
International Journal of Computer Applications (0975 – 8887) 

Volume 127 – No.11, October 2015 

38 

Designing of Testing Framework through Finite State 

Automata for Object-Oriented Systems using UML 

Sadhana Verma 
Student  

Computer Science and Engineering 
PSIT, Kanpur, India 

 

Ajay Pratap, PhD 
Associate Professor 

Computer Science and Engineering 
PSIT, Kanpur, India 

ABSTRACT 
Many researches to testing object-oriented systems (OOSs) 

have been proposed for the past decade. After all, almost all 

large OO software specifications still contain incompleteness, 

inconsistency, and ambiguity. The framework can be defined 

using any state-based specification notation and used to derive 

test cases from state-based specifications in this paper, it is 

demonstrated using the RSML notation. A state transition 

diagram (STD) derived from RSML specification provides a 

complete behavior of a given OOS. System testing is 

concerned with testing an entire system based on its 

specifications. In the context of object-oriented, UML 

development, this means that system test requirements are 

derived from UML analysis artifacts such as use cases, their 

corresponding sequence and collaboration diagrams, class 

diagrams. The goal is here to support the derivation of 

functional system test requirements, which will be 

transformed into test cases once we have detailed design 

information. In this paper, we describe a methodology in a 

practical way and illustrate it with an example. In this paper a 

framework that formally defines test data sets and their 

relation to the operations in a specification and to other test 

data sets, providing structure to the testing process. 

Keywords 
Object-Oriented Program; software testing; software 

complexity; Finite automaton; UM 

1. INTRODUCTION  
Testing plays a vital role in software development. Testing is 

a practical means of detecting program errors that can be 

highly effective if performed rigorously. Despite the major 

limitation of testing that it can only show the presence of 

errors and never their absence, it will always be a necessary 

verification technique. 

An object-oriented system is composed objects. The behavior 

of the system results from the collaboration of those objects. 

The objects are the real world entities that exist around us and 

the basic concepts like abstraction, encapsulation, inheritance, 

polymorphism all can be represented using UML. 

So UML is powerful enough to represent all the concepts 

exists in object oriented analysis and design. UML diagrams 

are representation of object oriented concepts only. So before 

learning UML, it becomes important to understand OO 

concepts in details. 

Another important aspect is automation. Large systems are 

inherently complex to test and require, regardless of the test 

strategy, large numbers of test cases. If a system testing 

method requires the tester to perform frequent, complex 

manual tasks, then such a method is not likely to be usable in 

a context where time to market is tight and qualified personnel 

is scarce. Therefore, the potential for automation of a test 

methodology is an important criterion to consider (Section 

VI). 

A software requirements specification should be a com- 

prehensive statement of a software system's intended 

behavior. Unfortunately, requirements specifications are often 

incomplete, inconsistent, and ambiguous. To provide analysis 

procedures to find errors in specifications, it is first necessary 

to determine the desirable properties of a Specification. 

Previously, defined formal criteria for requirements 

completeness, consistency and safety.  

This paper defines the formal semantics of RSML and 

describes an automated approach to analyzing an RSML 

specification for two qualities: 1) completeness with respect to 

a set of test cases (a response is specified for every possible 

input and input sequence) and 2) consistency (the 

specification is free from conflicting requirements and 

undesired nondeterminism). 

2. LITERATURE SURVEY 
J. E. Hopcroft and R. M. Karp [1] described an algorithm for 

determining if two finite automata with start states are 

equivalent, the asymptotic running time of the algorithm is 

bounded by a constant times the product of the number of 

states of the larger automata with the size of the input 

alphabet.  

A. J. Offutt and A. Abdurazik [2] presented a novel technique 

that adapts pre-defined state-based specification test data 

generation criteria to generate test cases from UML 

statecharts. 

 Vipin Saxena and Ajay Pratap [3] given a real case study of 

Indian Postal Services is discussed to solve the problem of 

learning and object oriented data classification. Naïve 

Bayesian classifier is a classification algorithm based on 

Bayes theorem which is guided by genetic algorithm.  

D. Harel [4] presented a broad extension of the conventional 

formalism of state machines and state diagrams that is 

relevant to the specification and design of complex discrete-

event systems. Statecharts can be used either as a stand-alone 

behavioural description or as part of a more general design 

methodology that deals also with the system’s other aspects, 

such as functional decomposition and data-flow specification.  

