
International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.11, October 2015

38

Designing of Testing Framework through Finite State

Automata for Object-Oriented Systems using UML

Sadhana Verma
Student

Computer Science and Engineering
PSIT, Kanpur, India

Ajay Pratap, PhD
Associate Professor

Computer Science and Engineering
PSIT, Kanpur, India

ABSTRACT
Many researches to testing object-oriented systems (OOSs)

have been proposed for the past decade. After all, almost all

large OO software specifications still contain incompleteness,

inconsistency, and ambiguity. The framework can be defined

using any state-based specification notation and used to derive

test cases from state-based specifications in this paper, it is

demonstrated using the RSML notation. A state transition

diagram (STD) derived from RSML specification provides a

complete behavior of a given OOS. System testing is

concerned with testing an entire system based on its

specifications. In the context of object-oriented, UML

development, this means that system test requirements are

derived from UML analysis artifacts such as use cases, their

corresponding sequence and collaboration diagrams, class

diagrams. The goal is here to support the derivation of

functional system test requirements, which will be

transformed into test cases once we have detailed design

information. In this paper, we describe a methodology in a

practical way and illustrate it with an example. In this paper a

framework that formally defines test data sets and their

relation to the operations in a specification and to other test

data sets, providing structure to the testing process.

Keywords
Object-Oriented Program; software testing; software

complexity; Finite automaton; UM

1. INTRODUCTION
Testing plays a vital role in software development. Testing is

a practical means of detecting program errors that can be

highly effective if performed rigorously. Despite the major

limitation of testing that it can only show the presence of

errors and never their absence, it will always be a necessary

verification technique.

An object-oriented system is composed objects. The behavior

of the system results from the collaboration of those objects.

The objects are the real world entities that exist around us and

the basic concepts like abstraction, encapsulation, inheritance,

polymorphism all can be represented using UML.

So UML is powerful enough to represent all the concepts

exists in object oriented analysis and design. UML diagrams

are representation of object oriented concepts only. So before

learning UML, it becomes important to understand OO

concepts in details.

Another important aspect is automation. Large systems are

inherently complex to test and require, regardless of the test

strategy, large numbers of test cases. If a system testing

method requires the tester to perform frequent, complex

manual tasks, then such a method is not likely to be usable in

a context where time to market is tight and qualified personnel

is scarce. Therefore, the potential for automation of a test

methodology is an important criterion to consider (Section

VI).

A software requirements specification should be a com-

prehensive statement of a software system's intended

behavior. Unfortunately, requirements specifications are often

incomplete, inconsistent, and ambiguous. To provide analysis

procedures to find errors in specifications, it is first necessary

to determine the desirable properties of a Specification.

Previously, defined formal criteria for requirements

completeness, consistency and safety.

This paper defines the formal semantics of RSML and

describes an automated approach to analyzing an RSML

specification for two qualities: 1) completeness with respect to

a set of test cases (a response is specified for every possible

input and input sequence) and 2) consistency (the

specification is free from conflicting requirements and

undesired nondeterminism).

2. LITERATURE SURVEY
J. E. Hopcroft and R. M. Karp [1] described an algorithm for

determining if two finite automata with start states are

equivalent, the asymptotic running time of the algorithm is

bounded by a constant times the product of the number of

states of the larger automata with the size of the input

alphabet.

A. J. Offutt and A. Abdurazik [2] presented a novel technique

that adapts pre-defined state-based specification test data

generation criteria to generate test cases from UML

statecharts.

 Vipin Saxena and Ajay Pratap [3] given a real case study of

Indian Postal Services is discussed to solve the problem of

learning and object oriented data classification. Naïve

Bayesian classifier is a classification algorithm based on

Bayes theorem which is guided by genetic algorithm.

D. Harel [4] presented a broad extension of the conventional

formalism of state machines and state diagrams that is

relevant to the specification and design of complex discrete-

event systems. Statecharts can be used either as a stand-alone

behavioural description or as part of a more general design

methodology that deals also with the system’s other aspects,

such as functional decomposition and data-flow specification.

A. Andrews et al [5] given a technique for testing executable

forms of UML (Unified Modelling Language) models is

described and test adequacy criteria based on UML model

elements are proposed.

H. Y. Chen et al [6] proposed in this article a methodology to

integrate the black- and white-box techniques. The black-box

technique is used to select test cases.

