code clones do not occur in software systems by themselves.

There may be numerous reasons for cloning the source code.

The most usual reason behind it is that it is quick and cheap to

just copy the code and place it wherever the similar functionality

is needed rather than writing the code from scratch. Most of the

times, this scenario happens and a little modification is done to

make it distinguishable.

Various factors that may enforce the introduction of clones in a

code are as:

 Clones can be introduced in software systems due to many

different reuse and programming approaches. The simplest

form of reuse mechanism in the development process is

copying and pasting existing code with least possible

alterations and it is a primary cause of code cloning.

 In case, a new system is produced by merging two software

systems identical in functionality, the merged system may

show the presence of clones because of the

implementations of similar functionality in both systems.

 Code clones can be introduced with good intentions too

such as for improved code understand ability which lead to

enhance readability, conceptual cohesion/coupling, and

traceability and in some situations it can be used to keep

software architectures clean and understandable.

 In cases of technology limitations, the use of code cloning

is well understood by the developers with the motive to

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.7, September 2015

32

prevent errors by re-using trusted solutions in new

connections.

 In addition to this, few external business forces may

necessitate the use of code cloning too. According to J.

Cordy [1], most often occurrences of clones have been

reported in financial software due to frequent updates and

enhancements of an existing system to support similar

kinds of new functionality. Since the new applications are

not that much different from those of the existing ones, the

developer prefers to reuse the existing code by copying and

adapting to the new product requirements because of the

high risk of software errors when creating new code.

 Sometimes programming languages do lack abstraction

mechanisms which ultimately developers repeatedly

implement, hence leads to clones.

 The thought that writing reusable code is error-prone

especially for a critical piece of code. It is therefore

preferred to copy and reuse existing code rather than make

new reusable code as introduction of new bugs can be

avoided in critical system functionality by keeping the

critical piece of code untouched.

 One of the major causes of code cloning in the system is the

time limitation on developers. A developer is assigned a

specific time deadline to finish a certain project due to

which, developers usually look for short way of solving the

problems and consequently look for similar existing

solutions.

 Sometimes the developer is not familiar to the problem

domain at hand and hence looks for existing solutions of

similar problems to get better understanding of the view.

Once such a solution is found, the developer just adapts the

existing solution to his/her needs.

 Programmers may unintentionally repeat a common

solution for similar problems using a solution pattern from

his/her memory of similar problems. Clones may then

unintentionally be created.

3. IMPACTS OF CODE CLONING
Clones have become controversial in the software engineering

research domain because of their dual, and contradictory impacts

during software maintenance. Along with the numerous positive

impacts of clones in terms of faster development and reduction

of maintenance cost and effort, there exist potential negative

impacts of clones on software maintenance in terms of hidden

bug propagation and unintentional inconsistent changes. If code

clones are not carefully managed, they can introduce bugs in the

system and can also cause propagation of bugs across different

portions of the source code. In the following we list some of the

consequences of having cloned code in a system:

3.1 Impact on System Modification
It may become challenging to add new functionality in the

system or to enhance the existing ones due to the extra time and

effort needed to comprehend and adjust the current cloned

usage. If a bug is found in a cloned code segment, all of its

similar parts ought to be investigated for adjusting the bug in

question since there is no surety of this bug already being

eliminated from other similar parts during reusing or during

maintenance activity. In addition, in keeping up or upgrading a

bit of code, duplication increases the measure of work. Code

cloning can lead to unused code in the system when the desired

solution does not require all of the functionality provided by the

clone. If such section is left unchecked, this unused code can

bring about issues with code understand ability, readability, and

maintainability for the software system lifetime.

3.2 Effect on Faults
 If a bug is found in a code fragment and that code fragment is

already copied and pasted to several other places without the

awareness of this bug, resulting in increased modifications to the

source code after the discovery of the bug in any one of the

clone fragments. This leads in increasing the probability of bug

propagation in the system.

3.3 Effect on Cognitive Effort
Duplication also increases the cognitive effort required by the

maintenance engineers to understand a large software system.

There are multiple occurrences of a cloned fragment in different

places of the system and the maintenance engineers are required

to examine all the different instances in order to understand the

difference between them.

3.4 Effect on Design
Cloning may additionally introduce bad design, absence of

efficiently good inheritance structure. Hence, it gets to be hard to

reuse part of the usage in future tasks. It additionally effects the

viability of the software.

3.5 Effect on Resource Requirements
Code duplication adds to higher growth rate of the system size.

While some domains hardly bother for system size others may

require costly hardware upgrade with a software upgrade.

4. CLONE DETECTION PROCESS
Clone detection is the most important and integral part of clone

management. Clones from the source code must be identified

first before they can be dealt with.