A. Andrews et al [5] given a technique for testing executable 

forms of UML (Unified Modelling Language) models is 

described and test adequacy criteria based on UML model 

elements are proposed.  

H. Y. Chen et al [6] proposed in this article a methodology to 

integrate the black- and white-box techniques. The black-box 

technique is used to select test cases. 

 Chi-Ming Chung et al [7] proposed a technique and shows 

that inheritance has a close relation to object-oriented 

software complexity and reveals that overuse of repeated 
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(multiple) inheritance will increase software complexity and 

be prone to implicit software errors. 

 E. Weyuker et al [8] presented a family of strategies for 

automatically generating test data for any implementation 

intended to satisfy a given specification that is a Boolean 

formula. The fault detection effectiveness of these strategies is 

investigated both analytically and empirically, and the costs, 

assessed in terms of test set size, are compared. 

3. PROBLEM IDENTIFICATION AND 

ANALYSIS 
In recent years object-oriented paradigm is gaining acceptance 

for developing large and complex software. OO paradigm has 

moved into mainstream software development industry. 

Basically, object-oriented analysis (OOA) and object-oriented 

design (OOD) methodologies examine problem in the real 

world and facilitate in decomposing the problem in terms of 

classes, and some relationships between classes. However, 

almost all large OO software specifications still contains 

incompleteness, inconsistentency, and ambiguity [2]. So far 

two related approaches to verifying the consistency and 

completeness of procedure-oriented programs include methods 

based on formal proof systems and static analysis technique 

such as model checking.  

These two approaches have drawbacks and are not suitable for 

OO software specification. 

3.1 Formal Proof Systems 
Formal proof systems can be powerful tools in the verification 

of critical properties of algorithm [13]. Unfortunately, the 

languages used in the theorem proving approach, such as 

process algebras and higher order logics, are not 

understandable by the non-software professionals. Also, 

formal proofs are notoriously difficult to derive, and these 

approaches may not be practical for complex systems. 

3.2 Model Checking 
Model checking is conceptually simple and is applicable in a 

wide variety of languages and application areas [14]. 

Consequently, the approach suffered from state-space 

explosion problems.  

This approach is to build a testing framework based on finite 

automata to test the OO software specification. This approach 

differs from formal proofs and model checking in that it 

performs the testing directly on an executable finite automata 

without manually deriving the formal proofs or generating a 

great deal of state spaces.  

4. OBJECT-ORIENTED 

REPRESENTATION OF SYSTEM USING 

UML: A CASE STUDY OF ATM SYSTEM  

4.1 UML Use Case Diagram 
The use case is a piece of functionality that the system can 

provide by interacting with the actors. A use case diagram 

consists of actors and the 

use cases. The actors 

are the direct external 

user of the system. 

 

 

 

 

 

 

 

 

 

Fig 1: UML Use Case diagram of ATM system 

Fig. 1 shows the use case diagram of the ATM system. The 

interaction between the two actors named as Customer, 

Administrator and Bank are shown with the five use cases 

performed by them. Customer sends the request to the ATM 

system to open account and interacts with the actor Bank and 

Administrator.  

4.2 UML Class Diagram 
The UML class diagram shows the static structural behavior of 

the system, in which attributes and operations are designed for 

the complete system. The classes can be related to each other 

in number of ways, like they can be associated, dependent, 

specialized or packaged.  

Fig. 2 depicts the class diagram of the ATM system. The class 

diagram has five persistent classes, which are Bank, 

Customer, ATM system, Account, and Transaction. These 

classes are connected to each other by various relationships 

with their multiplicities as shown in the diagram. Customer, 

ATM system, Account, and Transaction are subclasses and 

they are inherited from non-abstract class Bank.
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Fig 2: UML Class Diagram of ATM system 

 

4.3 UML Sequence Diagram 

Sequence diagram tells how states interact with each other i.e. 

how transitions are being send and receive between states. 

This diagram has two vertices: Each system states are 

represented by the vertical line. The horizontal axis shows the 

input symbols, which are being sent from the start state to the 

next state.  

 

 

Fig 3: UML Sequence Diagram of ATM system 

The sequence diagram for the ATM system is shown in Fig. 3. 

