
International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.12, October 2015

36

Performance Analysis of NoSQL Databases

Prateek Nepaliya
Department of Computer Science and Engineering

JEC, Jaipur

Prateek Gupta
Department of Computer Science and Engineering

JEC, Jaipur

ABSTRACT

From couple of years working on big data is a challenge.

Currently there are lot of document oriented tools, we have to

choose best tool from them, and so they are need to be

compared. We compared CouchDB, and RavenDB to know

which one of them is good. NoSQL derived from relational

database, information can be retrieved fast and is portable

database. RDBMS is not flexible enough to handle the variety

of data. Couch dB is also considered in web world.

RavenDB is a transactional, open-source Document Database

written in .NET, and offering a flexible data model designed

to address requirements coming from real-world systems.

Using RDBMSs for Big Data is prohibitively expensive. Each

one of these database has advantages and limitation hence, If

a query is executed enough times, those indices are promoted

to be permanent (auto-generated) indices. Even a simple

query requires significant programming expertise, and

commonly used BI tools do not provide connectivity to

NoSQL. Databases are analyzed on the basis of their time

complexities and space and finally in the end we found out of

which one has real ability to get used in different situation.

And also which is more efficient.

General Terms
Databases vary in complexities, especially document oriented.

On retrospection we found that CouchDB and RavenDB must

be compared on the basis on their performance which can be

improved as efficacies.

Comparison between databases has been done in very

profound way i.e. comparing various sizes of JSON

files/documents and on their time complexities. The snapshot

of various sizes of files and their time on both the document

databases is provided.

Keywords

NOSQL, CouchDB, RavenDB, RDMS, Map reduce,

Document Databases.

1. INTRODUCTION
NoSQL (Not Only SQL) is one of another type of data storage

other than databases that is used to store huge amount of data

storage like data in Social networking sites (Which is

increasing every day). NoSQL derived from relational

database, information can be retrieved fast and is portable

database. Non-relational database does not store data in a non-

normalized way. These databases are open source that means;

anyone can look into its code and update it according to his

needs. NoSQL databases use the concept of data replication.

NoSQL systems are open source projects, and although there

are usually one or more firms offering support for each

NoSQL database, these companies often are small start-ups

without the global reach, support resources, or credibility of

an Oracle, Microsoft, or IBM.

The design goals for NoSQL may be to provide a zero-admin

solution, but the current reality falls well short of that goal.

NoSQL today requires a lot of skill to install and a lot of

effort to maintain. NoSQL databases offer few facilities for

ad-hoc query and analysis. Even a simple query requires

significant programming expertise, and commonly used BI

tools do not provide connectivity to NoSQL.

1.1 CAP theorem
In a distributed system, managing consistency(C), availability

(A) and partition toleration (P) is important, Eric Brewer put

forth the CAP theorem which states that in any distributed

system we can choose only two of consistency, availability or

partition tolerance (Hence also known as brewers theorem,

First come into play in 1998). Many NoSQL databases try to

provide options where the developer has choices where they

can tune the database as per their needs.

Figure1: CAP theorem

Here are some broad reasons to consider the use of NoSQL

databases:

 Enhancing the effectiveness of programmer and

making sure that they use database which is very

prefect for their application need.

 To improve data access performance via some

combination of handling larger data volumes,

reducing latency, and improving throughput.

1.2 SHORTCOMINGS OF RDBMS
The volume of data and its handling is increasing day by day,

so for RDBMS, it is one hell of problem in handling it and

work upon it, if it is handling it includes dollars in great

amount too. It is not flexible enough to handle the variety of

data, which is like semi-structural data, specifically the

modern type of data i.e. social media analysis financial stats

etc. Modern companies and application require less response

Time, flexibility which is as we see, RDBMS is facing the

problem.

Big Data also demands collection of an extremely wide

variety of data types, but RDBMSs have inflexible schemas.

The problem is that Big Data primarily comprises semi-

structured data, such as social media sentiment analysis and

text mining data, while RDBMSs are more suitable for

structured data, such as weblog, sensor and financial data.

In addition, Big Data is accumulated at a very high velocity.

Since RDBMSs are designed for steady data retention, rather

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.12, October 2015

37

than for rapid growth, using RDBMSs for Big Data is

prohibitively expensive.

Finally, many modern day applications don’t require the

strong-but-expensive guarantees offered by RDBMSs. While

a growing number of web applications can tolerate weak

consistency, they also require low and predictable response

times, high availability, effective scalability, flexible schemas

and geographically distributed datacenters.

