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ABSTRACT

Batch arrival retrial queue with positive and negative
customers is considered. Server provides M types of service.
Positive customers arrive in batches according to Poisson
process. If the server is idle upon the arrival of a batch, one of
the customers in the batch receives any one the types
immediately and others join the orbit. The server is subject to
two different modes of failure. Mode 1 failure occurs due to
the arrival of negative customer and Mode 2 due to random
breakdown of the server. In both cases, repair starts after some
random amount of time. The server failed under mode 2
continues the interrupted service or waits for the same
customer after the repair completion. Generating function
technique is employed to obtain joint distributions of the
server state and orbit length. Expected system size, expected
orbit size, availability of the server and failure frequency of
the server are derived. Stochastic decomposition law is also
verified.

Keywords
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1. INTRODUCTION

Retrial queueing system are characterized by the fact that an
arriving customer who finds the server occupied is obliged to
join a group of blocked customers and reapply after random
intervals of time to obtain the service. Two extensive survey
articles in retrial queue are due to Yang and Templeton [10]
and Falin [3].

Queues with server subject to breakdown and repairs are
often encountered in many practical applications. Aissani [1]
and Kulkarni and Choi [6] considered retrial queueing
systems with server breakdowns and repairs. Prakash Rani et
al. [8] analysed retrial queueing models with server
breakdown and delayed repair. Choudhury and Ke [2]
considered a batch arrival retrial queue with general retrial
time, Bernoulli vacation, unreliable server and delayed repair.

Queue with negative arrivals called G-queue was first
introduced by Gelenbe [4] with a view to modeling neural
networks. Wang and Zhang [9] considered a discrete time
retrial queue with negative arrivals. Peng et al. [7] suggested
an M/G/1 retrial G-queue with pre-emptive resume priority
and collisions under linear retrial policy. In this paper, the
article by Kirupa and Udaya Chandrika[5] is analyzed by
including multi-types of heterogeneous service and reserved
time.
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2. MODEL DESCRIPTION

Single server queueing system with two types of arrival -
positive and negative is considered. Positive customers arrive
according to Poisson process with rate A" in groups of
random size having distribution function P(Y=k)=C,, k>1, the
generating function C(z) and first two moments m; and m;.
The server provides M types of service. Customers opt type i
service with probability p; (1 < i <M). If the arriving batch of
positive customers finds the server free, then one of the
arrivals in the batch receives service immediately and others
join the orbit. Otherwise the arriving batch joins the retrial
queue. The retrial time is generally distributed with
distribution function A(x), density function a(x), Laplace
Stieltje’s transform A*(¢) and conditional completion rate

nx) =ax)/[1-AX)].

The service time of type i(i=1,2,....M) follows a general
distribution with distribution function B;(x), density function
bi(x), Laplace Stieltje’s transform B;j*(*), a" factorial
moments W; , and conditional completion rate p;(x) = bi(x)/[1-
Bi(x)]. There are two different modes of server breakdown,
say mode 1 and mode 2. Mode 1 is due to negative arrival
which removes the positive customer being in service from
the system and makes the server down. Mode 2 is random
failure of the server. The lifetime of the server providing type
i service is exponentially distributed with rate o; (i=1,2,...,M).
Once the system fails, the repair starts after a random
amount of time. This time is referred as setup time. The
setup times of the server failed under mode | (1=1,2) are

generally distributed with distribution function Si(l)(x) ,

density function Si(l)(X) , Laplace Stieltje’s transform

Si(l)*(.), n™ factorial moments ¢|(|2] and conditional
completion rate d)i(l)(x) :si(l)(x)/[l—Si(I)(x)] :

The repair times of mode | breakdown are generally

distributed with distribution function Ri(l)(x), density
function ri(l)(x), Laplace Stieltje’s transform Ri(l)*(o) , nt
factorial moments B,(I% and conditional completion rate
BP0 =M 0m-rD o1, fori=1.2,.. Mand 1212

During type i service, if the server fails under mode 2 then the
interrupted customer either remains in service position with
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probability t; or leaves the system and keeps returning at
times exponentially distributed with rate 6;. As soon as the
server is fixed, it continues the service of the interrupted
customer or waits for the same customer to complete the
remaining service. This waiting time of the server is referred
as reserved time. The server is not allowed to accept new
customer until the interrupted customer leaves the system.

