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ABSTRACT
In this work, dynamics between uninfected cells, HBV infected
cells, HDV infected cells and HBV-HDV coinfected cells are stud-
ied, based on two systems of four ordinary differential equations.
The two pre-validated differential systems which are considered
in this paper, are respectively associated to the case when there is
no infected cell proliferation of HBV, HDV and HBV-HDV coin-
fected populations, and to the case when there is an infected cell
proliferation. Optimal control theory is applied to these two sys-
tems. Seeking to reduce the infected groups and increase the num-
ber of uninfected hepatocytes, two control functions are introduced
in the two mathematical models, representing two types of treat-
ments. In fact, the main goal of this work is to discuss the effec-
tiveness of an antivial bitherapy that could include any inhibitor for
HDV infection such as lonafarnib, with other classical treatments
often used against HBV infection such as interferons, lamivu-
dine, adefovir and entecavir. The optimal controls are character-
ized in terms of the optimality system, which is solved numerically
using an iterative method with a progressive-regressive Runge-
Kutta fourth order scheme with a change of several parameters.
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Keywords
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1. INTRODUCTION
Hepatitis commonly refers to the inflammation of the liver, caused
either by a toxic substance or a virus. It is divided into five many
types, namely hepatitis A, B, C, D and E. Hepatitis B Virus (HBV),
Hepatitis C Virus (HCV) and Hepatitis D Virus (HDV) are com-
monly the cause of liver cirrhosis and cancer [1]. Post the discov-
ery of Hepatitis B virus in 1970, extensive research has facilitated
knowledge on its structure and replication mode. It is in this context
a young gastroenterologist of Molinette hospital in Turin, brought
to light in 1977 in hepatocyte nuclei of Italian patients chroni-
cally infected by the Hepatitis B Virus, a new antigen that the team
named antigen Delta [1, 5, 6, 7]. The antigen Delta was similar in
structure and function to HBcAg (A protein of B virus capsid [20]).

However, further studies on sera of convalescent patients with hep-
atitis B allowed to authenticate it as different [8]. An animal model
developed by the team of Rizzetto [9], and inoculations performed
by volunteers [10], allowed to further advance in the knowledge
about the antigen delta which was found to be a small defective
virus which requires the presence of B virus to replicate. HDV is
considered among pathogenic viruses that could infect humans. It is
estimated around 15 to 20 millions of patients infected with hepati-
tis are suffering from HBV-HDV coinfection [3, 4, 15]. HBV-HDV
coinfection occurs when an individual is infected by both HBV and
HDV simultaneously, and whereas HBV-HDV superinfection oc-
curs when HDV attacks an individual already infected with HBV.
Studies suggest HDV infects around 70.000 people in the United
States who have been already affected with HBV, but it had also
been noted that region, has relatively low incidence rate of HDV
which could be reasoned due to a low incidence rate of HBV as
well as immunization provided against viral infection linked with
Hepatitis B and D. Whereas, some countries in Middle east, East-
ern Europe, central Africa and south America encounter high inci-
dence rate of infection around 1.4 million and 1.9 million of people
are affected with Hepatitis D [1, 5]. In this article, it is suggested
to follow new optimal control strategies associated with two types
of inhibitors for HBV and HDV based on a HBV-HDV coinfec-
tion models developed in reference [2]. These two models have de-
scribe the interaction of HBV and HDV infection, one with and one
without infected hepatocyte replication. Packer et al. in reference
[2], consider lamivudine as treatment for blocking HBV reproduc-
tion, and showed that HDV infection is sustained during lamivu-
dine treatment only if the HBV infected cell population does not
become extinct. For a more general view, when any other type of
available treatments is used, the subject is extended here towards
an optimal control problem, by introducing into two pre-validated
models, two control functions representing the inhibition of HBV
and HDV infection respectively. The inhibition of each infection
is incorporated by adding two control terms that represent the ef-
fectiveness of blocking both B and D viral reproduction and/or de
novo infection. As an optimization criterion, an objective functional
that balances the effect of minimizing the infected cells, maximiz-
ing the uninfected hepatocytes and minimizing the side effects of
implementing the control treatments, is chosen. This paper is or-
ganized as follows. Section 2 presents the HDV model with and
without two control terms. The objective functional and the char-
acterizations of optimal controls are given in Section 3. Infected
cell proliferation case is introduced in Section 4. Finally, Section
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5 includes numerical results of the two optimal controls and their
associated optimal states, and discussion of the numerical results.

2. MATHEMATICAL MODEL
In an attempt to show the important role that HBV plays in HDV
dynamics, Packer et al. in reference [2], start with presenting a
model for HBV alone, they considered three distinct population
concentrations within the liver: healthy hepatocytes (x), infected
hepatocytes (y), and free HBV virions (v). The dynamics are gov-
erned by the following set of assumptions:
1. Healthy cells are regenerated.
2. Healthy cells transition to an infected state due to infection by
free virions.
3. Infected cells die at an increased rate due to infection.
4. Virions are produced by infected cells.
5. Virions die at a specified rate.
Where the production of virions and the death of virions and in-
fected cells occur at constant per capita rates, and since the time
scale of virion production is much shorter than the time scale of
the hepatocytes life-cycle, Aaron Packer et al. [2] assume that the
free virus population is in quasi-steady-state with the infected cell
population. Thus, the free virions v is proportional to the infected
hepatocytes y (v = γ

µ
y), then the HBV model is first simplified

into a planar system, by replacing the incidence function

βv(t)x(t)

T (t)

by

σy(t)x(t)

T (t)

where σ = βγ
µ

. Now, to incorporate the HDV in the model, two
state variables accounting for hepatocytes infected with HDV and
those coinfected with both HBV and HDV, are added. The state
variables in the expanded model are
1. x(t) : uninfected cells,
2. y(t) : HBV only infected cells,
3. z(t) : HDV only infected cells,
4. w(t) : coinfected cells.
Is is assumed the following transitions are possible :
1. x→ y: healthy cell infected by HBV,
2. x→ z: healthy cell infected by HDV,
3. y → w: HBV infected cell superinfected by HDV,
4. z → w: HDV infected cell superinfected by HBV.
These transitions are defined as the possible events of infection that
can occur key-2.