4.1 Preprocessing
The code cloning detection process starts with partitioning of the

source code and the domain of the comparison is determined.

This phase is mainly responsible for:

 Evacuate uninteresting parts: All the source code irrelevant

to the comparison phase is filtered in this stage.

 Determine source units: The source code obtained after

removing the uninteresting code is partitioned into a set of

disjoint pieces called source units which are the largest

source sections suspected ti be involved in direct clone

relations with each other.

 Determine comparison units / granularity: Going with the

comparison technique, source units may further be

partitioned into smaller units. For instance, source units

may be partitioned into lines or even tokens for a

comparison purpose. Comparison units can likewise be

derived from the syntactic structure of the source unit.

4.2 Transformation
Once the comparison units are decided, the source code of the

comparison units is transformed to a proper intermediate format

for comparison. This change of the source code into an middle

representation is regularly called extraction in the reverse

engineering community. A few tools support additional

normalizing transformations and extraction with a specific aim

to distinguish externally distinctive clones.

 Extraction: Extraction transforms source code to the form

suitable as input to the actual comparison algorithm. It

further involves tokenization, parsing, control and data flow

analysis.

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.7, September 2015

33

 Normalization: Normalization is an optional step intended

to eliminate superficial differences such as differences in

whitespace, commenting, formatting or identifier names.

4.3 Match Detection
The comparison units take transformed code as input and

compares the transformed comparison units to each other to

discover matches. The neighboring similar comparison units are

collaborated to form larger units. The match detection results

into a list of matches in the transformed code which is

represented or aggregated to form a set of candidate clone pairs.

Each clone pair is normally represented as the source

coordinates of each of the matched fragments in the transformed

code.

4.4 Formatting
Here, the resulted clone pair list for the transformed code is

converted to a corresponding clone pair list for the original code

base. Source coordinates of each clone pair obtained in the

comparison phase are mapped to their positions in the original

source files.

4.5 Filtering
In this section, clones are manually analyzed, ranked and filtered

or they are fed under automated heuristics.

 Manual Analysis: After the original source code retrieval,

clones are manually investigated and the human expert

filters the false positive clones or spurious clones. This

manual filtering step can be speeded up by visualization of

the cloned source code in a suitable format.

 Automated Heuristics: Heuristics can usually be

characterized in view of length, diversity, frequency, or

other attributes of clones to rank or filter out clone

candidates automatically.

4.6 Aggregation
Where a few devices straightforwardly recognize clone classes,

most return just clone pairs as the outcome. With a specific end

goal to diminish the measure of data, perform subsequent

analyses or gather overview statistics, clones may be aggregated

into clone classes

5. CLONE DETECTION TECHNIQUES

Many clone detection approaches have been proposed till date.

According to the height of analysis applied to the source code,

the techniques can generally be classified into four main

categories: textual, lexical, syntactic, and semantic.

5.1 Textual Approach
As explained by Chanchal K. Roy et.al [1], Textual approaches

use minimal transformation / normalization on the source code

before the genuine comparison, and mostly raw source code is

used directly in the clone detection process. In this approach, the

target source program is considered as sequence of lines/strings.

Two code parts are contrasted with each other to discover

sequences of same text/strings. Once two or more code

fragments are found to be similar in their maximum possible

extent (e.g., w.r.t maximum no. of lines) are returned as clone

pair or clone class by the detection technique. Because of the

purely text-based and/or lexical approach, detected clones do not

correspond to structural elements of the language.

As explained by Prajila Prem et.al [6], String based techniques

use basic string transformation and comparison algorithms

which make them independent of programming languages.

Techniques in this category differ in the string comparison

algorithm. Comparing calculated signatures per line is one

possibility to identify for matching substrings. Line matching,

which comes in two variants, is an alternative which is selected

as representative for this category because it uses general string

manipulations.

Simple line matching is the first variant of line matching in

which both detection phases are straightforward. Only minor

transformations using string manipulation operations, which can

operate using no or very limited knowledge about possible

language constructs, are applied. Typical transformations are the

removal of empty lines and white spaces. During comparison all

lines are compared with each other using a string matching

algorithm. This result in a large search space which is usually

reduced using hashing buckets. Before comparing all the lines,

they are hashed into one of n possible buckets. Afterwards all

pairs in the same bucket are compared.

Parameterized line matching: is another variant of line matching

which detects both identical as well as similar code fragments.

The idea is that since identifier–names and literals are likely to

change when cloning a code fragment, they can be considered as

changeable parameters. Therefore, similar fragments which

differ only in the naming of these parameters are allowed. To

enable such parameterization, the set of transformations is

extended with an additional transformation that replaces all

identifiers and literals with one, common identifier symbol

like”$P”. Due to this additional substitution, the comparison

becomes independent of the parameters. Therefore no additional

changes are necessary to the comparison algorithm itself.