3. JOINT DISTRIBUTION OF THE
SERVER STATE

For i=1,2,...,M, we define the server state J(t) as follows

0, serverisidle
i,  server isbusyin type iservice

M+i, server failed under mode 1during jth type service isin setup time
J(t) ={2M+1i, server failed due to mode1during ith type service is under repair
3M+1i, server failed under mode 2 during ith type service is in setup time
4M +1, server failed due to mode 2 during ith typeservice is under repair

5M+i, server isunder reserved time

Let X(t) denote the number of customers in the orbit. The
state of the interrupted customer J (t) is defined as

J()=

0, if the interrupted customer remains in service position

1, if the interrupted customer leaves the service area
Define supplementary variable as

Eo(t) = elapsed retrial time; &;(t) = elapsed service time ; (%)
= elapsed setup time ; &3(t) = elapsed repair time;

&4(t) = elapsed reserved time

The state of the system at time t can be described by the
Markov processes { N(t), t0}={J(t),J"(t),X(t), &x(t),E1(t),
éZ(t)v §3(t)9 &4(0: »tEO}

Define the probability densities

lo(t) =P{J(t)=0,X(t) = 0}

l(x,H)dx =P {J()=0,X(t) =n, x< &(t) < x+dx},n=1
Forn =0,i=1,2,...,.Mandj=0,1

Pia(tdx =P {J(t)=i, X(t) =n, x < &(t) < x+dx}

sW (x, dx= PLO-MH,X() =1, x< &(t) <x+dx}

Ri(fl'% (x.tydx = P{O=2MH, X(t) =n, x< &(t) < x+dx}

Sl(zj)n(x y, Ddxdy = PL(O=3M+i, J'()=], X() = n,

X< &(t) <x+dx, y < &(t) <y+dy }

Rl(zj)n(X y, by = PLO=4Mi, J'(0=], X(O) =1,

X< §i(f) <xtdx, y < E(t) <y+dy }
=P{I(t)=5M+i, X(t) =n,
X< &) <xtdx, y < &(t) <y+dy }

Qin(x,y,)dxdy

The governing equations of the model under steady state are

Mg - % Fpi 0 0Om; () +TR()(X)B(1)(X)UX} @
i=10 " 0

International Journal of Computer Applications (0975 — 8887)
Volume 127 — No.10, October 2015

d | () =—0cF +n0) I (),n =1 @)
d + - + 1
—P (x):—(k +h o +p.(X)P (X)+A X CP (x)+
dx N i i i,n k=1 ki,n-k
(3)
R oy Diay 10, oy, n20i=12.. M
0 0"
W ot D)D) &)
.09 =-0" 441 00)S; 09+ kzzlcksln G
n>0,i=12..,M
SR 000" +pP R -1 z S oRiL0 @

n>0,i=12..M

d n
& S =00 <" X csT e )

n>0,i=12..Mj=01

d
;nyzj{ o) = B R Gy z 2GR I -

n>0i=12..Mj=01

d +
&Qi’n(xvy):_(}" +9|)Q|, (X y)'*')L kzl Cinyn_k(va)v
()]
n>0,i=12..M
with boundary conditions

M | oo 0
hO= ;1[ (j) Py n OO (X)X + (j) Ri(‘l% 0B ooax fnz1 (@)

P o(0) = p{ﬁcllo +Ofll(x)n(x)dx}i =12,..M (10
’ 0

© n ©
PO :p{}ffanrlloJr (j)ln+1(x)n(x)dx+x+kzlck(j)ln_k+1(x)dx:l,
N>1i-12,.M
(11)
sl(lzl ) = 3~ Ofpi, [ ()dx,n>0,i=12,...M (12)
0
R(l) (0) = jS(l) 6P (x)dx,n=0,i=1,2,...M (13)

5@

0, n(x,O)—r a;P. (X),n=0,i=12,...M (14)

1i,n

S.(i)n (x.0) = (A-1j)aiP; [ (x).n20i=12...M (15)

2])n (x,0) =OOS @ n y)¢( )(y)dy,n20,i:1,2,...,M,j:0,1 (16)

R! js!
Bij

2 (c0)= le(l)n(x, B )y n20i=12..M (17)
0
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The normalizing condition is

2)

o+1)+ {P(l) 50 R0+ 50 +s90 RY0+RP0+o (1)}:1

(18)

Define the joint probability generating functions

I(x,2) = § I ()z"
n=1L
x n
Pix.2)= X P, (X)z
n=0 "

Si(l) (x,2) = OZO Si(131 (x)zn

R(l) (x,2) = —OR(l) (x)z ,
(2) (2
SOy = % S,Jn(xy)z

R(z)(x v0= 5 R oy

Qj(x,y,2) = zo Qj n(x, 2" i=1to M, j=0,L.
nZo S,

Multiplying equations (2) to (17) by z" and summing over for
all possible values of n, we get

(dixm+ +1nO)) (X, 2) =0

(19)
d p()
(d e o, +u() kC()) (x,2)=
X
(20)
1ROy 28 )iy 0, | Q (1.2 =12...M
0" 0
Lt 46000 - ro@)sP x2) =0 =12... M
dx (21)