1.3 CouchDB
Couch dB is JSON document oriented, and was written in

Erlang process and messaging. One main advantage of Couch

is it allows parallel computing and maintenance. Couch dB is

also considered in web world i.e. it is web oriented too. The

fascinating part of couch dB is, it replicates two databases and

it will detect the changes. It uses JavaScript as its query

language, and which fully uses map -reduce and hypertext as

its application interface. Its adaption to well different sizes of

computing devices is very good.

Figure 2: CouchDB

CouchDB is a document oriented database which is nothing

new [although focusing on JSON instead of XML makes it

buzzword compliant] and is definitely not a

replacement/evolution of relational databases. Document

oriented database work well for semi-structured data where

each item is mostly independent and is often processed or

retrieved in isolation. This describes a large category of Web

applications which are primarily about documents which may

link to each other but aren’t processed or requested often

based on those links (e.g. blog posts, email inboxes, RSS

feeds, etc.). However, there are also lots of Web applications

that are about managing heavily structured, highly interrelated

data (e.g. sites that heavily utilize tagging or social

networking) where the document-centric model doesn’t quite

fit.

CouchDB has some really amazing features and As per us

some of them are:

1. It stands up better to synchronous use by multiple users

because it has utterly no read locks. This is possible

because CouchDB never updates documents in place.

Changes are always appended to the end of the database

file. Consequently, writes that occur while views are

being queried won’t ever interfere with those queries.

2. Non-Relational database means no table/key model:

CouchDB databases are non-relational, hence, very

different from SQL databases. They can be easily

managed and are flexible and have several data models.

3. The open source nature of CouchDB databases means

development of large application is comparatively more

economical.

1.4 RavenDB
RavenDB is a transactional, open-source Document Database

written in .NET, and offering a flexible data model designed

to address requirements coming from real-world

systems. RavenDB allows you to build high-performance,

low-latency applications quickly and efficiently.

Figure 3: RavenDB

The following point I’d like to share:

 There is a very complete C# client API.

 It is very easy to set-up a new project on RavenDB.

You can start with an embedded database and easily

transition into a server-hosted mode.

 No additional mark-up is required in your

documents (i.e. no attributes are needed to be able

to locate documents).

 Auto-indexing. RavenDB will automatically create

indices as queries are executed. If a query is

executed enough times, those indices are promoted

to be permanent (auto-generated) indices. In

addition to the automatic performance tweak this

provides, it also grants you some insight into which

indices you should consider adding yourself.

 Map/reduce queries can be written in C# as part of

index definitions. With some of the other NoSQL

databases, you still need to drop to JavaScript to run

map/reduce operations.

2. EXPERIMENTAL ENVIRONMENT

2.1 For Couch
 Operating System: Windows 8.1 pro, 64 bit

operating system.

 Web based CouchDB client.

 Without Admin.

2.2 For Raven
 Operating System: Windows 8.1 pro, 64 bit

operating system.

 Web based client.

 .NET framework 4.0.

3. RESULT AND ANALYSIS
Databases are taken to analyze the efficiency and which of

both the document oriented databases are more efficient.

Sample JSON document of random data plus a map reduce

code to emit whole document. This particular map reduce

commands emits the doc with duration of the processing,

which can be as simple as finding the name of the person with

initials “P” or the whole document for reading on further

comparison the duration is graphed.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.12, October 2015

38

3.1 COUCHDB
Table 1: Time taken in JSON file by CouchDB

S.NO
FILE

TYPE
FILE

TIME

TAKEN

1 JSON 20k lines 120ms

2 JSON 50k Lines 150ms

3 JSON 75k Lines 188ms

The Map function for the sample emitting of name of the

document is:

Figure 4: Map-reduce

The revealed data graph for CouchDB is:

Figure 5: Graphical Analysis of document and time taken

3.2 Ravendb
Table 2: Time taken in JSON file by RavenDB

S.NO
FILE

TYPE
FILE SIZE

TIME

TAKEN

1 JSON 20k lines 132ms

2 JSON 50k Lines 208ms

3 JSON 75k Lines 280ms

Figure 6: Graphical Analysis of document and time taken

3.3 Analysis
This is very clear that using CouchDB is more effective than

using RavenDB. The amounts of time taken for processing a

easy map reduce command i.e. a simple map reduce commend

to emit the names in file.

We found that using the same command we can easily chose a

single database for a particular type of application; however

the other database (RavenDB) can also be used for particular

type of application development. RavenDB is used for

dynamic applications such as transactional model.