5.2 Lexical Approach
Chanchal K. Roy et.al explained in [5], Lexical approach which

is also known as token-based technique begin with creating a

sequence of lexical tokens out of the source code in a similar

manner of compiler lexical analysis. The obtained sequence is

further filtered to find out replicated sub-sequences of tokens

and the comparing original code is returned as clones. Lexical

approaches are by and large more robust over minor code

changes such as formatting, spacing, and renaming than textual

techniques.

Various tools are proposed for clone detection that is based on

token based approach [12].

5.3 Syntactic Approach
In Syntactic approaches, a parser is used to build parse trees

or abstract syntax trees from source programs which can further

be processed using either tree-matching or structural metrics to

find clones.

Chanchal K. Roy et.al explained in [5], the parse tree or AST

contains the complete information about the source code.

Although the variable names and literal values of the source are

discarded in the tree representation, more sophisticated methods

for the detection of clones still can be applied.

Tree-based Approaches: Prajila Prem explains that [6] Tree-

based method first convert the program to a parse tree or abstract

syntax tree (AST) using a parser for the target language. Tree-

matching techniques are then used to find similar sub trees, and

the corresponding code segments are returned as clone pairs.

Variable names, literal values and other tokens in the source

may be abstracted in the tree representation, allowing for more

sophisticated detection of clones.

Metrics-based Approaches: In Metrics-based techniques, a

number of metrics are assembled for code segments and

afterwards metrics vectors are compared inspite of code or

ASTs directly. One popular technique involves fingerprinting

functions, metrics calculated for syntactic like a class, function,

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.7, September 2015

34

method or statement that provides values that can be compared

to find clones of these syntactic units. In most cases, the source

code is first parsed to an AST or CFG (control flow graph)

representation to calculate the metrics. Metrics are calculated

from names, layout, expressions and control flow of functions.

5.4 Semantic Approach
Semantics-aware methods have also been proposed, using static

program analysis to provide more precise information than

simply syntactic similarity.

PDG-based Techniques: Chanchal K. Roy et.al explained in [5],

Program Dependency Graph (PDG)-based approaches go a step

further in source code abstraction by considering semantic

information encoded in a dependency graph that captures control

and data flow information. Given the PDG of a subject program,

a sub graph isomorphism algorithm is used to find similar sub

graphs which are then returned as clones.

Gurunadha Rao Goda et.al [16] proposed a hybrid approach that

depends on template conversion and metrics comparison. There

are four phases involved in the proposed scheme, namely, input

and pre-processing, template conversion, metrics computation

and clone type detection. A new technique is introduced, which

is the hybrid combination of metric-based approach and textual

comparison of the source code for the detection of Clones.

Several metrics have been developed to make use of their values

during the detection process.

T. Kamiya et.al [17] explains CCFinder detects code clones

from source programs, and outputs the locations of the code

clones on the source programs. In the detection processing,

CCFinder replaces user-defined identifiers such as variable

names with special tokens, so that it can regard two similar code

fragments as code clones even if they include different user-

defined identifiers. The minimum size of code clones to be

detected is set by a user in advance. CCFinder can complete

code clone detection from systems of millions line scale in a

practical timeframe.

Yoshiki Higo et.al [4] developed a software tool, Scorpio. The

tool implements multi-threads processing to effectively use the

resource of multi-cores CPU. The tool has many options to

specify what kinds of duplicate code are detected as code clones.

The parameterization has three level: in level 0, the tokens are

used as they are; in level 1, the tokens are replaced with their

type names; in level 2, all the tokens are replaced with the same

special token.

Rajkumar Tekchandani et.al [11],presented an algorithm that can

detect semantically equivalent code fragments using formal

grammars with the insight that the grammar recovery can be

used to find semantically equivalent code fragments. The work

also proposed an algorithm to recover the grammar from parse

trees.

Iman Keivanloo et.al [7], introduced a novel hybrid clone

detection approach named SeClone clone search tool, which is

based on multi-layer indexing. This approach considers

information retrieval clustering and Semantic Web reasoning

methods for clone pair clustering. A clone ontology (CLON) is

developed to model the code clone detection vocabulary to

support the use of reasoning services and to provide a formal

result sharing and integration approach.

Chanchal K. Roy [1], describes the first empirical investigation

of function clones in open source software utilizing NICAD.