(% o pP - c@RrRP k2 =0i=12..M  (22)
d
(P m- e vz <o 23
i=12..M,j=01
d
o P -ac@RB iy -0 gy

i=12,...M,j=01
d + + -
—+ A +06; —A'C(z - (X,y,2) =0,i=12,...| M
& i @NQ; (x.y,2) 25)

10,2) = '\zﬂﬁpi (x,z)pi(x)dx+ofR1)(xz B(l)(x)dx} 1y (26)
i=10 0

Pi(0,2) = [x+(:(z)|0 + {1, 2 +2tcE) jl(x z)dx} i=1,2..M

(27)
sW(0.2) :rofpi (x,2)dx,i=12,...M (29)
0
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rRP©02) = | s(l)( 26® (dx,i=12,..M (@9
0

(2)(x02)—rocP (x,2),i=12,...M (30)

5(2) (%0,2) = A-1))otiP; (x,2),i =12.... M (31)

Ri(zj) (x,0,2) =Ofsi(2j) x,y. 20 (dy,i=12,...M, j=01 (32)
, ol

Q (x0.2)- ] RD v, 267 ()dy.i=12..M (39

Solving the partial differential equations (19),(21) — (25), we
get

(x.2) = 10,2)e™ ™ X[1- A(X)]
(34)

At (L-C(2)x

s (x,2)=5® (0,20e™ n-sPeo1  @39)

At a-c@)x

RY x2-r®0.2e RO ©0)

+
s (xy.2) =5 x0.2e " E OBy, a7)

i=12,...M,j=01
+
R y2) =R P coe™ E-Cp_r@ ) @)

i=12..M,j=01

Q (%,Y,2=Q; (X0, e 0 A=C@)+6y

Using equations (30), (31) and (37) in equation (32) we
obtain,

RBx0.2= 158028 € COYp- D1y )y
, , ) 40
=58 x0.252 )] 0

=i, (252 h(2)]i=12...M

R(Z)(XO 2) = 0-)oiP; (x2S ()i =12....m (41)

where, h(z) = A" —atC(2)

Using equations (38) and (41), equation (33) becomes
Qx0.2) = 0-r)api(x 28 EIRD Tli=12.. M. 42)
Substituting the expressions of RI(%) (x,y,z)and Q;(X,y,2)
in equation (20) and solving, we get

P.(x.2)=P. (0,2)" @@)xp; B, (0], i=12,..M

(43)
where

h 0,
9@ =h@)+r +o _O‘isi(z) (h(Z))R(Z) (h(z))[(z)rlJr]
h(z) + el
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Using equations (28),(29),(35),(36) and (43) in equation (26),
we get

M * —% * *
10.9= 3, 702 B0+ 5 @) @R (e |1 (“4)

Using equations (34) and (44) in equation (27) and on
simplifying we get

Ri(0,2) = I pA*()9(@)(C@) ~1)/D@),i1=12..M (45)
Substituting the expression of P;(0,z) in equation (44), we

obtain

o ¥ p, 008 ) +
10,2) =271 i=1 ID(2) (46)
-8 g@)s” @R () - )

where D(z)=

M *
29(2) - [A* (") + C@)L- A" ()] > P [0(2)B; (9(2)) +
1=

1087 e@)s® " (@)RY " (@)

Using equation (46) in equation (34) and integrating with
respect to x from 0 to oo, we get

M *
. L |CO T plo@B;EE) +
i) =lg-A 7)) =1 1D(z2)

-8 @)sY " h@)R® “(h@)] - z9)
(47)
Using equation (45) in equation (43) and integrating with
respect to x from 0 to oo, we get

Using equations (28),(35) and (47) and integrating with
respect to x from 0 to oo, yields

Using equations(29) and (49) in equation (36) and integrating
with respect to x from 0 to oo, yields

RO @ =

-1 p A0 2- B @@)I-RY (h@)s® (h@)/o@). - (50)
i=12...M
Using equations (30),(31) and (47) and substituting the result

in equation (37)-(39), integrating with respect to x and y from
0 toco we obtain

Sff}(z)=—IoripiaiA*(f)[l—Bf(g(z»][l-si(z)*(h(z))]/D(z), o)
i=12..M

{9 0=t A" 0087 08O (0. g,
i=12..M

R @) =-1grpA” (1) B oS bR haioe). g5

i=12..M
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R @ =-1glt-5 oA 68 GS (LR GENIOE. 5
i=12,..M
Q @ =1g-)p.a A GONL-B; (S ()R (0(z) fh(z) +0, o)
i=12,..M
(55)

Using normalizing condition I, is obtained as
M -
AT -y pi g N6 8D+ 56
0= 1= :
AT
The probability generating function Py(z) of the number of
customers in the orbit is