Figure 7: Comparison between Couch and Raven

3.4 Limitations of CouchDB
 It doesn't support transactions.

 Not perform well in 3rd normal form relational data

 Temporary views in CouchDB on large datasets are

really slow which has really bad impression on map

reduce.

 Not designed for frequent update.

 No inter-walking between documents.

3.5 Limitations of RavenDB
 No indexing.

 Lucene indexing/querying is weird, compared to a

"normal" RDBMS (all Indexes are string based;

tokenized, stop words are stripped.)

4. CONCLUSION
What we found on comparing both the databases is RavenDB

performs well on a single line query, though it also performs

0

20

40

60

80

100

120

140

160

180

200

0 20 50 75

CouchDB

0

50

100

150

200

250

300

0 20 50 75

RavenDB

0

50

100

150

200

250

300

20K 50K 75K

RavenDB

CouchDB

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.12, October 2015

39

comparatively well on multi line queries on some thousands

of lines of database. On the other hand Couch has its slight

downfall in time taken to run a query of the same 20k, 50k,

75k lines of JSON file.

As the number of records in database increases, the difference

between the execution time taken by CouchDB for the

computation of different database operations is better in

comparison to RavenDB.

For the data retrieval operation, the performance of CouchDB

is about 25 percent better in comparison with RavenDB.

For any update in document the performance increases in

CouchDB in comparison with RavenDB. For update and

deletion of data CouchDB is almost double the percent of

RavenDB.

Figure 8: Overall Performance (%)

5. FUTURE SCOPE
In future we can compare more two or three document based

databases for the different types of documents such as xml,

JSON and csv. Comparative study is always helpful in

choosing one of the databases. Also limitation and advantages

are known by comparative study. More lines of documents

can be compared on the same databases.

6. REFERENCES
[1] “Rabl, Tilmann; Sadoghi, Mohammad; Jacobsen, Hans

Arno; Villamor, Sergio Gomez-; Mulero -, Victor

Muntes; Mankovskii, Serge (2012-08-27)."Solving Big

DataStax (2013-01-15).

[2] Dheeraj Bhardwaj, "Parallel Computing- A Key to

Performance", Department of Computer Science &

Engineering, Indian Institute of Technology Delhi,

August 2011.

[3] “About data consistency". Retrieved 2013-07-25. Ellis,

Jonathan (2012-02-15).

[4] D. an Mey,” Two Open MP programming patterns",

Proceedings of the Fifth European Workshop on Open

MP - EWOMP'03, September

[5] R. Angles and C. Gutierrez,” Survey of graph data-base

models”, ACM Computer. Surv. 40(1):39, 2008.

[13]Neo4j. The neo database (2006), Avail-able

http://dist.neo4j.org/neo-technology-introduction.pdf

[6] M. I. Jordan (Ed). (1998).”Learning in Graphical

Models". MIT Press. Hypergraph DB website,

Availablehttp://www.kobrix.com/hgdb.jsp

[7] “Introduction to No-SQL”.

http://www.cs.tut.fi/~tjm/seminars/nosql2012/NoSQL-

Intro.pdf

[8] Gobioff, Sanjay Ghemawat H.; Leung, Shun-Tak: The

Google File System. In: SIGOPS Oper. Syst. Rev. 37

(2003), No. 5, p. 29–43. –

http://labs.google.com/papers/gfs-sosp2003.pdf

[9] Cooper, Brian F. ; Ramakrishnan, Raghu ; Srivastava,

Utkarsh ; Silberstein, Adam ; Bohannon, Philip ;

Jacobsen, Hans A. ; Puz, Nick ; Weaver, Daniel ;

Yerneni, Ramana: PNUTS: Yahoo!’s hosted data serving

platform. In: Proc. VLDB Endow. 1 (2008), August, No.

2, p. 1277–1288. – Also available online.

http://research.yahoo.com/files/pnuts.pdf

[10] Cattell, Rick: High Performance Scalable Data Stores.

February 2010. – Article of 2010- 02-22.

http://cattell.net/datastores/Datastores.pdf

7. AUTHOR’S PROFILE
Prateek Nepaliya is computer science student pursuing

Bachelor of technology in Jaipur Engineering College,

Rajasthan Technical University. His research interest involves

big data, NO-SQL databases, Data science and Statistics.

Prateek Gupta is computer science student pursuing

Bachelor of technology in Jaipur Engineering College,

Rajasthan Technical University. His research interest involves

big data, study of NO-SQL databases, Map-reduce

functionality and Data mining.

87

88

89

90

91

92

93

94

95

Couch Raven

IJCATM : www.ijcaonline.org