The sequence diagram presented in Fig. 3 shows that the 

object of the start state sends request for going to the next 

state according to their attributes. If the request is valid then 

the object goes to the next state.  

4.4 UML State Diagram 

UML state diagram is a graph whose nodes are states and 

directed arcs are the transitions between them. They are used to 

describe the behaviour of a system. It describes all of the 

possible states of an object as events occur.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: UML State Diagram of ATM system 

UML – State diagrams can be used in multiple situations of 

software development for example they can be used:  

 To describe the behavior of a system  
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 To model the dynamic nature of a software.  

5. DESIGNING OF TESTING 

FRAMEWORK 

5.1 Need of Testing 
Testing is the process of executing a program with the 

intention of finding errors.” – Myers 

“Testing can show the presence of bugs but never their 

absence.” - Dijkstra  

The need of testing is to find out the errors in the application. 

Testing is a merry-go-round process which includes a good 

amount of time along with cost, for all. But the reality is quite 

opposite, without testing it is not possible to deliver projects 

successfully, as during software development, developers 

make many mistakes throughout the different phase of 

development and testing helps in correcting those mistakes.  

For example, in the requirement engineering stage, the SRS 

(System Requirement Specification ) document is written and 

tested to check whether it captures all the user requirements or 

not. The same is applicable for object oriented testing as 

object-oriented programming increases software reusability, 

extensibility, interoperability, and reliability and at the same 

time it is necessary to realize these benefits by uncovering as 

many programming errors as possible. 

5.1 Testing Framework 
The object-oriented testing (OOT) proposed four 

components:(1) describe the specification with a state-based 

requirement specification language, (2) describe the dynamic 

behavior of the OO specification with an extended state 

transition diagram, (3) generate test data in the form of regular 

expression (4) design a testing algorithm based on finite 

automata to test the OO specification. The RSML 

specification provides a means for the tester to retrieve 

implementation information without going to details by Jaffe 

et al [10]. On the other hand, the test data derived from RSML 

specifications can be defined as a sequence of operations 

(method invocations) along with expected effects; it can be 

represented by a sequence of events or states. A test data 

generation criteria called method invocation sequence 

scenario (MISS) is proposed to documents the correct causal 

order in which the methods of a class specification can be 

invoked. 

Fig. 5 shows the full picture of this object-oriented testing 

framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5: Testing Framework 

5.2 RSML (Requirement State Machine 

Language) 
RSML is a state-based requirements specification language 

suitable to describe complex software specifications. The 

RSML was developed by the Irvine Safety Research Group 

using a real aircraft collision-avoidance system called TCAS 

II (Traffic alert and Collision Avoidance System II) as a 

testbed by Leveson et al [9]. In addition, RSML has some 

unique syntactic and semantic features that were developed to 

enhance readability, reviewability, and analyzability and our 

ability to handle complex systems.  

RSML includes several features developed by Hare1 for 

Statecharts: superstates, AND decomposition, broadcast 

communication, and conditional connectives. 

 

 

 

 

 

 

 

Fig 6: A basic state machine 
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In RSML (and Statecharts), a state that contains nested states 

is called a uperstates, and its nested states are called substate. 

A state that cannot be decomposed further is called a leafstate. 

In Fig. 7, state R and state T may be grouped into superstate 

S. 

 

 

 

 

 

 

 
 

 

Fig 7: A super state example 

6. TESTING METHODOLOGY BASED 

ON FINITE AUTOMATA 

6.1 Testing Criteria and Testing 

Methodology 
Object-oriented program is an unstructured diagram, its 

dynamic program behavior such as, message passing and state 

transition by method invocation, make the testing work more 

complicate than structured software. In this section, two 

testing criteria, completeness and consistency, are introduced 

to compare object-oriented software system against its 

specification. 

6.1.1 Incompleteness 
Incompleteness determines the extent to which a software 

system is solving the correct problem by Zualkernan and Tsai 

[12]. Completeness determines the extent to which a software 

system is solving the correct program. The completeness of a 

software system with respect to the problem specification is a 

measure of the portion of the specification implemented in the 

system. A system is complete if it covers all the problems 

indicated in the problem specification. 

Definition 1: A software specification is complete if it covers 

all the problems indicated in the problem requirement. 

In the software development lifecycle, testers usually generate 

test data based on its problem requirement to test the software 

specification. Therefore, if the test data, supposedly denoted 

as Ltest is fully derived from the problem requirement, then the 

software specification Lspec is complete if Lspec ⊆ Ltest holds. 