2.1 Model without treatment
The following system of differential equations from [2] is resulted
using the above assumptions,

dx

dt
= rx(t)(1− T (t)

K
)− σ(y(t) + cw(t))x(t)

T (t)
(1)

− δw(t)x(t)

T (t)

dy

dt
=

σ(y(t) + cw(t))x(t)

T (t)
− δw(t)y(t)

T (t)
− ay(t) (2)

dz

dt
=

δw(t)x(t)

T (t)
− σ(y(t) + cw(t))z(t)

T (t)
− az(t) (3)

Table 1. Parameters description.
Parameter Description Units

r Maximum proliferation rate day−1

K Homeostatic liver size cells
a Infected cell death rate day−1

c HBV inhibition coefficient scalar
β HBV infection rate day−1

γ HBV replication/release rate day−1

µ Hepatitis B virion death rate day−1

σ HBV infection rate ( γβµ ) day−1

δ HDV infection rate day−1

dw

dt
=

σ(y(t) + cw(t))z(t)

T (t)
+
δw(t)y(t)

T (t)
− aw(t) (4)

Where T (t) = x(t) + y(t) + z(t) + w(t). The uninfected hep-
atocyte population is assumed to maintain itself logistically with
a homeostatic carrying capacity of K. HBV virions are produced
by hepatocytes infected with HBV alone (y) and also by coin-
fected hepatocytes (w), although at a reduced rate in the latter
cells. By considering c be the degree to which HBV production
is suppressed in coinfected cells, it is concluded that the number
of HBV virions is proportional to y(t) + cw(t) . Then the suscep-
tible host (healthy hepatocytes) cells (x) are become infected by
HBV at a rate σ(y(t)+cw(t))x(t)

T (t)
and by HDV at a rate δw(t)x(t)

T (t)
,

since HDV virions is produced only by HBV–HDV coinfected
cells w(t). HBV infected cells superinfected by HDV at a rate
δw(t)y(t)
T (t)

and HDV infected cells superinfected by HBV at a rate
σ(y(t)+cw(t))z(t)

T (t)
. HBV, HDV and HBV-HDV infected cells die at

a rate ay(t), az(t) and aw(t) respectively. Refer to Table 1 for a
complete list of parameters descriptions and units.

2.2 Model with treatments
In the literature, many works focus on the identification and inves-
tigation of inhibitors of HBV and HDV [13, 14] and references
therein. Recently Myrcludex B, a synthetic N-acylated preS1-
derived lipopeptide that inhibits HBV entry in vitro and in vivo
with high efficacy [14], pegylated interferon-alpha, lamivudine,
entecavir and adefovir, prenylation inhibitors such as lonafarnib
[16, 17, 18] and HBV entry inhibitors attract more attention as ther-
apies in hepatitis Delta. So far, there is no exact combination ther-
apies for chronic HBV-HDV coinfection [15]. In general, dual or
triple infection with hepatitis viruses leaves more severe hepatitis
and less effective interferon (IFN) response [21, 22]. Mathematical
and immunological models play an important role in the study of
dynamics of infections arising from viruses. In Reference [11] the
authors worked on the combination of IFN and ribavirin as a ther-
apy for HCV. The fundamental idea in this paper is a combination
of two treatments, the first treatment (resp. the second treatment),
which can represent any inhibitors for HBV (HDV respectively)
cited above, is used to reduce the production of virions and/or the
de novo rate of infection for HBV (HDV respectively). The model
is represented by the following system of differential equations

dx

dt
= rx(t)(1− T (t)

K
) (5)

− (1− k1u1(t))σ(y(t) + cw(t))x(t)

T (t)

2



International Journal of Computer Applications (0975 - 8887)
Volume 127 - No.12, October 2015

− (1− k2u2(t)) δw(t)x(t)

T (t)

dy

dt
=

(1− k1u1(t))σ(y(t) + cw(t))x(t)

T (t)
(6)

− δw(t)y(t)

T (t)
− ay(t)

dz

dt
=

(1− k2u2(t)) δw(t)x(t)

T (t)
(7)

− σ(y(t) + cw(t))z(t)

T (t)
− az(t)

dw

dt
=

σ(y(t) + cw(t))z(t)

T (t)
+
δw(t)y(t)

T (t)
(8)

− aw(t)

Now, to allow for the first treatment effect in blocking the infec-
tion with HBV, the factor (1− k1u1(t)) is incorporated. The con-
dition 0 < k1 < 1 is take in consideration, to indicate that the
main role of the first treatment is to block the HBV viral production
in addition to having some role in blocking the de-novo infection.
The effect of the second treatment for blocking the infection with
HDV virus is taken into account, and then the factor (1− k2u2(t))
is incorporated, where also 0 < k2 < 1. For the second equa-
tion, the assumption that the HBV-infected hepatocyte is produced
at the rate (1−k1u1(t))σ(y(t)+cw(t))x(t)

T (t)
is incorporated. Thus in the

third equation the HDV-infected hepatocyte is produced at the rate
(1−k2u2(t))δw(t)x(t)

T (t)
. The controls u1(t) and u2(t), are bounded,

Lebesgue integrable functions. If ui = 1, the inhibition is 100%
effective, whereas if ui = 0, there is no inhibition, i = 1, 2.