 Chi-Ming Chung et al [7] proposed a technique and shows

that inheritance has a close relation to object-oriented

software complexity and reveals that overuse of repeated

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.11, October 2015

39

Withdraw

Transfer

Deposit

Register ATM
to Bank

Read log

User

Administrator

Bank

(multiple) inheritance will increase software complexity and

be prone to implicit software errors.

 E. Weyuker et al [8] presented a family of strategies for

automatically generating test data for any implementation

intended to satisfy a given specification that is a Boolean

formula. The fault detection effectiveness of these strategies is

investigated both analytically and empirically, and the costs,

assessed in terms of test set size, are compared.

3. PROBLEM IDENTIFICATION AND

ANALYSIS
In recent years object-oriented paradigm is gaining acceptance

for developing large and complex software. OO paradigm has

moved into mainstream software development industry.

Basically, object-oriented analysis (OOA) and object-oriented

design (OOD) methodologies examine problem in the real

world and facilitate in decomposing the problem in terms of

classes, and some relationships between classes. However,

almost all large OO software specifications still contains

incompleteness, inconsistentency, and ambiguity [2]. So far

two related approaches to verifying the consistency and

completeness of procedure-oriented programs include methods

based on formal proof systems and static analysis technique

such as model checking.

These two approaches have drawbacks and are not suitable for

OO software specification.

3.1 Formal Proof Systems
Formal proof systems can be powerful tools in the verification

of critical properties of algorithm [13]. Unfortunately, the

languages used in the theorem proving approach, such as

process algebras and higher order logics, are not

understandable by the non-software professionals. Also,

formal proofs are notoriously difficult to derive, and these

approaches may not be practical for complex systems.

3.2 Model Checking
Model checking is conceptually simple and is applicable in a

wide variety of languages and application areas [14].

Consequently, the approach suffered from state-space

explosion problems.

This approach is to build a testing framework based on finite

automata to test the OO software specification. This approach

differs from formal proofs and model checking in that it

performs the testing directly on an executable finite automata

without manually deriving the formal proofs or generating a

great deal of state spaces.

4. OBJECT-ORIENTED

REPRESENTATION OF SYSTEM USING

UML: A CASE STUDY OF ATM SYSTEM

4.1 UML Use Case Diagram
The use case is a piece of functionality that the system can

provide by interacting with the actors. A use case diagram

consists of actors and the

use cases. The actors

are the direct external

user of the system.

Fig 1: UML Use Case diagram of ATM system

Fig. 1 shows the use case diagram of the ATM system. The

interaction between the two actors named as Customer,

Administrator and Bank are shown with the five use cases

performed by them. Customer sends the request to the ATM

system to open account and interacts with the actor Bank and

Administrator.

4.2 UML Class Diagram
The UML class diagram shows the static structural behavior of

the system, in which attributes and operations are designed for

the complete system. The classes can be related to each other

in number of ways, like they can be associated, dependent,

specialized or packaged.

Fig. 2 depicts the class diagram of the ATM system. The class

diagram has five persistent classes, which are Bank,

Customer, ATM system, Account, and Transaction. These

classes are connected to each other by various relationships

with their multiplicities as shown in the diagram. Customer,

ATM system, Account, and Transaction are subclasses and

they are inherited from non-abstract class Bank.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.11, October 2015

40

1…2

 Bank

 name

 location

Customer

firstName

lastName

cardNumber

pinNumber

 +verifyPassword()

T
rans
actio

n
transID

transDate

transTime

transType

amount

Transaction

1

*

Account-
Transaction

number

balance

+deposit()

+withdraw()

+transfer()

 createTransaction()

 Account

 ATM system

address

state

Cancel pressed

Cancel pressed

Card not readable

Customer
wants to do

another

Performing Transaction

Eject card

Reading card

Read Pin

Choosing Transaction

Customer finished

Pin read successfully

Transaction chosen

Card read successfully

PinDetails()

Customer

insertCard()

PinValidation()

Customer console

verifyCard()

Card reader

cardVerification
()

enterPin()

verifyPin() validationofPin()

ATM

Fig 2: UML Class Diagram of ATM system

4.3 UML Sequence Diagram

Sequence diagram tells how states interact with each other i.e.

how transitions are being send and receive between states.

This diagram has two vertices: Each system states are

represented by the vertical line. The horizontal axis shows the

input symbols, which are being sent from the start state to the

next state.

Fig 3: UML Sequence Diagram of ATM system

The sequence diagram for the ATM system is shown in Fig. 3.

