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ABSTRACT 
Temporal databases added a new dimension to traditional 

transaction databases. This dimension is the life time of each 

item, i.e. exhibition period, starting from the partition when 

this item appears in the transaction database to the partition 

when this item no longer exists. Mining temporal association 

rules became very interesting topic in many applications 

nowadays. In this paper, an efficient technique is proposed for 

indexing temporal databases in order to facilitate support 

counting process during mining operation. Some experiments 

were conducted using well-known real datasets to show the 

performance of the proposed indexing technique with respect 

to index size and running time of the mining algorithm. The 

results show that the proposed indexing technique saves a lot of 

running time and works efficiently with different databases 

characteristics. 
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1. INTRODUCTION 
Extracting useful information from huge amount of data 

becomes very essential research topic these days. As the size 

and complexity of data increase, the need of efficient data 

analysis algorithms is very critical. Mining association rules is 

very interesting topic in the data mining and analysis fields. In 

its simplest form, it is interested in finding hidden relations 

between items in transactional databases, which were very 

useful in some applications like market analysis, decision 

making and business management [1]. 

Many algorithms were presented to solve the association rules 

mining from transactional databases. These algorithms adopted 

different approaches including: Level-wise Apriori and its 

modified versions, Partitioning and FP-Tree and FP-Growth 

algorithm [2, 3, 4]. 

The transactional databases become more complicated with 

extra information added on which required different set of 

algorithms to deal with the new information. For example, 

frequent weighted itemsets mining topic appeared when items 

in transactional database have different weights based on their 

significance [5]. Hence, a broad range of algorithms proposed 

to solve the problem of finding frequent weighted itemsets. 

The research work in this paper is interested in working with 

temporal databases with extra temporal dimension added on. 

Temporal mining becomes an important topic in many areas 

such as weather forecasting, economics and communications 

[6]. In temporal database, each item has life time period, 

starting from the partition when this item appears in the 

transaction database to the partition when this item no longer 

exists. This life time period is called Exhibition Period which 

could be different from one item to another based on its 

availability in the database [7].  

The main objective of this paper is to propose a new data 

structure for indexing temporal databases for fast support 

counting. The first proposed index, called TIndex, has one 

drawback which is the extra memory space needed to store the 

index. This drawback is solved in its modified version, called 

TIndex2, which requires less memory than the older version. 

The experimental results show that using the proposed 

indexing structure helps greatly in reducing the overall running 

time for mining frequent temporal itemsets.  

The rest of the paper is organized as follows. Related studies in 

temporal association rules mining are discussed briefly in 

section 2. Section 3 includes the detailed steps of the proposed 

TIndex data structure with an illustrative example. 

Experimental results and discussion are presented in Section 4, 

and conclusions are finally drawn in Section 5. 

2. RELATED WORK 
There are different types of transactional databases. They differ 

on the extra information provided with each transaction. 

Simple, or Traditional, transactional database are simply list of 

transactions, where each transaction holds group of items with 

no extra details. Temporal databases included extra information 

about the life time of this transaction in the database. Many 

algorithms were proposed to deal with the mining process of 

temporal association rules (TAR) in general or incremental 

temporal databases. 

Progressive Partition Miner (PPM) algorithm was proposed by 

Lee et al. [8, 9] to discover all the frequent temporal itemsets. 

The algorithm was designed to work on static databases, but it 

could be utilized to work with incremental databases. Firstly, 

the input database is partitioned into some parts based on time 

granularity.  Secondly, the algorithm scans all these parts one 

by one and accumulates the level-2 candidate itemsets. Then 

using scan reduction technique, all the candidates are generated 

level by level and stored in the memory to be pruned. After 

generating all the candidates, the algorithm scans the databases 

transactions (sequentially) to calculate the support of each 

candidate and remove the infrequent ones. The experiments 

were conducted to compare PPM algorithm running time with 

Apriori+ (modified Apriori for temporal mining [2]) on 

synthetic datasets. The results showed a big performance gap 

difference between both algorithms especially in low minimum 

support values because Aprioi is very basic algorithm with no 

pruning or optimization techniques 

Chang et al. [7] proposed Segmented Progressive Filter (SPF) 

algorithm for mining frequent temporal itemsets. It also can be 

utilized to handle incremental databases. The input database is 

partitioned into some parts based on time granularity and parts 

with similar items exhibition periods are processed together as 

segments. The level-2 candidates from each segment are 

generated and merged together to obtain the final level-2 

candidate itemsets. Again, using scan reduction technique, all 

the candidates are generated level by level and stored in the 

memory to be pruned. After generating all the candidates, the 
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algorithm scans the databases transactions (sequentially) to 

calculate the support of each candidate and remove the 

infrequent ones (similar to PPM algorithm). The authors 

compared the running time of SPF algorithm with AprioriIP 

(modified version of Apriori for temporal mining [2]) using 

one synthetic dataset. The results show that SPF overcomes 

AprioriIP especially in low minimum support values. SPF 

should improve the performance slightly than PPM (although 

no comparison found) due to segmenting the database parts 

based on shared items exhibition periods. 