3. THE OPTIMAL CONTROL PROBLEM
Now, an optimal control problem is considered to minimize the ob-
jective functional

J(u1, u2) =

ˆ tf

0

(−A0x(t) +A1y(t) +A2z(t)

+ A3w(t) +
K1

2
u2
1(t) +

K2

2
u2
2(t))dt (9)

where A0, A1, A2 and A3 are small positive constants to keep a
balance in the size of x(t), y(t), z(t) and w(t), respectively. The
square of the control variables reflects the severity of the side ef-
fects of treatments or vaccinations [23]. The positive constants K1

and K2 balance the size of quadratic control terms. In fact, when
drugs are administered, they produce high toxicity for the human
body, which is the rationale behind taking the quadratic control
terms as against linear control [12]. The reason behind consider-
ing a finite time horizon is that the treatment period is usually re-
stricted to a limited time window. The objective of this work, is
to minimize the HBV only infected cells, HDV only infected cells
and the HBV-HDV coinfected cells by using possible minimal side
effects of control variables u1(t) and u2(t) attempting to increase
the uninfected cells. An optimal control pair (u∗1, u

∗
2) is sought such

that

J(u∗1, u
∗
2) = min {J(u1, u2)|(u1, u2) ∈ U}

Where

U = {(u1, u2)|u1, u2 measurable, 0 ≤ u1, u2 ≤ 1, t ∈ [0, tf ]}
(10)

In order to find an optimal solution, first the Lagrangian and Hamil-
tonian are presented for the optimal control problem. In fact, the
Lagrangian of the optimal problem is given by

L(x, y, z, w, u1, u2) = −A0x(t) +A1y(t) +A2z(t)

+ A3w(t) +
K1

2
u2
1(t)

+
K2

2
u2
2(t)

The minimal value of the Lagrangian is sought. To accomplish this,
the HamiltonianH is defined as follows

H = L(x, y, z, w, u1, u2)

+ λ1(t)[rx(t)

(
1− T (t)

K

)
− (1− k1u1(t))σ(y(t) + cw(t))x(t)

T (t)

− (1− k2u2(t)) δw(t)x(t)

T (t)
]

+ λ2(t)[
(1− k1u1(t))σ(y(t) + cw(t))x(t)

T (t)
− δw(t)y(t)

T (t)

− ay(t)] + λ3(t)[
(1− k2u2(t)) δw(t)x(t)

T (t)

− σ(y(t) + cw(t))z(t)

T (t)
− az(t)]

+ λ4(t)[
σ(y(t) + cw(t))z(t)

T (t)
+
δw(t)y(t)

T (t)
− aw(t)] (11)

To find the optimal solution, the Pontryagin’s Maximum Principle
is applied to the Hamiltonian [24], and the following theorem is
obtained. Let x∗(t), y∗(t), z∗(t) and w∗(t) be optimal state solu-
tions with associated optimal control variables u∗1(t) and u∗2(t) for
the optimal control problem (9). Then, there exist adjoint variables
λ1(t), λ2(t), λ3(t) and λ4(t) that satisfy

λ̇1(t) = −[−A0 + r

(
1− T (t)

K

)
λ1(t)

+
(1− k1u∗1(t))σ(y∗(t) + cw∗(t))

T (t)
(λ2(t)− λ1(t))

+
(1− k2u∗2(t)) δw∗(t)

T (t)
(λ3(t)− λ1(t))]

λ̇2(t) = −[A1 − aλ2(t) + (λ2(t)− λ1(t))
(1− k1u∗1(t))σx∗(t)

T (t)

+ (λ4(t)− λ2(t))
δw∗(t)

T (t)
+ (λ4(t)− λ3(t))

σz∗(t)

T (t)
]

λ̇3(t) = −[A2 − aλ3(t) + (λ4(t)− λ3(t))
σ(y∗(t) + cw∗(t))

T (t)
]

λ̇4(t) = −[A3 − aλ4(t) + (λ2(t)− λ1(t))
(1− k1u∗1(t))σcx∗(t)

T (t)

+ (λ3(t)− λ1(t))
(1− k2u∗2(t)) δx∗(t)

T (t)

+ (λ4(t)− λ2(t))
δy∗(t)

T (t)
+ (λ4(t)− λ3(t))

σcz∗(t)

T (t)
]
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with the transversality conditions λi(tf ) = 0, i = 1, 2, 3, 4. Fur-
thermore, the optimal controls u∗1(t) and u∗2(t) are given by

u∗1(t) = max

{
min

{
(λ2(t)− λ1(t))

k1σ(y(t) + cw(t))x(t)

K1T (t)
, 1

}
, 0

}
u∗2(t) = max

{
min

{
(λ3(t)− λ1(t))

k2δw(t)x(t)

K2T (t)
, 1

}
, 0

}
PROOF. To determine the adjoint equations and the transversal-

ity conditions, the HamiltonianH defined by (11) is used. From set-
ting x(t) = x∗(t), y(t) = y∗(t), z(t) = z∗(t) and w(t) = w∗(t),
and differentiatingH with respect to x(t), y(t), z(t) and w(t), the
following adjoint differential system is obtained