The sequence diagram presented in Fig. 3 shows that the

object of the start state sends request for going to the next

state according to their attributes. If the request is valid then

the object goes to the next state.

4.4 UML State Diagram

UML state diagram is a graph whose nodes are states and

directed arcs are the transitions between them. They are used to

describe the behaviour of a system. It describes all of the

possible states of an object as events occur.

Fig 4: UML State Diagram of ATM system

UML – State diagrams can be used in multiple situations of

software development for example they can be used:

 To describe the behavior of a system

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.11, October 2015

41

A

C

B

D

Yes

Requirement State Machine

Language Specification for

Object-Oriented System

Derive State Transition

Diagram (STD)

Regular Expression

Consistency

Test

Completeness

Test

Convert STD to FA

Test Data Generation

Yes

End

No Improve Object-Oriented

Specification

No

 To model the dynamic nature of a software.

5. DESIGNING OF TESTING

FRAMEWORK

5.1 Need of Testing
Testing is the process of executing a program with the

intention of finding errors.” – Myers

“Testing can show the presence of bugs but never their

absence.” - Dijkstra

The need of testing is to find out the errors in the application.

Testing is a merry-go-round process which includes a good

amount of time along with cost, for all. But the reality is quite

opposite, without testing it is not possible to deliver projects

successfully, as during software development, developers

make many mistakes throughout the different phase of

development and testing helps in correcting those mistakes.

For example, in the requirement engineering stage, the SRS

(System Requirement Specification) document is written and

tested to check whether it captures all the user requirements or

not. The same is applicable for object oriented testing as

object-oriented programming increases software reusability,

extensibility, interoperability, and reliability and at the same

time it is necessary to realize these benefits by uncovering as

many programming errors as possible.

5.1 Testing Framework
The object-oriented testing (OOT) proposed four

components:(1) describe the specification with a state-based

requirement specification language, (2) describe the dynamic

behavior of the OO specification with an extended state

transition diagram, (3) generate test data in the form of regular

expression (4) design a testing algorithm based on finite

automata to test the OO specification. The RSML

specification provides a means for the tester to retrieve

implementation information without going to details by Jaffe

et al [10]. On the other hand, the test data derived from RSML

specifications can be defined as a sequence of operations

(method invocations) along with expected effects; it can be

represented by a sequence of events or states. A test data

generation criteria called method invocation sequence

scenario (MISS) is proposed to documents the correct causal

order in which the methods of a class specification can be

invoked.

Fig. 5 shows the full picture of this object-oriented testing

framework.

Fig 5: Testing Framework

5.2 RSML (Requirement State Machine

Language)
RSML is a state-based requirements specification language

suitable to describe complex software specifications. The

RSML was developed by the Irvine Safety Research Group

using a real aircraft collision-avoidance system called TCAS

II (Traffic alert and Collision Avoidance System II) as a

testbed by Leveson et al [9]. In addition, RSML has some

unique syntactic and semantic features that were developed to

enhance readability, reviewability, and analyzability and our

ability to handle complex systems.

RSML includes several features developed by Hare1 for

Statecharts: superstates, AND decomposition, broadcast

communication, and conditional connectives.

Fig 6: A basic state machine

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.11, October 2015

42

a

S

R

T

c
d

b
Software

specification

(a) (c) (b)

Software
specification

Software
specification

Incompleteness &

inconsistency

Completeness &

consistency

Test data Test data Test data

Partial completeness &

partial consistency

In RSML (and Statecharts), a state that contains nested states

is called a uperstates, and its nested states are called substate.

A state that cannot be decomposed further is called a leafstate.

In Fig. 7, state R and state T may be grouped into superstate

S.

Fig 7: A super state example

6. TESTING METHODOLOGY BASED

ON FINITE AUTOMATA

6.1 Testing Criteria and Testing

Methodology
Object-oriented program is an unstructured diagram, its

dynamic program behavior such as, message passing and state

transition by method invocation, make the testing work more

complicate than structured software. In this section, two

testing criteria, completeness and consistency, are introduced

to compare object-oriented software system against its

specification.

6.1.1 Incompleteness
Incompleteness determines the extent to which a software

system is solving the correct problem by Zualkernan and Tsai

[12]. Completeness determines the extent to which a software

system is solving the correct program. The completeness of a

software system with respect to the problem specification is a

measure of the portion of the specification implemented in the

system. A system is complete if it covers all the problems

indicated in the problem specification.