Fig. 8 depict three testing relationships between Lspec and Ltest. 

Fig. 8-a indicates that the software specification Lspec is 

complete and consistent with Ltest because Lspec ⊆ Ltest holds. 

Fig.8-b means that Lspec is partially complete and consistent 

with Ltest. Fig.8-c shows that Lspec is not complete and 

consistent with Ltest because the intersection of Lspec and Ltest, 

denoted as Lspec ∩ Lreq, is a empty set (Lspec ∩ Ltest = ɸ). 

Obviously Lspec ∩ Ltest is the complete part of the software 

specification. In contrast, the incomplete part can be derived 

from the expression Lspec - (Lspec ∩ Lreq) which is equivalent to 

Lspec ∩ (Lspec ∩ Ltest). However, the difficulties lie in how to 

exactly figure out the two expressions: Lspec ∩ Ltest and Lspec - 

(Lspec ∩ Ltest). 

 

 

 

 

Fig 8: Three testing relationships between Lspec and Ltest 

6.1.2 Testing Methodology Modelled by Regular 

Expression         
There are many operations on languages that preserve regular 

expressions, in the sense that the operation applied to regular 

expression result in regular expressions. For example, the 

union two regular expressions is a regular expression, since if 

r1 and r2 are regular expressions denoting regular sets L1 and 

L2, then r1 + r2 denotes L1∪ L2, so L1∪ L2 is also regular. 

Similarly, the concatenation of regular sets is a regular set and 

the kleene closure of a regular set is regular. 

Property 1: The regular expressions are closed under union, 

concatenation, and Kleene closure. 

Property 2: The class of regular expression are closed under 

complementation. That is, if L is a regular expression and L ⊆ 

Σ*, then Σ* - L is a regular expression.  

Property 3: The regular expressions are closed under 

intersection. 

Property 4: The set of sentences accepted by a finite 

automaton M with n states is: empty if and only if the finite 

automaton does not accept a sentence of length less than n. 

Property 5: For two DFA's M1, and M2, ∃  an algorithm to 

determine if L (M1) = L (M2). 

 

Theorem 1: For two DFA's M1 and M2, ∃  an algorithm to 

determine if L (M1) ⊆ L (M2) 

 

Proof: (1) To prove if L (M1) ⊆ L (M2) holds, if L (M1) = L 

(M2) holds first. Let M1 and M2 be FA accepting L1 and L2, 

respectively. By property 1, property 2, property 3, (L1 ∩ 

(L2)
c) ∪  ((L1)

c ∩ L2) is accepted by some finite automata, M3. 

It is easy to see that M3 accepts a word if and only if L1 ≠ L2. 

In other words, M3 does not accept a sentence iff (L1 ∩ (L2)
c) 

∪  ((L1)
c ∩ L2) = ɸ, hence by property 4, there is an algorithm 

to determine if L (M1) = L (M2). 

(2) If L1 ⊆ L2 holds, then it implies that L1= L1 ∩ L2. Let L 

(M3) = L3 = L1 ∩ L2. Then, L1= L1 ∩ L2 is equal to L1 = L3. By 

the result of (1), L1 = L3 iff (L1 ∩ L3) ∪  (L1 ∩ L3) = ɸ. 

Therefore, it implies that L1 ⊆ L2 iff (L1 ∩ (L1 ∩ L2)
c) ∪  ((L1)

c 

∩ (L1 ∩ L2)) = ɸ.  

This algorithm is easily designed by constructing a FA which 

accepts the language (L1 ∩ (L1 ∩ L2)
c) ∪  ((L1)

c ∩ (L1 ∩ L2)) = 

ɸ. 

By Theorem 1, given an object-oriented programming Lspec 

(M), and a testing data Ltest (M) generated from formal 
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specification, build a FA to verify Lspec (M) ⊆ Ltest (M). 

Obviously, the testing work is to construct a DFA to accept  

(Lspec ∩ (Lspec ∩ Ltest)
c) ∪  ((Lspec)

c ∩ (Lspec ∩ Ltest)) = ɸ 

Fortunately, there have been three primitive regular 

expression properties to help construct the FA by Ullman and 

Hopcroft [11].  