λ̇1(t) = −
dH
dx

= −[−A0 + r

(
1− T (t)

K

)
λ1(t)

+
(1− k1u1(t))σ(y(t) + cw(t))

T (t)
(λ2(t)− λ1(t))

+
(1− k2u2(t)) δw(t)

T (t)
(λ3(t)− λ1(t))]

λ̇2(t) = −
dH
dy

= −[A1 − aλ2(t)

+ (λ2(t)− λ1(t))
(1− k1u1(t))σx(t)

T (t)

+ (λ4(t)− λ2(t))
δw(t)

T (t)
+ (λ4(t)− λ3(t))

σz(t)

T (t)
]

λ̇3(t) = −
dH
dz

= −[A2 − aλ3(t)

+ (λ4(t)− λ3(t))
σ(y(t) + cw(t))

T (t)
]

λ̇4(t) = −
dH
dw

= −[A3 − aλ4(t)

+ (λ2(t)− λ1(t))
(1− k1u1(t))σcx(t)

T (t)

+ (λ3(t)− λ1(t))
(1− k2u2(t)) δx(t)

T (t)

+ (λ4(t)− λ2(t))
δy(t)

T (t)
+ (λ4(t)− λ3(t))

σcz(t)

T (t)
]

By the optimality conditions, the derivative ofH with respect to u1

and u2 are:

dH
du1

= K1u1(t) + (λ1(t)− λ2(t))
k1σ(y(t) + cw(t))x(t)

T (t)
= 0

⇒ u∗1(t) = (λ2(t)− λ1(t))
k1σ(y(t) + cw(t))x(t)

K1T (t)

dH
du2

= K2u2(t) + (λ1(t)− λ3(t))
k2δw(t)x(t)

T (t)
= 0

⇒ u∗2(t) = (λ3(t)− λ1(t))
k2δw(t)x(t)

K2T (t)

Since the controls are bounded below by 0 and bounded above by
1, thus their characterizations are given by:

u∗1(t) = max

{
min

{
(λ2(t)− λ1(t))

k1σ(y(t) + cw(t))x(t)

K1T (t)
, 1

}
, 0

}

u∗2(t) = max

{
min

{
(λ3(t)− λ1(t))

k2δw(t)x(t)

K2T (t)
, 1

}
, 0

}
4. MODEL WITH INFECTED CELL

PROLIFERATION
In this section, the case where the infected cells proliferate and
transmit the infection vertically to daughter cells, is investigated
by assuming that infected cells often contain multiple copies of the
viral genome [2] and references therein. As a simple extension of
system (6-9) which uses the logistic function for proliferation of
both healthy and infected cells. The model is now given by

dx

dt
= rx(t)(1− T (t)

K
)− (1− k1u1(t))σ(y(t) + cw(t))x(t)

T (t)

− (1− k2u2(t)) δw(t)x(t)

T (t)
(12)

dy

dt
= ry(t)(1− T (t)

K
) +

(1− k1u1(t))σ(y(t) + cw(t))x(t)

T (t)

− δw(t)y(t)

T (t)
− ay(t) (13)

dz

dt
= rw(t)(1− T (t)

K
) +

(1− k2u2(t)) δw(t)x(t)

T (t)

− σ(y(t) + cw(t))z(t)

T (t)
− az(t) (14)

dw

dt
= rz(t)(1− T (t)

K
) +

σ(y(t) + cw(t))z(t)

T (t)
+
δw(t)y(t)

T (t)

− aw(t) (15)

with liver regeneration sustained by both healthy and infected cells.
Note that in the third equation (z), the term rw(t)(1 − T (t)

K
) is

incorporated, while in the fourth equation (w), the term rz(t)(1 −
T (t)
K

) is incorporated, based on the fact that the free HDV particles
can only be produced by coinfected cells, and the number of HDV
virions is proportional to the number of coinfected cells [2].
The objective functional is defined by:

J(u1, u2) =

ˆ tf

0

(−A0x(t) +A1y(t) +A2z(t) +A3w(t)

+
K1

2
u2
1(t) +

K2

2
u2
2(t))dt (16)

An optimal control pair (u∗1, u
∗
2) is sought such that

J(u∗1, u
∗
2) = min {J(u1, u2)|(u1, u2) ∈ U}

Where

U = {(u1, u2)|u1, u2 measurable, 0 ≤ u1, u2 ≤ 1, t ∈ [0, tf ]}

As above, first the Lagrangian and Hamiltonian for the optimal con-
trol problem, are presented. In fact, the Lagrangian of the optimal
problem remains

L(x, y, z, w, u1, u2) = −A0x(t) +A1y(t) +A2z(t)

+ A3w(t) +
K1

2
u2
1(t)

+
K2

2
u2
2(t)

4
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Fig. 1. Comparison between states x, y, z and w of systems (2-4) and (6-9)
before and after treatment respectively with Rb = 2.5, Rd = 4, k1 = 0.8,
k2 = 0.8.