Definition 1: A software specification is complete if it covers

all the problems indicated in the problem requirement.

In the software development lifecycle, testers usually generate

test data based on its problem requirement to test the software

specification. Therefore, if the test data, supposedly denoted

as Ltest is fully derived from the problem requirement, then the

software specification Lspec is complete if Lspec ⊆ Ltest holds.

Fig. 8 depict three testing relationships between Lspec and Ltest.

Fig. 8-a indicates that the software specification Lspec is

complete and consistent with Ltest because Lspec ⊆ Ltest holds.

Fig.8-b means that Lspec is partially complete and consistent

with Ltest. Fig.8-c shows that Lspec is not complete and

consistent with Ltest because the intersection of Lspec and Ltest,

denoted as Lspec ∩ Lreq, is a empty set (Lspec ∩ Ltest = ɸ).

Obviously Lspec ∩ Ltest is the complete part of the software

specification. In contrast, the incomplete part can be derived

from the expression Lspec - (Lspec ∩ Lreq) which is equivalent to

Lspec ∩ (Lspec ∩ Ltest). However, the difficulties lie in how to

exactly figure out the two expressions: Lspec ∩ Ltest and Lspec -

(Lspec ∩ Ltest).

Fig 8: Three testing relationships between Lspec and Ltest

6.1.2 Testing Methodology Modelled by Regular

Expression
There are many operations on languages that preserve regular

expressions, in the sense that the operation applied to regular

expression result in regular expressions. For example, the

union two regular expressions is a regular expression, since if

r1 and r2 are regular expressions denoting regular sets L1 and

L2, then r1 + r2 denotes L1∪ L2, so L1∪ L2 is also regular.

Similarly, the concatenation of regular sets is a regular set and

the kleene closure of a regular set is regular.

Property 1: The regular expressions are closed under union,

concatenation, and Kleene closure.

Property 2: The class of regular expression are closed under

complementation. That is, if L is a regular expression and L ⊆

Σ*, then Σ* - L is a regular expression.

Property 3: The regular expressions are closed under

intersection.

Property 4: The set of sentences accepted by a finite

automaton M with n states is: empty if and only if the finite

automaton does not accept a sentence of length less than n.

Property 5: For two DFA's M1, and M2, ∃ an algorithm to

determine if L (M1) = L (M2).

Theorem 1: For two DFA's M1 and M2, ∃ an algorithm to

determine if L (M1) ⊆ L (M2)

Proof: (1) To prove if L (M1) ⊆ L (M2) holds, if L (M1) = L

(M2) holds first. Let M1 and M2 be FA accepting L1 and L2,

respectively. By property 1, property 2, property 3, (L1 ∩

(L2)
c) ∪ ((L1)

c ∩ L2) is accepted by some finite automata, M3.

It is easy to see that M3 accepts a word if and only if L1 ≠ L2.

In other words, M3 does not accept a sentence iff (L1 ∩ (L2)
c)

∪ ((L1)
c ∩ L2) = ɸ, hence by property 4, there is an algorithm

to determine if L (M1) = L (M2).

(2) If L1 ⊆ L2 holds, then it implies that L1= L1 ∩ L2. Let L

(M3) = L3 = L1 ∩ L2. Then, L1= L1 ∩ L2 is equal to L1 = L3. By

the result of (1), L1 = L3 iff (L1 ∩ L3) ∪ (L1 ∩ L3) = ɸ.

Therefore, it implies that L1 ⊆ L2 iff (L1 ∩ (L1 ∩ L2)
c) ∪ ((L1)

c

∩ (L1 ∩ L2)) = ɸ.

This algorithm is easily designed by constructing a FA which

accepts the language (L1 ∩ (L1 ∩ L2)
c) ∪ ((L1)

c ∩ (L1 ∩ L2)) =

ɸ.

By Theorem 1, given an object-oriented programming Lspec

(M), and a testing data Ltest (M) generated from formal

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.11, October 2015

43

specification, build a FA to verify Lspec (M) ⊆ Ltest (M).

Obviously, the testing work is to construct a DFA to accept

(Lspec ∩ (Lspec ∩ Ltest)
c) ∪ ((Lspec)

c ∩ (Lspec ∩ Ltest)) = ɸ

Fortunately, there have been three primitive regular

expression properties to help construct the FA by Ullman and

Hopcroft [11].

