
International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.8, September 2015

26

Performance Comparison of Three Batch-Mode

Scheduling Heuristics

Vishu Narula
BFCET

Bathinda

Jyoti Bansal
Research Scholar,
PTU Kapurthala

Shaveta Garg, PhD
GZS, PTU Campus

Bathinda

Paramjit Singh, PhD
GZS, PTU Campus

Bathinda

ABSTRACT

Grid scheduling issue has been an exploration hotspot lately.

Some custom heuristics have been utilized to upgrade it and

have got some great results. In any case, selecting the best

heuristic to use in a given domain remains a troublesome

issue. So to beat this, a few examinations have been made in

this paper which will give the data that which heuristic will

gives better Makespan, Flowtime and Average completion

time value. So in this paper, three heuristics i.e., Min-Min,

Max-Min & LJFR-SJFR are chosen, compared, analyzed and

executed by using Gridsim 5.2.

General Terms

Scheduling Heuristics.

Keywords

Grid and Desktop Grid computing, Min-Min, Max-Min &

LJFR-SJFR

1. INTRODUCTION
The recognition of the Internet and the accessibility of capable

PCs and rapid systems as ease merchandise segments are

changing the way we utilize PCs today. These specialized

open doors have prompted the likelihood of utilizing

graphically distributed and multi-proprietor resources to settle

huge scale issues in science, designing, and trade. This new

approach is known as Grid Computing [1, 2]. Conversely,

Desktop grids are utilized as a part of a functional processing

idle model that can transform huge computational activities in

different application field, utilizing the idle cycles of

heterogeneous resources (for the most part desktop PCs)

joined over the Internet. The reputation of the Internet has

made another much expansive scale open door for Grid

computing. Points of fact, many desktop PCs, whose idle

cycles can be changed to run Grid applications, are joined

with wide-zone systems both in the business enterprises and

in the home. These new stages for high throughput

applications are called Desktop Grids [3] & [4].

The administration of resources and planning of utilizations in

such huge scale conveyed frameworks is an impenetrable

undertaking. To demonstrate the adequacy of individual

resource and related scheduling computations, their execution

needs to be assessed under diverse situations, for example,

fluctuating number of resources and clients with distinctive

fundamentals. So for this, we utilize some scheduling

heuristics for scheduling the tasks and resources in this grid

environment. These scheduling heuristics are divided into two

sections i.e., knowledge-based and knowledge-free

scheduling. Further these scheduling heuristics are subdivided

into online and batch-mode scheduling. In online scheduling,

tasks are allocated to resources when it arrives at the

scheduler and this allotment is not changed once it is allotted.

Another side in batch mode, tasks are not allotted onto the

resources as they arrive; rather they are gathered into a queue

and it is inspected for mapping at prescheduled times which is

known as mapping events.

The primary objective of our paper is to compare the

performance of three traditional batch-mode heuristics i.e.,

min-min, max-min and LJFR-SJFR with respect to three

parameters i.e., Makespan, Flow time and Average

completion time value. The most popular optimization

criterion is minimization of Makespan i.e. the finishing time

of the latest task. Makespan measures the throughput of grid

system. It can be defined as: Makespan = max {Cuv ,

v=1,…,n} where Cuv is completion time of task(Tu).

Conversely Flowtime is the sum of the finishing times of

tasks. Flowtime measures the Quality of Service of the grid

system. It can be defined as: Flowtime = {Cuv , v=1,…,n}.

The Average completion time will return the average period

of time taken by tasks to complete its execution.

The rest of this paper is organized as: Section 2 will

characterize related work. Section 3 will provide the heuristics

description. Section 4 will analyzes the test problem. Section

5 will define the comparison and experimental results. At the

end section 6 will conclude the work and provides the future

work.

2. RELATED WORK
Min-min, Max-min and LJFR-SJFR had been utilized as a

part of the task scheduling in computational grid. The

investigation on them has received good results and their

effectiveness had been demonstrated. There is additionally

numerous related enhanced works that are done under this

study.