By same way as before, the minimal value of the Lagrangian is
sought. To accomplish this as it was done above, the Hamiltonian
H is defined as follows

H = L(x, y, z, w, u1, u2) + λ1(t)[rx(t)

(
1− T (t)

K

)
− (1− k1u1(t))σ(y(t) + cw(t))x(t)

T (t)

− (1− k2u2(t)) δw(t)x(t)

T (t)
] + λ2(t)[ry(t)

(
1− T (t)

K

)
+

(1− k1u1(t))σ(y(t) + cw(t))x(t)

T (t)

− δw(t)y(t)

T (t)
− ay(t)] + λ3(t)[rw(t)

(
1− T (t)

K

)
+

(1− k2u2(t)) δw(t)x(t)

T (t)
− σ(y(t) + cw(t))z(t)

T (t)
− az(t)]

+ λ4(t)[rz(t)

(
1− T (t)

K

)
+
σ(y(t) + cw(t))z(t)

T (t)

+
δw(t)y(t)

T (t)
− aw(t)] (17)

Let x∗(t), y∗(t), z∗(t) and w∗(t) be optimal state solutions with
associated optimal control variables u∗1(t) and u∗2(t) for the op-
timal control problem (16). Then, there exist adjoint variables
λ1(t), λ2(t), λ3(t) and λ4(t) that satisfy

λ̇1(t) = −[−A0 + r

(
1− T (t)

K

)
λ1(t)

+
(1− k1u∗1(t))σ(y∗(t) + cw∗(t))

T (t)
(λ2(t)− λ1(t))

+
(1− k2u∗2(t)) δw∗(t)

T (t)
(λ3(t)− λ1(t))]

λ̇2(t) = −[A1 + r

(
1− T (t)

K

)
λ2(t)− aλ2(t)

+ (λ2(t)− λ1(t))
(1− k1u∗1(t))σx∗(t)

T (t)

+ (λ4(t)− λ2(t))
δw∗(t)

T (t)
+ (λ4(t)− λ3(t))

σz∗(t)

T (t)
]

λ̇3(t) = −[A2 + r

(
1− T (t)

K

)
λ4(t)− aλ3(t)
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Fig. 2. Comparison between states x, y, z and w of systems (2-4) and (6-
9) before and after treatment respectively with k1 = 0.8, k2 = 0.8, δ =

0.2772, σ = 0.17325, Rb = 2.5, Rd = 4

+ (λ4(t)− λ3(t))
σ(y∗(t) + cw∗(t))

T (t)
]

λ̇4(t) = −[A3 + r

(
1− T (t)

K

)
λ3(t)− aλ4(t)

+ (λ2(t)− λ1(t))
(1− k1u∗1(t))σcx∗(t)

T (t)

+ (λ3(t)− λ1(t))
(1− k2u∗2(t)) δx∗(t)

T (t)

+ (λ4(t)− λ2(t))
δy∗(t)

T (t)
+ (λ4(t)− λ3(t))

σcz∗(t)

T (t)
]

with the transversality conditions λi(tf ) = 0, i = 1, 2, 3, 4. Fur-
thermore, the optimal controls u∗1(t) and u∗2(t) are given by

u∗1(t) = max

{
min

{
(λ2(t)− λ1(t))

k1σ(y(t) + cw(t))x(t)

K1T (t)
, 1

}
, 0

}
u∗2(t) = max

{
min

{
(λ3(t)− λ1(t))

k2δw(t)x(t)

K2T (t)
, 1

}
, 0

}
The states x, y, z and w and the adjoint states λ1, λ2, λ3 andλ4

are a priori L∞− bounded which make the right-hand side of each
equation in the two differential systems (6)–(9) and (12)–(15) Lip-
schitz in those solutions and based on this property the uniqueness
of the two controls u∗1 and u∗2 is proven for a small final time. Con-
cerning the existence of the optimal controls u∗1 and u∗2, can directly
be deduced from the compactness of U and the state space with the
convexity of the integrand of J [19].

5. NUMERICAL SIMULATIONS AND
DISCUSSIONS

Numerical simulations associated with the two optimal systems de-
rived from the two previous mathematical models, are presented in
this section. A code is written in MATLABTM and simulated the
results using data from the article by Packer et al. [2]. The optimal-
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Fig. 3. Comparison between states x, y, z and w of systems (2-4) and (6-
9) before and after treatment respectively with k1 = 0.69, k2 = 0.69,
δ = 0.2772, σ = 0.17325, Rb = 2.5, Rd = 4

ity systems is solved using an iterative method with a progressive-
regressive Runge–Kutta fourth order scheme. Such numerical pro-
cedures, are called forward-backward sweep methods, where the
state system with an initial guess is solved forward in time and
then the adjoint system is solved backward in time. First, starting
with an initial guess for the adjoint variables λ1, λ2, λ3 andλ4, the
state equations are solved by a forward Runge–Kutta fourth order
procedure in time. Then, those state values are used to solve the
adjoint equations by a backward Runge–Kutta fourth order pro-
cedure because of the transversality conditions [25] [26]. After-
wards, the optimal controls values are updated using the values
of state and costate variables obtained in the previous steps. Fi-
nally, the previous steps are executed till a tolerance criterion is
reached. It is observed in the simulations the effect of the opti-
mal treatments on the viral load during the treatment period. For
the figures presented here, it is assumed that the weight factor K1

associated with control u1 is greater or equal to K2 which is as-
sociated with control u2. This assumption is based on following
facts: The hepatitis delta virus (HDV) is a dependent satellite virus
of hepatitis B virus (HBV). While HDV is capable of copying its
genome in great numbers in infected hepatocytes, it requires the
hepatitis B surface antigen (HBsAg) in order to create new free
virus particles [2, 15, 21, 22]. In simulations, the data used were
c = 0.3, and a = 0.0693, and the notation Rb = σ

a
and Rd = δ

a
[2] are both used, in order to show the effectiveness of the results
and to simplify the comparison with results obtained in [2].
First case : Rb = 2.5, Rd = 4, k1 = 0.8, k2 = 0.8
Figure 1 depicts simulations of states x, y, z and w in the absence
of treatment and the presence of treatment. Due to infection with
HBV and HDV, and due to the absence of treatment, the simulations
on left, show that x cells taper to a stable value around 8.5 × 106