6.1.3 Inconsistency 
Consistency is the extent to which a software system, its 

problem specification, and its solution specification do not 

have internal contradictions. 

Definition 2: A specification is consistent if its solution 

specification does not conflict with problem specification. 

Basically, there are two types of inconsistent problems which 

may occur in a state-transition based specification 

Definition 3: Given an OO specification M = (Σ, Q, q0, δ, F), 

A state qm is said to be reachable from state qn if there exists a 

path from qn to qm. qm is reachable from state qn iff ∃  s: δ (qn . 

s) = q where s ∈  Σ*. 

If a state is unreachable there are two possibilities. Either the 

state has no function and can be eliminated from the 

specification, or the state should be reachable and the 

requirements document must be modified accordingly. 

6.1.3 Test Data Generation from RSML 

Specification  
In the following, we propose a criterion called method 

invokation sequence scenario (MISS) as a guide to generate 

the test data from the RSML specification. The MISS of a 

state documents the correct casual order in which the methods 

of a state can be invoked. The MISS represents the method 

interactions, i.e. the dynamic interaction of classes. To 

describe test data generation precisely, make some definitions 

to describe the MISS. 

Definition 5: Methods_of (S): Given a state S, Methods_of (S) 

is defined as a set of all methods defined in state S. 

For example: Given a state Stack, the methods of Stack can 

be: Method_of (Stack) = {push, pop, check_empty, 

check_full} 

To represent the method invokation sequence scenario of a 

state S, use regular expression over the alphabet (denoted as 

Σ) consisting of methods from Method_of (S). The regular 

definition is a sequence of definitions of form: 

                                         n 

                                  U [Si] →mi • [Si] 

                                         i=1 

where each Si is a distinct label, Sj ∈  { S1, S2, …, Sn}, and 

method mi∈  Un
i=1 Method _of (Si)  . This form means that 

after schema Si invokes some method mi then state of state Si 

will transfer to the state Sj. Note that mi is a terminal symbol 

while [Si] is a nonterminal symbol which can derive new 

regular definitions until some terminal symbol is met. 

Definition 6: Method Sequence: Given a state S with 

Method_of (S) = {m0, m1, …, mn}, a method sequence S is 

defined as a finite lengthy sequence of methods over 

Method_of (S) which corresponds to a causal order in which 

the methods get involved. 

For example: In the case of Account state a possible method 

sequence is “open • deposit • withdraw• close”. In this method 

sequence, deposit method is invoked before the withdraw 

method is invoked. 

Definition 7: Method Invokation Sequence Scenario, 

MISS(S): A MISS(S) is the whole invokation sequence set 

which define the relationships between all the methods in 

Method_of(S). 

For example: In the case of Account state, the test data MISS 

(Account) is: open • deposit • (deposit | transfer | withdraw)* • 

close.  

The MISS (Account) consists of four states with four types of 

events each corresponding to messages. The method open 

creates an Open Account state. The deposit method creates an 

actual Account Operation state. Once a deposit is chosen, 

deposit, transfer and withdraw methods can be invoked until 

the transaction is end. 

7. IMPLEMENTATION 

7.1 Case Study: An ATM System 
This section uses an automated teller machine (ATM) as an 

example to illustrate how the testing methodology works out. 

The discussion of the ATM example will concentrate on the 

functionality of the software system. 

7.1.1 The RSML Specification for ATM System 
The specifications are established through communication 

with the customer. The RSML specification is derived based 

on the original description and an object-oriented analysis 

(OOA). OOA is used to define objects and their operations. 

During the formulation of the specification, ambiguities, 

incompleteness or errors may be found in the original 

requirements description or the analysis phase, and several 

iterations may be necessary.  

The specification of the ATM system is given in Fig. 9. An 

ATM card has a unique card number, which is associated with 

to a personal identification number (PIN). The PIN is 

specified by the bank's customer when the card is issued. Both 

card number and PIN are stored in the bank computer system. 

The customer inserts the card into an ATM, which read the 

card number and prompts the customer for the PIN that is 

associated with this card. Meanwhile, the customer enters 

his/her PIN. If the two match, the customer is given a menu of 

transaction choices. The customer enter his/her request, which 

is verified by the ATM by communication with the bank 

computer. After the request is verified, the transaction will go 

on. This ATM system specification has six major states where 

there are two superstates: state verify_PIN and state 

Transaction. 
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Fig 9: The RSML specification of ATM system 

After the RSML specification is done, the requirements and 

OOA will conform to the specification. Implementation, 

testing and maintenance will all benefit from the effort put 

into the specification. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10: Convert the RSML specification to a 

corresponding finite automata 

Here only present the test data of state 4 (Transaction state). 