In [5] & [6], on-line load adjusting calculation for desktop

networks are depicted and it is analyzed that desktop Grid

scheduling can be performed in a unified manner or in a

completely dispersed manner and they needn't bother with a

worldwide scheduler. In [7] & [8], Schedulers in this class

accept the information of the execution time of individual

tasks, and exploit different kind of static or dynamic resource

data to perform resource determination. In [9] & [10], the two

batch-mode heuristics i.e., Min-min and max-min has been

discussed. The authors’ have discussed its disadvantages and

have tried to overcome it. In [11], eleven online and batch

mode heuristics have been examined and authors' will analyze

all the heuristics with the assistance of parameter and

pronounce that GA will reliably give the best results. In [12]

& [13], the exploratory results will pronounce that min-min

heuristic will give best result for minimizing Flowtime and

the proposed heuristic (Min-Max) will announce the best

results for minimizing Makespan. In [14], a trial assessment

of the heuristics is performed in three sections. In the first

part, the on-line mode heuristics are looked at utilizing

different measurements. The second part includes a

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.8, September 2015

27

correlation of the batch mode heuristics and third part portrays

that batch mode heuristics performs better over the on-line

mode heuristics. In [15], different sorts of online and batch

mode heuristics have been analyzed and they have discussed

that there is a necessity of adjusting the load in the middle of

the resources.

The above mentioned traditional heuristics are popular,

effective and are used in many studies. So far, a lot of works

have been done to investigate which heuristic provides

minimum Makespan or minimum Flowtime or which heuristic

provides both minimum Makespan and fowtime value. So to

clear this we will perform a performance comparison of these

heuristics. To facilitate these comparisons, some simplifying

assumptions were made. For these studies, let a meta-task be

defined as a collection of independent tasks with no inter task

data dependencies. It is also assumed that the length of each

task and the information of all available resources are known

beforehand.

3. HEURISTICS DESCRIPTION
There are a few heuristics for grid computing. This segment

will depict the batch mode heuristics.

3.1 Min-min
Min-Min heuristic starts by gathering the collection of every

unassigned task. Fundamentally, in this scheduling is done in

two stages. In the first stage, it chooses all the tasks those who

have least expected completion time i.e., earliest expected

finishing time on the comparing resource. In second stage, the

task with the general least expected completion time is

selected and will get appointed to the comparing resources.

After the allotment of tasks, allotted tasks will get excluded

from the set and the procedure is repeated until all tasks in the

set are mapped [16].

3.2 Max-Min
Max-Min is all that much like Min-Min with the exception of

in stage 2. Like Min-Min it also works in two stages and same

as Min-Min it will likewise begins by selecting all the tasks

the tasks that have least expected completion time. In second

stage, here Max-Min will relegate the assignment of the tasks

that have greatest expected finishing time relating to every

resource. After the tasks that have been allotted will get

excluded from the set and the procedure is rehashed until all

tasks in the set got mapped [16].

3.3 LJFR-SJFR
Longest Job to Fastest Resource-Shortest Job to Fastest

Resource (LJFR-SJFR) heuristic starts by selecting every

single unmapped task. Here, LJFR-SJFR heuristic will also

works in two stages. In first stage, it will first allot the biggest

task to the resources by utilizing Max-min heuristic i.e., it will

first choose those tasks that have greatest expected completion

time. In second stage, remaining tasks will get allocated by

utilizing min-min and max-min heuristic alternatively i.e.

smallest tasks on quickest resource took after by biggest task

on speediest resource [16].

4. TEST PROBLEMS

For reasonable comparison of distinctive scheduling heuristic,

this segment will outline the illustrations of above

characterized heuristics. Assume that m resources Rv(v=1…

m) need to process n tasks Tu(u=1… n). Presently in like

manner to the comparing heuristics table1, table2, table 3 will

characterize the expected execution time of every assignment.

Table 1: Min-Min heuristic

Tasks (size)

R1(400)

R2(500)

R3(600)

T1(3000) 7.5 6 5

 T2(4000) 10 8 6.66

T3(7000) 17.5 14 11.66

T4(9000) 22.5 18 15

T5(12000) 30 24 20

T6(14000) 35 28 23.33

T7(15000) 37.5 30 25

T8(20000) 50 40 33.33

T9(21000) 52.5 45 35

T10(22000) 55 44 36.66

Table 2: Max-Min Heuristic

 Tasks (size) R1(400) R2(500) R3(600)

T10(22000) 55 44 36.66

T9(21000) 52.5 42 35

T8(20000) 50 40 33.33

T7(15000) 37.5 30 25

T6(14000) 35.5 28 23.33

T5(12000) 30 24 20

T4(9000) 22.5 18 15

T3(7000) 17.5 14 11.66

T2(4000) 10 8 6.66

T1(3000) 7.5 6 5

Table 3: LJFR-SJFR Heuristic

Tasks (size) R1(400) R2(500) R3(600)