c.f.u. (colony forming unit) while y, z, w cells grow towards values
around 5.5 × 106 c.f.u., 4.8 × 106 c.f.u., 4.4 × 106 c.f.u. respec-
tively between 20 and 80 days of the infection period, and they
stabilize in important infected cells with counts around 2 × 106

c.f.u., 4.2 × 106 c.f.u. and 3.5 × 106 c.f.u. respectively. The ef-
fectiveness of the treatments represented by both control functions
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Fig. 4. Comparison between states x, y, z and w of systems (2-4) and (6-
9) before and after treatment respectively with k1 = 0.8, k2 = 0.8, δ =
0.04158, σ = 0.17325, Rb = 2.5, Rd = 0.6

u1 and u2 is proved on the simulations on right of Figure 1. Since
all infected cells taper off after 100 to 115 days of treatment while
uninfected cells increases towards 2 × 107 c.f.u. widely more im-
portant than the initial condition taken by the variable x in both
simulations on right and left. Figures 2 and 3 report some similar-
ities from numerical results obtained in Figure 1 but with a larger
scale to show exactly what happens to x, y, z and w cells when a
treatment is used against HBV infection, HDV infection, and HBV-
HDV coinfection. On the other hand, it is recalled that k1 and k2
are used to show respectively the main roles of treatments used
against HBV and HDV infection in attempt to block the viral pro-
duction of B and Delta viruses, such considerations were also used
by Chakrabarty et al. for the optimization of a bitherapy with inter-
feron and ribavirin against hepatitis C [11]. In fact, when k1 and k2
take values close to 1; k1 = 0.8 and k2 = 0.8 in Figures 1 and 2
for instance, a rapid decrease of infected cells with HBV or HDV
or even with both viral infections, is observed, and it is also seen
a rapid increase of uninfected cells compared to the case where k1
and k2 become to have farther values to, k1 = 0.69 and k2 = 0.69
in Figure 4 for instance, and where z and w cells late to decrease
and taper off respectively until 150 and 130 days of treatment. With
regards to y cells, they only stabilize towards nonzero and minimal
value around 106 c.f.u. The uninfected cells grow towards an im-
portant amount around 1.9 × 106 c.f.u. but x cells count remains
smaller than cases studied in previous figures. Figure 7 shows the
shapes of both controls u1 and u2 when k1 and k2 change their
values from 0.8 “case (a)” to 0.69 “case (b)”. It is deduced from the
four simulations obtained in Figure 7, the only value that changes
is the one related to the second control u2, and that shows a de-
crease of the value of treatment effectiveness when it comes close
to 300 days and taper off in the final phase of therapy in case (a),
while it conserves its value from 1 along the treatment period and
takes zero value at the fixed final time tf = 400 days in case (b).
The first control function u1 takes same values of u2 of case (b) in
both cases (a) and (b). In case (a), it could be recommended now
to use a treatment against HDV infection for only 300 days instead
of 400 days, while using a dosage amount for HBV infection by its
maximal value along the treatment period.
Second case : Rb = 2.5, Rd = 0.6, k1 = 0.8, k2 = 0.8
In Figure 4, on left, and in Figure 5,it is observed that states z and w
in the absence of treatment stabilize in zero values between 40 and
80 days of the infection period respectively although no treatment
is used yet. However, it is deduced that such results occur due to the
new value of HDV reproduction number of Delta viruses related to
the value of the constant delta that is smaller here “Rd = 0.6” than
the value considered in the first case “Rd = 4” while a constant
number of reproduction of B viruses is always sufficient in partici-
pating to a decrease of uninfected cells x and an increase of y cells
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9) before and after treatment respectively with k1 = 0.69, k2 = 0.69,
δ = 0.04158, σ = 0.17325, Rb = 2.5, Rd = 0.6

as it is showed in the same figure on left. In fact, when u1 and u2

are zero, the uninfected cells taper to the value 0.75 × 107 c.f.u.
after only 40 days of infection period, and when u1 and u2 are
nonzero with k1 and k2 both taking the value 0.8, uninfected cells
count becomes more important and increase to the value 2 × 107

c.f.u. z cells taper off after 80 days in both cases, with and without
control due the small value ofRd in this case, while y cells taper off
when they come close to the 150th day of treatment as opposite to
the case when there was no treatment yet and they were increasing
towards the value 10.5 × 106. With regards to w cells, they late to
taper off for 150 days of the infection period, but rapidly stabilize in
zero values in the presence of the HBV-HDV bitherapy for only 80
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Fig. 7. Control functions with Rb = 2.5, Rd = 4. (a) k1 = 0.8, k2 =
0.8. (b) k1 = 0.69, k2 = 0.69.
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Fig. 8. Control functions with Rb = 2.5, Rd = 0.6. (a) k1 = 0.9,
k2 = 0.9. (b) k1 = 0.69, k2 = 0.69.