6.1.3 Inconsistency
Consistency is the extent to which a software system, its

problem specification, and its solution specification do not

have internal contradictions.

Definition 2: A specification is consistent if its solution

specification does not conflict with problem specification.

Basically, there are two types of inconsistent problems which

may occur in a state-transition based specification

Definition 3: Given an OO specification M = (Σ, Q, q0, δ, F),

A state qm is said to be reachable from state qn if there exists a

path from qn to qm. qm is reachable from state qn iff ∃ s: δ (qn .

s) = q where s ∈ Σ*.

If a state is unreachable there are two possibilities. Either the

state has no function and can be eliminated from the

specification, or the state should be reachable and the

requirements document must be modified accordingly.

6.1.3 Test Data Generation from RSML

Specification
In the following, we propose a criterion called method

invokation sequence scenario (MISS) as a guide to generate

the test data from the RSML specification. The MISS of a

state documents the correct casual order in which the methods

of a state can be invoked. The MISS represents the method

interactions, i.e. the dynamic interaction of classes. To

describe test data generation precisely, make some definitions

to describe the MISS.

Definition 5: Methods_of (S): Given a state S, Methods_of (S)

is defined as a set of all methods defined in state S.

For example: Given a state Stack, the methods of Stack can

be: Method_of (Stack) = {push, pop, check_empty,

check_full}

To represent the method invokation sequence scenario of a

state S, use regular expression over the alphabet (denoted as

Σ) consisting of methods from Method_of (S). The regular

definition is a sequence of definitions of form:

 n

 U [Si] →mi • [Si]

 i=1

where each Si is a distinct label, Sj ∈ { S1, S2, …, Sn}, and

method mi∈ Un
i=1 Method _of (Si) . This form means that

after schema Si invokes some method mi then state of state Si

will transfer to the state Sj. Note that mi is a terminal symbol

while [Si] is a nonterminal symbol which can derive new

regular definitions until some terminal symbol is met.

Definition 6: Method Sequence: Given a state S with

Method_of (S) = {m0, m1, …, mn}, a method sequence S is

defined as a finite lengthy sequence of methods over

Method_of (S) which corresponds to a causal order in which

the methods get involved.

For example: In the case of Account state a possible method

sequence is “open • deposit • withdraw• close”. In this method

sequence, deposit method is invoked before the withdraw

method is invoked.

Definition 7: Method Invokation Sequence Scenario,

MISS(S): A MISS(S) is the whole invokation sequence set

which define the relationships between all the methods in

Method_of(S).

For example: In the case of Account state, the test data MISS

(Account) is: open • deposit • (deposit | transfer | withdraw)* •

close.

The MISS (Account) consists of four states with four types of

events each corresponding to messages. The method open

creates an Open Account state. The deposit method creates an

actual Account Operation state. Once a deposit is chosen,

deposit, transfer and withdraw methods can be invoked until

the transaction is end.

7. IMPLEMENTATION

7.1 Case Study: An ATM System
This section uses an automated teller machine (ATM) as an

example to illustrate how the testing methodology works out.

The discussion of the ATM example will concentrate on the

functionality of the software system.

7.1.1 The RSML Specification for ATM System
The specifications are established through communication

with the customer. The RSML specification is derived based

on the original description and an object-oriented analysis

(OOA). OOA is used to define objects and their operations.

During the formulation of the specification, ambiguities,

incompleteness or errors may be found in the original

requirements description or the analysis phase, and several

iterations may be necessary.

The specification of the ATM system is given in Fig. 9. An

ATM card has a unique card number, which is associated with

to a personal identification number (PIN). The PIN is

specified by the bank's customer when the card is issued. Both

card number and PIN are stored in the bank computer system.

The customer inserts the card into an ATM, which read the

card number and prompts the customer for the PIN that is

associated with this card. Meanwhile, the customer enters

his/her PIN. If the two match, the customer is given a menu of

transaction choices. The customer enter his/her request, which

is verified by the ATM by communication with the bank

computer. After the request is verified, the transaction will go

on. This ATM system specification has six major states where

there are two superstates: state verify_PIN and state

Transaction.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.11, October 2015

44

5: Hold the
Card

 : ATM Process. Transaction

 withdraw, deposit, transfer

and end transaction

endtransaction

: ATM Process. Card Verify

get card number verify card

number

: ATM Process. PinVerify

get bankPIN and get userPIN

invalidcard

insert_card

valid_card

valid_pin

End

Start

Check Card

Verify PIN

Transaction

invalid_PIN

Lspec = M1 (Q1, Σ1, δ1, Verify_PIN, Eject_Card)