NICAD is a new hybrid clone detection tool which gathers the

qualities and overcomes the limitations of both content based

and AST-based clone detection techniques to yield exceptionally

precise identification of cloned code in software systems. The

paper give an inside and out exact investigation of function

clones in near about 15 or more open source C and Java

frameworks including Apache httpd and the whole Linux

Kernel, and confirms every recognized clone and give a

complete list of diverse clones in an online archive in a variety

of configurations. These outcomes can possibly be utilized as a

benchmark for assessing other clone discovery tools.

6. CONCLUSION
This paper mainly focused on detection techniques and clone

analysis methods which help for understanding code clones and

the different techniques used. The intent of the paper is to

present a review of the detection techniques and propose an

approach to deal with code clones in any environment. In future

the extended work can be enhanced with advanced algorithms

with enhancement in research scenario

7. ACKNOWLEDGEMENT
I am Thankful To Punjab Technical University Jalandhar Which

Gives Me Opportunity To Work As Research Scholar and Also

thanks to my Respected Guide Dr Jahid Ali(Director,SSICMIT)

for their kind guidance.

8. REFERENCES
[1] Chanchal K. Roy and James R. Cordy, “An Empirical

Study of Function Clones in Open Source Software”, 1095-

1350/08 $25.00 © 2008 IEEE

[2] Mark Gabel Lingxiao Jiang Zhendong Su, “Scalable

Detection of Semantic Clones”, ICSE’08, May 10–18,

2008, Leipzig, Germany. Copyright 2008 ACM

[3] Chanchal K. Roy, “Detection and Analysis of Near-Miss

Software Clones”, 978-1-4244-4828-9/09/$25.00 2009

IEEE

[4] Yoshiki Higo, and Shinji Kusumoto, “Enhancing Quality of

Code Clone Detection with Program Dependency Graph”,

2009 IEEE

[5] Chanchal K. Roy, James R. Cordya, Rainer Koschkeb,

“Comparison and Evaluation of Code Clone Detection

Techniques and Tools: A Qualitative Approach”, Preprint

submitted to Science of Computer Programming February

24, 2009

[6] Prajila Prem, “A Review on Code Clone Analysis and Code

Clone Detection”, ISSN: 2277-3754 ISO 9001:2008

Certified International Journal of Engineering and

Innovative Technology (IJEIT) Volume 2, Issue 12, June

2013

[7] Iman Keivanloo, Juergen Rilling, Philippe Charland,

“SeClone - A Hybrid Approach to Internet-scale Real-time

Code Clone Search”, 1063-6897/11 $26.00 © 2011 IEEE

[8] Hitesh Sajnani, Joel Ossher, Cristina Lopes, “Parallel Code

Clone Detection Using MapReduce”, 2012 IEEE

[9] Norihiro Yoshida, Yoshiki Higo, Shinji Kusumoto, Katsuro

Inoue, “An Experience Report on Analyzing Industrial

Software Systems Using Code Clone Detection

Techniques”, 2012 IEEE

[10] Kanika Raheja1, Raj Kumar Tekchandani2, “An Efficient

Code Clone Detection Model on Java Byte Code Using

Hybrid Approach”

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.7, September 2015

35

[11] Rajkumar Tekchandani1, Rajesh Kumar Bhatia2, Maninder

Singh, “Semantic Code Clone Detection Using Parse Trees

and Grammar Recovery”

[12] Kanika Raheja Rajkumar Tekchandani, “An Emerging

Approach towards Code Clone Detection: Metric Based

Approach on Byte Code”, Volume 3, Issue 5, May 2013

ISSN: 2277 128X International Journal of Advanced

Research in Computer Science and Software Engineering

[13] Al-Fahim Mubarak Ali, Shahida Sulaiman, “A Hybrid

Technique in Pre-processing and Transformation Process

for Code Clone Detection”, 2014 IEEE

[14] Robin Sharma, “Hybrid Approach for Efficient Software

Clone Detection”, IRACST – Engineering Science and

Technology: An International Journal (ESTIJ), ISSN: 2250-

3498 Vol.3, No.2, April 2013

[15] Deepak Sethi Manisha Sehrawat Bharat Bhushan Naib,

“Detection of code clones using Datasets”, Volume 2, Issue

7, July 2012 ISSN: 2277 128X International Journal of

Advanced Research in Computer Science and Software

Engineering

[16] Gurunadha Rao Goda, Avula Damodaram, “An Efficient

Software Clone Detection System based on the Textual

Comparison of Dynamic Methods and Metrics

Computation”, International Journal of Computer

Applications (0975 – 8887) Volume 86 – No 6, January

2014

[17] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A

Multilinguistic Token-Based Code Clone Detection System

for Large Scale Source Code. IEEE Transactions on

Software Engineering, 28(7):654–670, July 2002.

IJCATM : www.ijcaonline.org