days. In Figure 6, when the value 0.69 is considered for both coeffi-
cients k1 and k2 that are respectively associated to both controls u1

and u2, it is observed that uninfected cells stabilize approximately
in the same value of the case where k1 and k2 took the value 0.8, z
and w cells do not change either but y cells do not taper off in that
new case but only decreases progressively to stabilize in a nonzero
value that equals to 106 c.f.u. Shapes of the two optimal controls
u1 and u2 in Figure 8, do not change for both cases (a) “k1 = 0.9,
k2 = 0.9” and (b) “k1 = 0.69, k2 = 0.69”, and that could rec-
ommend us to use a treatment against HDV infection for only 230
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Fig. 9. Comparison between states x, y, z and w of system (12-15) before
and after treatment with Rb = 3, Rd = 0.6, k1 = 0.9, k2 = 0.9.
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Fig. 10. Comparison between states x, y, z and w of system (12-15) before
and after treatment with Rb = 3, Rd = 0.6, k1 = 0.9, k2 = 0.9.
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Fig. 11. Control functions with δ = 0.051975, σ = 0.2079. k1 = 0.9,
k2 = 0.9.

days in the case of a small value of the reproduction number Rd,
while following an antiviral therapy for HBV infection during 400
days because of the big value of the reproduction number Rb.
Third case : (Infected cell proliferation) Rb = 3, Rd = 0.6,
k1 = 0.8, k2 = 0.8
For the numerical simulations associated to the second part of
this article, and that concerns the model with infected cell pro-
liferation, the values utilized for both HBV and HDV reproduc-
tion numbers were Rb = 3 and Rd = 0.6, where Rb = σ

a
and

Rd = δ+cσ
a

= δ
a
+ cRb [2]. In Figure 9, on left, and in Figure 10,
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Fig. 12. States x, y, z and w of system (6-9) in the case of one control with
δ = 0.2772, σ = 0.17325. (a) u1 = 0, k2 = 0.8. (b) u2 = 0, k1 = 0.8.
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Fig. 13. States x, y, z and w of system (6-9) in the case of one control with
δ = 0.04158, σ = 0.17325. (a) u1 = 0, k2 = 0.8. (b) u2 = 0, k1 = 0.8.

dynamics between uninfected cells (x), HBV infected cells, HDV
infected cells and coinfected cells in the absence of treatment, are
observed, and Figures 11 and on right sides in Figures 12, 13 and
14, it is observed simulations of the sought optimal controls rep-
resented by u1 and u2, and that represent the effectiveness of the
treatments in the case of infected cell proliferation. y and w cells
increase towards the values 1.5× 106 c.f.u. and 1.9× 106 c.f.u. re-
spectively after 45 and 170 days of the infection period while x and
w cells taper off after only 50 and 80 days. In Figure 9, on right, and
in Figure 10, it is deduced that treatment has an effect in decreas-
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Fig. 14. States x, y, z and w of system (12-15) in the case of one control
with δ = 0.51975, σ = 0.2079. u2 = 0, k1 = 0.9.

ing the number of both HBV and HDV infected cells after only 100
days, and also coinfected cells after only 50 days. As regards to
the optimal controls u1 and u2, they both conserve the value 1 un-
til 390 and 260 days respectively, and that could be understood by
recommending a reduction from the HBV-therapy period stopping
it at the 390th day of treatment and from the HDV-therapy stopping
it at the 260th day of treatment knowing the effectiveness of any
treatment is obviously related to its dosage amount utilized, and
then if a treatment is not effective in some periods of therapy, then
there is no need to inject it anymore. There is no specific or effec-
tive treatment/vaccine against acute or chronic HDV infection, and
many researchers reported immunotherapy using interferons could
represent a possible approach to fight against hepatitis D and also
for other hepatitis types [13, 21]. Numerical results of first cases
(a) in Figures 12 and 13 for a model without infected cell prolifer-
ation, present good examples to verify mathematically that in case
of the absence of the treatment against B viral infection “u1 = 0”
and with u2 representing effectiveness for HDV inhibition therapy
for instance, could participate in a decrease of z and w cells as-
sociated to HDV and HBV-HDV coinfection respectively. In fact,
in case (a) of Figure 12, it is deduced that when u2 is zero for
approximately one month, uninfected cells are decreasing, and in-
fection related to y,z and w cells, is important, but when u2 = 1
for approximately one month, uninfected cells are maximized and
infection begin to decrease. As regards the case (a) in the Figure
13, because of a smaller value of Rd, a treatment against HDV and
HBV-HDV coinfection, seems successful when u2 = 1 in the first
20 days of the therapy, but because a rest period of about 110 days
after, y cells gain a bigger cells and x cells taper to minimal value
of about 5.5 × 106 c.f.u. However, Lyle et al. [1], Heidrich et al.
[21] think immunization against HBV only, seems effective even in
reducing the number of viruses Delta. In the cases (b) of Figures 12
and 13, and also in Figure 14 that is associated to the model with
infected cell proliferation, it could be observed also that by an opti-
mal control approach, affecting zero value to the second control u2,
was sufficient for the cure from the three types of infection when
u1 takes the value 1.

6. CONCLUSION
Despite of the existence of treatments against HBV infection, there
are still millions of chronically infected people worldwide, and
treatments against HDV infection are not known yet. In this work,
and based on Pontryagin’s maximum principle, better treatment
strategies were identified for HBV-HDV coinfection, when only
one treatment is used against B viruses, and when only one treat-
ment is used against Delta viruses, and when two treatments were
used against both viruses B and Delta., in order to block new in-
fection and prevent viral production by using a bitherapy with

lesser side-effects. The numerical simulations obtained in this ar-
ticle, were very important in a way they were utilized to prove a
coherence between the results of the optimal control approach, and
the experimental results reported in studies of many doctors in the
field, showing a possibility of the cure from HBV-HDV coinfection
while following an optimal antiviral bitherapy.