A:

Verify

PIN

B:

Open

Account

E:

Loan

Account
withdraw

D:

Eject

Card

 withdraw

selection

 close

 deposit

C:

Account

Operation

transfer

withdraw
 valid_PIN

(a) RSML specification of Transaction

Start

Check card

Verify Pin

Transaction Hold card

End

valid_PIN

endTransaction emergency

get_bankPIN

insert_card

invalid_PIN

Fig 9: The RSML specification of ATM system

After the RSML specification is done, the requirements and

OOA will conform to the specification. Implementation,

testing and maintenance will all benefit from the effort put

into the specification.

Fig 10: Convert the RSML specification to a

corresponding finite automata

Here only present the test data of state 4 (Transaction state).

The Transaction state is invoked once the PIN is verified. In

the Transaction state, there are four leafstates: Open_Account,

Account_Operation, Loan_Account and Eject_Card. Each

state associates with a set of methods which causes the

transitions from one state to another state.

7.1.2 Test Result Analysis

7.1.2.1 Construction of Testing Cases

Complement
Given an automata denoted L (M) = M = (Σ, Q, q0, δ, F) the

complement is Σ* − L. To accept Σ* − L, complement the

final states of M. That is L (M) = M = (Σ, Q, q0, δ, Q – F).

Then M accepts a word w if and only if δ (q0, w) is in Q-F,

that is, w is in Σ* − L.

Union: Given two automata L (M1) = (Σ1, Q1, q1, δ1, F1) and L

(M2) = (Σ2, Q2, q2, δ2, F2) the union of M1 and M2 denoted

M1∪M2 is easily done by union the each element in 5-tuple.

Then L (M1) ∪ L (M2) = M1 ∪ 2 (Q1 + Q2, Σ1 + Σ2, δ1 + δ2, q1 +

q2, F1 + F2).

Intersection: The construction of intersection involves taking

the Cartesian product of states, and we sketch the construction

as follows, Let L (M1) = (Σ1, Q1, q1, δ1, F1) and L (M2) = (Σ2,

Q2, q2, δ2, F2) be two deterministic finite automata. Let M =

(Q1 × Q2, Σ, δ, [q1, q2], F1 × F2) where for all Specification p1

in Q1, p2 in Q2 and a in Σ. It is easily shown that L (M) = L

(M1) ∩ L (M2).

7.1.2.2 Completeness Analysis
Now use the Transaction state to illustrate how the testing

methodology works out. The test data of Transaction state in

the form of regular expression has been generated in above.

Both of them can be represented by two corresponding finite

automata in Fig. 11. The RSML specification is denoted as

Lspec, and the test data is denoted as Ltest.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.11, October 2015

45

valid_PIN B:

Open

Account

selection

D:

Eject

Card

 close

A:

Verify

PIN

(b) Test Data MISS of Transaction

Ltest = M2 (Q2, Σ2, δ2, Verify_PIN, Eject_Card)

close

deposit

E:

Loan

Accoun

t

withdraw

withdraw

deposit

C:

Account

Operation

 transfer

withdraw

(b) Intersection M1 ∩ M2

[D, W]:

Eject

Card

 close

 deposit

[C, Z]:
Account

Operation

 transfer

withdraw

[A, X]:

Verify

PIN

 valid_PIN [B, Y]:
Open

Account

 selection

(a) Intersection (M1 ∩ M2)
c

 selection

[B, Y]:

Open

Account

[A, X]:

Verify

PIN

 verify_PIN

[C, Z]:

Account

Operatio

n

transfer

 deposit

 withdraw

[D, W]:

Eject

Card

 close

deposit Open

Accoun

t

withdraw

transfer

Account

Operation

Eject
Card

close

Verify

PIN

valid_PIN

Fig 11: An illustration of the testing framework: using

Transaction state

By the result of Theorem 1, Lspec is complete (Lspec ⊆ Ltest) iff

(Lspec ∩ (Lspec ∩ Lspec)
c) ∪ ((Lspec)

c ∩ (Lspec ∩ Ltest)) = ɸ. So we

have to construct a finite automata (FA) to accept (Lspec ∩

(Lspec ∩ Lspec)
c) ∪ ((Lspec)

c ∩ (Lspec ∩ Ltest)). If this FA accepts

an empty string (i.e., ɸ), then this specification is complete.