Pq (@) = IoA” ( F)a(2)(z-1)/D(2)

(57)
The probability generating function P¢(z) of the number of
customers in the system is

* M« M -
R2)=10A"( e 00) TpiB] 02+~ 1pi1-8; (62) /O (58)
i= i=

4. PERFORMANCE MEASURES

The steady state probability that the system is empty is I,.
The steady state probability that the server is idle in non-
empty system is

Mo
(A" (my D)+ 27y 3 py 1B 0707617 +67) + o)

= 1= : (59)
VAT
The steady state probability that the server is busy is
P= z P =" mlzp,(l B NI (60)
i=1

The steady state probability that the server is under mode
1 repair

e Y 6@ s® 4 r® 4 /D)2yt ¥ i B?(x‘))[ @, 13(1)] (61)
ji=1"i i i i =

The steady state probability that the server is under mode

2 repair

- 2 e oDn@ e

I MZ

i=1

(62)
—t my. za pi- B; (.~ ))(¢(2) B(Z))/x
The steady state probability that the server is under
reserved time is

M . M . -
Q:'Z]_Qi =\ ml_zlpi(l_Bi (A ))Oti(l—‘ti)/X 9i (63)
1= 1=
The mean number of customers in the orbit L is given by
L =Py = [D'@Nr"@)— Nr'()D"@)]
2D'(1)2 (64)

Let Nr(z) and D(z) represent the numerator and denominator
of Py(2).

where,
NF() = IgA~ A" ()

M
*
Nr"(1) =-22*milpA" (W F) = f iT
1=
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D=1 Q-m@-A"(H) - 7~+m1 Zp|(l B 000”0 +5) + )

D"(1) = -A"mp(1-A* (A1) - 2x+m1T1+T[1 > p, B (A7) |+

2+ m2(A-A () 3 pi(B; 07)Ty ~2” (18] ()6 5 +BC )+

M 42 i=
- Z Pu -7 ml (i, 22" [(¢(1)+ﬁ|(1)]u 1M-0- B e ))¢.(1)ﬁ|(1)]]

M %
-hz i 1-Bi()T2

T =T, 200" ml(( @ 5@ e r') ¢(2)ﬁ(2)J

u.)ﬁ(lfr.)
it i . Fm21_at
_ 2 [m,0; + 22" m{]-2"m,
i

1_ .
o= {H % (¢i(21) + Bi(zl) + er')}
' ' i
T, );*‘2 [¢(2)+B(2))+>\+ [¢(2)+B(2)j
The mean number of customers in the system L is given
by

Lo —PL(l)— [D'@N @ - Nr{@OD"@)]
2D'()2 (65)
Let Nry(z) and D(z) represent the numerator and denominator

of Py(2).

where,
Ng (@) = 1A ()
. oAt @, 4@ 17
er(l):—Zk m1|07\, A (A )zfl 1+(l|(d)| 1 +BI 1 5 )
1= [
5. RELIABILITY INDICES
Let A(t) be the system availability at time t, that is the

probability that the server is idle or working for a customer.
Then under steady state condition,

The availability of the server is given by

A=1-(H+F+Q)
M _ (66)
=10 m -6 0 <P -5
The steady state failure frequency of the server is
F= x+m1glpi =B () + o) /A (67)
1=

6. STOCHASTIC DECOMPOSITION

Theorem: The expected number of customers in the system
L; can be expressed as sum of two independent random
variables, one of which is the expected number of customers
(L) in the unreliable batch arrival classical queueing system
with positive and negative arrivals, multi-optional service,
two types of breakdown and repair and the other is the
expected number of customers in the orbit during idle
time(L,).

Proof:

The probability generating function n(z) of the system size of
the classical unreliable batch arrival queue with multi-optional
service, two types of breakdown and repair is given by

IJCA™ : www.ijcaonline.org
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n(z)= lim Ps(z)
A*(),Jr)—)l (68)
Mo _M *
=1z-1) ¥ pB (@)@ +) T p,0-B;(e@) | /D))
i=1 i=1
where

Wty Zp.(l B )0+ + T

h= =
—9@- Y o g@B -8 @D (hanr O
D1(2)=29(2) iglp.[g(Z)B. @@)+1~1-Bj @@)$;” (h@)R;™ (h(@)]
The probability generating function x(z) of the number of
customers in the orbit when the system is idle is given by
@) = |o +1(2)
x T
(20~ >:p.[g<z)8.( @+ B 0@ @R (@)
01 m- A0 - x*mlzp.(l B 00 o0+ )+ )

™ (69)

D@0 -+, z B0 DepD+my

From equations (58) (68) and (69) we see that
Ps(z) =m(z) e x(z) and hence Ly = L+L,.
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