7. REFERENCES

[1] Lyle, W., Hecht, A., Hepatitis (Deadly Diseases and Epi-
demics), Library Binding, September 2011. (2011)

[2] A.Packer, J.Forde, S.Hews , Y.Kuang, Mathematical models
of the interrelated dynamics of hepatitis D and B, Mathemat-
ical Biosciences 247 (2014) 38–46.

[3] Hughes, S. A., Wedemeyer, H., & Harrison, P. M. (2011).
Hepatitis delta virus. The Lancet, 378(9785), 73-85.

[4] Wedemeyer, H., & Manns, M. P. (2010). Epidemiology,
pathogenesis and management of hepatitis D: update and
challenges ahead. Nature Reviews Gastroenterology and Hep-
atology, 7(1), 31-40.

[5] James, H., Chow, Chow. C., Facts on File Library of Health
and Living, The Encyclopedia of Hepatitis And Other Liver
Diseases -Facts on File. (2006).

[6] Rizzetto, M., Canese, M. G., Arico, S., Crivelli, O., Trepo,
C., Bonino, F., & Verme, G. (1977). Immunofluorescence de-
tection of new antigen-antibody system (delta/anti-delta) as-
sociated to hepatitis B virus in liver and in serum of HBsAg
carriers. Gut, 18(12), 997-1003.

[7] Hiroshi, H., Yuki, Y., Medical Intelligence Unit, Hepatitis
Delta Virus-Springer US. (2006).

[8] Purcell, R., The discovery of the hepatitis viruses. Gastroen-
terology 1993, 104:955-63. (1993)

[9] Rizzetto, M., Hoyer, B., Canese, M., et al. Delta antigen : the
association of delta antigen with hepatitis B surface antigen
and ribonucleic acid in serum of delta infected chimpanzees.
Proc Natl Acad Sci USA 1980 , 77:6124-8. (1980).

[10] Rizzetto, M. (1983). The delta agent. Hepatology, 3(5), 729-
737.

[11] Chakrabarty, S. P., & Joshi, H. R. (2009). Optimally con-
trolled treatment strategy using interferon and ribavirin for
hepatitis C. Journal of Biological Systems, 17(01), 97-110.

[12] Elmouki, I., & Saadi, S. (2015). Quadratic and linear con-
trols developing an optimal treatment for the use of BCG im-
munotherapy in superficial bladder cancer. Optimal Control
Applications and Methods. doi:10.1002/oca.2161

[13] Iwamoto, M., Watashi, K., Tsukuda, S., Aly, H. H., Fuka-
sawa, M., Fujimoto, A., ... & Wakita, T. (2014). Evalua-
tion and identification of hepatitis B virus entry inhibitors
using HepG2 cells overexpressing a membrane transporter
NTCP. Biochemical and biophysical research communica-
tions, 443(3), 808-813.

[14] Lempp, F. A., & Urban, S. (2014). Inhibitors of hepatitis B
virus attachment and entry. Intervirology, 57(3-4), 151-157.

[15] Heidrich, B., Manns, M. P., & Wedemeyer, H. (2013). Treat-
ment options for hepatitis delta virus infection. Current infec-
tious disease reports, 15(1), 31-38.

[16] Rizzetto, Mario, and Alessia Ciancio. The prenylation in-
hibitor, lonafarnib: a new therapeutic strategy against hepatitis
delta. The Lancet Infectious Diseases (2015).

9



International Journal of Computer Applications (0975 - 8887)
Volume 127 - No.12, October 2015

[17] Koh, Christopher, et al. Prenylation inhibition with lonafarnib
decreases hepatitis D levels in humans. The Liver Meeting.
2014.

[18] Koh, Christopher, et al. Oral prenylation inhibition with lon-
afarnib in chronic hepatitis D infection: a proof-of-concept
randomised, double-blind, placebo-controlled phase 2A trial.
The Lancet Infectious Diseases (2015).

[19] Fister KR, Panetta JC (2003) Optimal control applied to com-
peting chemotherapeutic cell-kill strategies. SIAM J Appl
Math 63:1954

[20] Almeida, JuneD, D. Rubenstein, and E. J. Stott. New antigen-
antibody system in Australia-antigen-positive hepatitis. The
Lancet 298.7736 (1971): 1225-1227.

[21] Farci, P., Mandas, A., Coiana, A., Lai, M. E., Desmet, V., Van
Eyken, P., ... & Balestrieri, A. (1994). Treatment of chronic
hepatitis D with interferon alfa-2a. New England Journal of
Medicine, 330(2), 88-94.

[22] Weltman, M. D., Brotodihardjo, A., Crewe, E. B., Farrell, G.
C., Bililus, M., Grierson, J. M., & Liddle, C. (1995). Coinfec-
tion with hepatitis B and C or B, C and d viruses results in
severe chronic liver disease and responds poorly to terferon-a
treatment. Journal of viral hepatitis, 2(1), 39-45.

[23] Joshi, H. R. (2002). Optimal control of an HIV immunology
model. Optimal control applications and methods, 23(4), 199-
213.

[24] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E.
F. Mishchenko, The Mathematical Theory of Optimal Pro-
cesses, Wiley, New York, 1962.

[25] Lenhart, S., & Workman, J. T. (2007). Optimal control applied
to biological models. CRC Press.

[26] Jung, E., Lenhart, S., & Feng, Z. (2002). Optimal control of
treatments in a two-strain tuberculosis model. Discrete and
Continuous Dynamical Systems Series B, 2(4), 473-482.

10


	Introduction
	Mathematical Model
	Model without treatment
	Model with treatments

	The optimal control problem
	Model with infected cell proliferation
	Numerical Simulations and Discussions
	Conclusion
	References