T10(20000) 55 44 36.66

T9(17000) 52.5 42 35

T8(15000) 50 40 33.33

T1(2000) 7.5 6 5

T7(12000) 37.5 30 25

T2(3000) 10 8 6.66

T6(11000) 35.5 28 23.33

T3(4000) 17.5 14 11.66

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.8, September 2015

28

T5(9000) 30 24 20

T4(8000) 22.5 18 15

By experimentally performing the corresponding succession

of steps relating to every heuristic by using GridSim 5.2 [17],

table 4, table 5 & table 6 will mirror the outcomes and table 7

will delineate the completion time (CTuv) of tasks Tu on

resources Rv individually.

Table 4: Result of Min-Min

Resources Speed Task Assigned

R1 400 T4,T7

R2 500 T2,T5,T8

R3 600 T1,T3,T6,T9,T10

Table 5: Result of Max-Min

Resources Speed Task Assigned

R1 400 T8,T5,T1

R2 500 T9,T6,T3

R3 600 T10,T7,T4,T2

Table 6: Result of LJFR-SJFR

Resources Speed Task Assigned

R1 400 T8,T3,T5,T4

R2 500 T9,T2,T6

R3 600 T1,T7,T10

Table7: Completion time (CTuv) of each heuristic

Tasks CTuv of

Min-Min

CTuv of

Max-Min

CTuv of

LJFR-

SJFR

T1 5 36.66 41.66

T2 8 42 50

T3 16.66 50 22.5

T4 22.5 61.66 75

T5 32 70 52.5

T6 39.99 80 78

T7 60 76.66 66.66

T8 72 84 50

T9 74.99 60 42

T10 111.65 66 36.66

5. COMPARISON AND

EXPERIMENTAL RESULTS
By using GridSim 5.2 [17], we have compared the

performance of the above mentioned heuristics for

minimizing Makespan, Flowtime and Average Completion

Time. Following examples explains the concepts which are

based on 10 tasks and 3 resources. The obtained Makespan,

Flowtime and Average completion time using mentioned

heuristics are compared in figure 1, 2 and 3 respectively. In

these figures, the first column indicates the instance name,

and the second, third, fourth column depicts the Makespan,

Flowtime and Average completion time of Min-Min, Max-

Min & LJFR-SJFR heuristics i.e., ‘111.66, 87.5, 90’, ‘442.83,

671.83, 609.166’, & ‘44.28, 67.183, 60’ respectively. As it is

evident from the figures, Min-Min heuristic can minimize

Flowtime and Average completion time value better than

others. Conversely Max-Min provides the better Makespan

value than the others. And LJFR-SJFR can minimize the

Flowtime and Average completion time value better than

Max-Min. Separated this we have investigated that: In Min-

Min, the schedule won't stays optimal when the smaller

number of tasks gets more than larger one & in Max-Min, the

schedule won't stay optimal when the quantity of larger tasks

gets more than smaller one. Now all these circumstances will

leads to load imbalance on resources. So there is need to have

some load balancing heuristic for dealing with this issue.

Figure 1: Comparison results between heuristics on

Makespan

Figure 2: Comparison results between heuristics on

Flowtime

Min-
Min

Max-
Min

LJFR-
SJFR

Makespan 111.65 84 78

0

20

40

60

80

100

120

C
o

m
p

le
ti

o
n

 T
im

e

Makespan

Min-
Min

Max-
Min

LJFR-
SJFR

Flowtime 442.79 565.32 514.98

0

100

200

300

400

500

600

C
o

m
p

le
ti

o
n

 T
im

e

Flowtime

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.8, September 2015

29

Figure 3: Comparison results between heuristics on

Average Completion Time

6. CONCLUSION AND FUTURE WORK
In this paper we have compared three heuristics for

scheduling in grid environment. The objective of our paper is

to give performance comparison of three batch-mode

scheduling heuristics. The examination is made to give the

information that which heuristic gives better Makespan,

Flowtime and Average completion time value. The

exploratory results will demonstrate that Min-Min heuristic

can get the best results for minimizing Flowtime and Average

completion time value. Conversely Max-Min heuristic can get

the best results for minimizing Makespan and the LJFR-SJFR

heuristic can acquire the better results for minimizing

Flowtime and Average completion time value. In the course

of this study, we have broken down that there are shots of

having load imbalanced among the allotment of tasks to the

resources. So for future work, we have chosen to remove this

load imbalance by proposing some new heuristics.