The Transaction state is invoked once the PIN is verified. In 

the Transaction state, there are four leafstates: Open_Account, 

Account_Operation, Loan_Account and Eject_Card. Each 

state associates with a set of methods which causes the 

transitions from one state to another state.  

 

 

7.1.2 Test Result Analysis 

7.1.2.1 Construction of Testing Cases 

Complement 
Given an automata denoted L (M) = M = (Σ, Q, q0, δ, F) the 

complement is Σ* − L. To accept Σ* − L, complement the 

final states of M. That is L (M) = M = (Σ, Q, q0, δ, Q – F). 

Then M accepts a word w if and only if δ (q0, w) is in Q-F, 

that is, w is in Σ* − L. 

Union: Given two automata L (M1) = (Σ1, Q1, q1, δ1, F1) and L 

(M2) = (Σ2, Q2, q2, δ2, F2) the union of M1 and M2 denoted 

M1∪M2 is easily done by union the each element in 5-tuple. 

Then L (M1) ∪ L (M2) = M1 ∪ 2 (Q1 + Q2, Σ1 + Σ2, δ1 + δ2, q1 + 

q2, F1 + F2). 

Intersection: The construction of intersection involves taking 

the Cartesian product of states, and we sketch the construction 

as follows, Let L (M1) = (Σ1, Q1, q1, δ1, F1) and L (M2) = (Σ2, 

Q2, q2, δ2, F2) be two deterministic finite automata. Let M = 

(Q1 × Q2, Σ, δ, [q1, q2], F1 × F2) where for all Specification p1 

in Q1, p2 in Q2 and a in Σ. It is easily shown that L (M) = L 

(M1) ∩ L (M2). 

7.1.2.2 Completeness Analysis  
Now use the Transaction state to illustrate how the testing 

methodology works out. The test data of Transaction state in 

the form of regular expression has been generated in above. 

Both of them can be represented by two corresponding finite 

automata in Fig. 11. The RSML specification is denoted as 

Lspec, and the test data is denoted as Ltest. 
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Fig 11: An illustration of the testing framework: using 

Transaction state 

By the result of Theorem 1, Lspec is complete (Lspec ⊆ Ltest) iff 

(Lspec ∩ (Lspec ∩ Lspec)
c) ∪  ((Lspec)

c ∩ (Lspec ∩ Ltest)) = ɸ. So we 

have to construct a finite automata (FA) to accept (Lspec ∩ 

(Lspec ∩ Lspec)
c) ∪  ((Lspec)

c ∩ (Lspec ∩ Ltest)). If this FA accepts 

an empty string (i.e., ɸ), then this specification is complete. 

To construct this FA, it involves three primitive rules: 

Intersection, Complement and Union proposed above. 

Let M1∩2 = (M1 ∩ M2) = (Q1 × Q2, Σ, δ, [A, X], [D, W]) 

shown in Fig. 12-(a) which accept Lspec ∩ Ltest, where Q1 × Q2 

= {[A,X], [B,Y], [C,Z], [D,W]}, Thus transition δ in M1∩2 is δ 

([A, X ], a) = [δ (A, a), δ (X, a)] = [B,Y]; δ ([B,Y], b) = [δ (B, 

b),δ (Y, b)] =[C, Z]; δ ([C, Z],b) = [δ [C, b],δ [Z, b]) = [C,Z]; 

δ ([C, Z],c) = [δ [C, c],δ [Z, c]) = [C,Z] ; δ ([C, Z],e) = [δ[C, 

e], δ [Z, e]) = [D,W]. 

Let M(1∩2)
c = ∩ = (Q1 × Q2, Σ1 + Σ2, δ, [A, X], {[A, X], [B,Y], 

[C, Z]}) shown in Fig. 12-(b) which accept (Lspec ∩ Ltest)
c
 , 

where Q1 × Q2 = {[A, X], [B,Y], [C, Z], [D,W]}, This 

transition δ in M(1∩2)
c has the same set that M1∩2 has. 