To construct this FA, it involves three primitive rules:

Intersection, Complement and Union proposed above.

Let M1∩2 = (M1 ∩ M2) = (Q1 × Q2, Σ, δ, [A, X], [D, W])

shown in Fig. 12-(a) which accept Lspec ∩ Ltest, where Q1 × Q2

= {[A,X], [B,Y], [C,Z], [D,W]}, Thus transition δ in M1∩2 is δ

([A, X], a) = [δ (A, a), δ (X, a)] = [B,Y]; δ ([B,Y], b) = [δ (B,

b),δ (Y, b)] =[C, Z]; δ ([C, Z],b) = [δ [C, b],δ [Z, b]) = [C,Z];

δ ([C, Z],c) = [δ [C, c],δ [Z, c]) = [C,Z] ; δ ([C, Z],e) = [δ[C,

e], δ [Z, e]) = [D,W].

Let M(1∩2)
c = ∩ = (Q1 × Q2, Σ1 + Σ2, δ, [A, X], {[A, X], [B,Y],

[C, Z]}) shown in Fig. 12-(b) which accept (Lspec ∩ Ltest)
c
 ,

where Q1 × Q2 = {[A, X], [B,Y], [C, Z], [D,W]}, This

transition δ in M(1∩2)
c has the same set that M1∩2 has.

However, the final state of M(1∩2)
c is {[A, X], [B, Y], [C, Z]}

which is the complement of the final state of M1∩2 (i.e., Q1 ×

Q2 - [D,W]). Note that these final states are denoted by

drawing the state icons with a double line.

Fig 12: Illustration for Lspec ∩ Ltest and (Lspec ∩ Ltest)
c

respectively

The final automata to accept (Lspec∩ (Lspec ∩ Lspec)
c) ∪

((Lspec)
c ∩ (Lspec∩ Ltest)) is M3 shown in Fig. 11 Because it is

not an empty string, the Transaction state is incomplete. By

the same way, check the other states in this ATM system

specification.

Fig 12: Illustration for Lspec ∩ (Lspec ∩ Ltest)
c ∪ (Lspec)

c ∩

(Lspec ∩ Ltest)

Every OO specification consists of a set of states (classes)

which communicate with each other by sending message or

invoking methods. Therefore, the analysis of completeness of

an OO specification must take the whole states into

consideration. Meanwhile, MISS test data satisfies distributive

property and associative property, so check the completeness

of OO specification state by state.

7.1.2.3 Consistency Analysis
Let's consider M1 in Fig. 11 again. Given an invocation

sequence “valid _ PIN • withdraw • deposit • withdraw •
close”, we know this is a wrong invokation sequence because

any customer of a bank should deposite some cash into a bank

before any withdraw. The transition δ (Verify _ PIN, valid _

PIN • withdraw • deposit • close) will stick to the state Loan

Account and will not go to final state.

δ (start, invocation _ sequence) = δ (Verify _PIN, valid _

PIN • withdraw • deposit • close)

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.11, October 2015

46

= δ (δ (Verify _ PIN, valid _PIN), withdraw • deposit • close)

= δ (δ (Open _ Account, withdraw), deposit • close)

= δ (Loan _ Account, deposit) • close)

= stick in Loan _ Account

7.1.2.4 Error Dection
Lemma 1: Given M = (Q, Σ, δ, q0, F) be a DFA, A state q ∈ Q

is stuck if there does not exist a word x ∈ Σ* such that δ (q, x)

= f, for some f ∈ F.

Theorem 2: Given two DFAs denoted by M1 = (Q1, Σ1, δ1, q1,

F1), and M2 = (Q2, Σ2, δ2, q2, F2) if M1 ⊈ M2, there must exists

a set of states A ∈ Q1, B ∈ Q2 such that x is stuck at B and y is

stuck at A, where x ∈ L1, y ∈ L2.

Proof: Given an invokation sequence, valid _ PIN • withdraw

• deposit • close chosen from L(M1), but this is a wrong

design because any customer of a bank should deposite some

cash into a bank before any withdraw. When the word

(operation sequences) is carried out against Ltest, it will stick

in some state of Ltest. In contrast, there must exists some

sequence in Ltest if $ Ltest ⊈ L(M), when input this invokation

sequence to L(M), it must stick in L(M).