7. REFERENCES
[1] Mark Baker1, Rajkumar Buyya, et al. 2002, Grids and

Grid technologies for wide‐area distributed computing,

Software: Practice and Experience, 32(15), pp. 1437-

1466.

[2] Patricio Domingues, Artur Andrzejak, et al. 2006,

Scheduling for fast turnaround time on institutional

desktop grid, CoreGRID TechRep, 0027.

[3] SungJin Choi, HongSoo Kim, et al. 2007, Characterizing

and classifying desktop grid, In null, pp. 743-748, IEEE.

[4] Issam Al-Azzoni, Douglas G. Down, et al. 2010,

Dynamic scheduling for heterogeneous desktop grids,

Journal of Parallel and Distributed Computing, 70(12),

pp.1231-1240, ELESEVIER.

[5] Fatos Xhafa. 2007, Immediate mode scheduling of

independent’, jobs in computational grids, In Advanced

Information Networking and Applications, AINA'07.

21st International Conference, pp. 970-977, IEEE.

[6] K.Hemant K. Reddy, Manas Ranjan Patra, et al. 2012,

An adaptive scheduling mechanism for computational

desktop grid using gridgain, Procedia Technology, 4,

pp.573-578, ELESEVIER.

[7] Francine Berman, Richard Wolski, et al. 2003, Adaptive

computing on the grid using AppLeS, Parallel and

Distributed Systems, Transactions on, 14(4), pp.369-382,

IEEE.

[8] Derrick Kondo, Andrew A. Chien, et al. 2004, Resource

management for rapid application turnaround on

enterprise desktop grids, In Proceedings of the 2004

ACM/IEEE conference on Supercomputing, pp. 17,

IEEE.

[9] HE XiaoShan, SUN XianHe, et al. 2003, QoS guided

min-min heuristic for grid task scheduling, Journal of

Computer Science and Technology, 18(4), pp.442-451.

[10] Hesam Izakian, Ajith Abraham, et al. 2009, Performance

comparison of six efficient pure heuristics for scheduling

meta-tasks on heterogeneous distributed environments,

Neural Network World, 19(6), pp.695-710.

[11] Braun, Siegel, et al. 2001, A comparison of eleven static

heuristics for mapping a class of independent tasks onto

heterogeneous distributed computing systems, Journal of

Parallel and Distributed computing, 61(6), pp. 810-837.

[12] Hesam Izakian, Ajith Abraham, et al, 2009, Comparison

of heuristics for scheduling independent tasks on

heterogeneous distributed environments, In

Computational Sciences and Optimization, CSO 2009,

International Joint Conference, pp. 8-12, IEEE.

[13] Naglaa M. Reda, A. Tawfik, et al. 2014, Sort-Mid tasks

scheduling algorithm in grid computing, Journal of

Advanced Research.,ELESEVIER.

[14] Muthucumaru Maheswaran, Shoukat Ali, et all. 1999,

Dynamic matching and scheduling of a class of

independent tasks onto heterogeneous computing

systems , In Heterogeneous Computing Workshop, HCW

99 Proceedings Eighth, pp.30-44, IEEE.

[15] Lee, Y. H., Leu, S., & Chang, R. S, 2011, Improving job

scheduling algorithms in a grid environment , Future

generation computer systems, 278, pp.991-998,

ELESEVIER.

[16] Chaturvedi, A. K., & Sahu, R, 2011, New heuristic for

scheduling of independent tasks in computational grid ,

International Journal of Grid and Distributed Computing,

43, pp.25-36.

[17] Buyya, Rajkumar, and Manzur Murshed. 2002, Gridsim:

A toolkit for the modeling and simulation of distributed

resource management and scheduling for grid computing

Concurrency and computation: practice and experience

14, pp. 1175-1220.

Min-
Min

Max-
Min

LJFR-
SJFR

Average
completion

time
44.28 67.18 60

0
10
20
30
40
50
60
70
80

C
o

m
p

le
ti

o
n

 t
im

e

Average completion
time

IJCATM : www.ijcaonline.org