However, the final state of M(1∩2)
c is {[A, X], [B, Y], [C, Z]} 

which is the complement of the final state of M1∩2 (i.e., Q1 × 

Q2 - [D,W]). Note that these final states are denoted by 

drawing the state icons with a double line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 12: Illustration for Lspec ∩ Ltest and (Lspec ∩ Ltest)
c 

respectively 

The final automata to accept (Lspec∩ (Lspec ∩ Lspec)
c) ∪  

((Lspec)
c ∩ (Lspec∩ Ltest)) is M3 shown in Fig. 11 Because it is 

not an empty string, the Transaction state is incomplete. By 

the same way, check the other states in this ATM system 

specification.                                                                

 

 

 

 

 

 

 

Fig 12: Illustration for Lspec ∩ (Lspec ∩ Ltest)
c ∪  (Lspec)

c ∩ 

(Lspec ∩ Ltest ) 

Every OO specification consists of a set of states (classes) 

which communicate with each other by sending message or 

invoking methods. Therefore, the analysis of completeness of 

an OO specification must take the whole states into 

consideration. Meanwhile, MISS test data satisfies distributive 

property and associative property, so check the completeness 

of OO specification state by state. 

7.1.2.3 Consistency Analysis 
Let's consider M1 in Fig. 11 again. Given an invocation 

sequence “valid _ PIN • withdraw • deposit • withdraw • 
close”, we know this is a wrong invokation sequence because 

any customer of a bank should deposite some cash into a bank 

before any withdraw. The transition δ (Verify _ PIN, valid _ 

PIN • withdraw • deposit • close) will stick to the state Loan 

Account and will not go to final state. 

δ (start, invocation _ sequence) = δ (Verify _PIN, valid _    

PIN • withdraw • deposit • close) 
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= δ (δ (Verify _ PIN, valid _PIN), withdraw • deposit • close) 

= δ (δ (Open _ Account, withdraw), deposit • close) 

= δ (Loan _ Account, deposit) • close) 

= stick in Loan _ Account 

7.1.2.4 Error Dection 
Lemma 1: Given M = (Q, Σ, δ, q0, F) be a DFA, A state q ∈ Q 

is stuck if there does not exist a word x ∈ Σ* such that δ (q, x) 

= f, for some f ∈ F.  

Theorem 2: Given two DFAs denoted by M1 = (Q1, Σ1, δ1, q1, 

F1), and M2 = (Q2, Σ2, δ2, q2, F2) if M1 ⊈ M2, there must exists 

a set of states A ∈ Q1, B ∈ Q2 such that x is stuck at B and y is 

stuck at A, where x ∈ L1, y ∈  L2. 

Proof: Given an invokation sequence, valid _ PIN • withdraw 

• deposit • close chosen from L(M1), but this is a wrong 

design because any customer of a bank should deposite some 

cash into a bank before any withdraw. When the word 

(operation sequences) is carried out against Ltest, it will stick 

in some state of Ltest. In contrast, there must exists some 

sequence in Ltest if $ Ltest  ⊈  L(M), when input this invokation 

sequence to L(M), it must stick in L(M).  

By Theorem 2, let Lspec = (Q, Σ, δ, q0, F) respect to an object-

oriented programming and Ltest be a test data generated from 

formal specification, if Lspec  ⊈ Ltest (i.e., inconsistency), there 

must exist stuck states in Q for some x ∈  Ltest .  

Definition 1: A test data is complete if it covers all the 

requirements indicated in the problem specification. 

Definition 2: A test data is sound if it no invalid test cases are 

generated. 

8. CONCLUSION 
This paper has presented a testing framework based on finite 

automata. Test requirements derive from early artifacts 

produced at the end of the analysis development stage, namely 

use case diagram, use case description, interaction diagram 

(sequence or collaboration) associated with each use case, and 

class diagram (composed of application domain classes and 

their contracts). The fundamental principles of our 

methodology, which is based on regular expression, are 

emphasized here. The given methodology focuses on test 

automation, A bank's ATM system is used to illustrate the 

testing framework. One major issue currently under 

investigation is: how to strengthen the testing framework. But 

finite automata is only a subset of context free grammar, so it 

has some limitations in applications. Petri-net is a more 

powerful state-based machine which is very suitable for the 

description of object-oriented specification. 
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