By Theorem 2, let Lspec = (Q, Σ, δ, q0, F) respect to an object-

oriented programming and Ltest be a test data generated from

formal specification, if Lspec ⊈ Ltest (i.e., inconsistency), there

must exist stuck states in Q for some x ∈ Ltest .

Definition 1: A test data is complete if it covers all the

requirements indicated in the problem specification.

Definition 2: A test data is sound if it no invalid test cases are

generated.

8. CONCLUSION
This paper has presented a testing framework based on finite

automata. Test requirements derive from early artifacts

produced at the end of the analysis development stage, namely

use case diagram, use case description, interaction diagram

(sequence or collaboration) associated with each use case, and

class diagram (composed of application domain classes and

their contracts). The fundamental principles of our

methodology, which is based on regular expression, are

emphasized here. The given methodology focuses on test

automation, A bank's ATM system is used to illustrate the

testing framework. One major issue currently under

investigation is: how to strengthen the testing framework. But

finite automata is only a subset of context free grammar, so it

has some limitations in applications. Petri-net is a more

powerful state-based machine which is very suitable for the

description of object-oriented specification.

9. ACKNOWLEDGMENT
I am heartily thankful to Dr. Ajay Pratap, whose

encouragement, guidance and support enabled me to develop

an understanding of the subject.

10. REFERENCES
[1] J. E. Hopcroft and R. M. Karp. 1971. A linear algorithm

for testing Equivalence of finite Automata. Cornell

University, Tech. Rep. TR 71-114.

[2] A. J. Offutt and A. Abdurazik. 1999. Generating Tests

from UML specifications. Proceedings Second

International Conference on the Unified Modeling

Language (UML'99), Fort Collins, CO. pp. 416-429.

[3] Vipin Saxena and Ajay Pratap. 2012. Modeling and

Validation of Object-Oriented Database System.

International Journal of Computer and Electrical

Engineering, Vol. 4, No. 5.

[4] D. Harel. 1987. Statecharts: A Visual Formalism for

Complex Systems. Science of Computer Programming.

vol. 8, pp. 231-274.

[5] A. Andrews, R. France, S. Ghosh, and G. Craig. 2003.

Test Adequacy Criteria for UML Design Models.

Software Testing, Verification, and Reliability Journal.

Vol. 13, No 2.

[6] H. Y. Chen, T.H. Tse, F.T. Chan, and T.Y. Chen. 1998.

In Black and White: An Integrated Approach to Class-

Level Testing of Object-Oriented Programs. ACM

Transactions on Software Engineering and Methodology.

Vol. 7, No. 3, pp. 250–295.

[7] Chi-Ming Chung, Timothy K. Shih, Chun-Chia Wang,

and Ming-Chi Lee. 1997. Integrating Object-Oriented

Software Testing and Metrics. International Journal of

Software Engineering and Knowledge Engineering.

U.S.A, Vol.7, No. 1, pp.125-144.

[8] E. Weyuker, T. Goradia, and A. Singh. 1994.

Automatically generating test data from boolean

specification. IEEE Transactions on Software

Engineering. Vol. 20, no. 5.

[9] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J.D.

Reese. 1994. Requirements Specification for Process-

Control Systems. IEEE Transactions on Software

Engineering. vol. 20, no. 9, pp. 684-707.

[10] M. S. Jaffe, N. G. Leveson, M.P.E. Heimdahl and B.

Melhart. 1991. Software Requirements Analysis for

Real-Time Process-Control Systems. IEEE Transaction

on Software Engineering. vol. 17, no.3 pp.241-258.

[11] J. D. Ullman and J.E. Hopcroft. 1979. Introduction to

Automata Theory, Languages and Computation. pp. 58-

62, Addison Wesley.

[12] I. A. Zualkernan, W.T. Tsai. 1992. Object-Oriented

Analysis and Design: A Case Study. International

Journal of Software Engineering and Knowledge

Engineering. vol. 2, no. 4, pp. 489-521.

[13] E. F. Miller, Introduction to Software Testing

Technology. Tutorial: Software testing &Validation

Techniques. Second Edition. IEEE Catalog No. EHO

180-0, pp. 4-16.

[14] E. M. Clarke, E. A. Emerson, and A. P. Sistla, 1986.

Automatic verification of finite-state concurrent systems

using temporal logic. Trans. Prog. Lung. and Syst., vol.

8, no. 2, pp. 244-263.

IJCATM : www.ijcaonline.org