Huang et al. [10] presented Twain algorithm for mining 

frequent temporal itemsets mining. The proposed idea is much 

similar to PPM and SPF algorithms. Twain algorithm starts by 

processing the database parts one by one. In each part, the 

level-2 candidates are found and checked against minimum 

support threshold. The frequent ones are added directly to 

output frequent itemsets. Again, starting from level-2 candidate 

itemsets, the algorithm uses scan reduction technique to 

generate the candidate itemsets in all levels and stores them in 

the memory. After that, the algorithm scans the database 

transactions (sequentially) to calculate the support of each 

candidate (starting from level-3 candidate itemsets) and 

remove the infrequent ones (similar to PPM and SPF 

algorithm). Some experiments were conducted to compare the 

running time of Twain algorithm with SPF and AprioriIP. The 

results show slight enhancement in running time when 

compared to SFP algorithm. 

These algorithms have two main problems. The first problem is 

using scan reduction technique which is not efficient in case of 

large number of candidates because all these candidates must 

fit in the memory at the same time. The second problem is in 

the support counting process which is performed sequentially 

(for each candidate, all the transactions are scanned). This is 

not efficient in case of very large or dense databases. 

Discovered temporal association rules can be used in different 

data analysis based on required application analysis. As an 

example, Linag et al. [11] modified Apriori algorithm to work 

with temporal databases and proposed a new algorithm called 

T-Apriori. After that, they used their proposed algorithm in 

discovering temporal association rules from the red tide 

monitoring data in Dapeng bay. Recently, Khairudin et al. [12] 

utilized temporal association rules mining in web log data. 

They investigated the effect of adding temporal information 

into mining operation and its effect on output association rules 

rather than traditional association rules. Their experimental 

results showed that temporal association rules mining outputs 

smaller number of rules rather than Apriori and FP-Growth 

algorithms. Also, the results showed that the generated rules 

have better quality and more meaningful than traditional ones. 

3. INDEXING TEMPORAL DATABASES 
In this section, TIndex data structure is presented for indexing 

temporal databases and its drawbacks. Then the new TIndex2 

data structure is introduced that solves some of these 

drawbacks. 

3.1 TIndex Data Structure  
A new Tree-based data structure, called TIndex, is proposed 

for indexing transactions in temporal database. The TIndex 

improved Trie data structure to include temporal information of 

each item.  

The TIndex contains two main components: Tree and Header 

Table. The Tree structure stores the transactions in the database 

and Header Table holds the information about each item in the 

database and a link to its first node in the tree. Each node in the 

tree is a tuple <item, part, support>, where item is item name, 

part is current part number and support is item frequency in 

this part. In the final TIndex, the transaction is mapped into a 

path from root to leaf and each node contains one item from 

this transaction and its support in this path. For example, 

consider the temporal database shown in Table 1 with two parts 

P1 and P2. 

Table 1. Example Temporal Database 

 TID Transaction 

P1 

1  B   D   

2  B C D   

3  B C    

4 A   D   

P2 

5  B C  E  

6    D E  

7 A B C    

8   C D E  

P3 

9  B C  E F 

10  B    F 

11 A   D   

12  B  D  F 

 

Starting from transaction TID-1, a new node <B, 1, 1> is added 

as child node to root and another new node <D, 1, 1> as child 

to node B as shown in Figure 1-a. For TID-2, the root already 

has child node <B, 1> so its support is incremented to be 2. 

Then add new child node <C, 1, 1> as node B has no matching 

child. For last item D, add a new node <D, 1, 1> as child to 

node C as in Figure 1-b. For TID-3, just increment support of 

node <B, 1> and its child <C, 1> as they already in the same 

path. For last transaction in part P1, TID-4, root has no child 

labeled <A, 1>, so a new node <A, 1, 1> is added as child to 

root node. Then add new node <D, 1, 1> as child to <A, 1>. 

Figure 1-c shows the final TIndex after indexing all 

transactions in part P1.  

 

 

  
(a) (b) (c) 

Fig. 1: TIndex for Part P1 in Example Database. 

The same procedure is applied to parts P2 and P3, but change 

current part to be 2 and 3 respectively. For transaction TID-5, a 

new node <B, 2, 1> is added as child to root node. A new node 

is added to the root node because it is not matched with node 

<B, 1> as it is from different part. After adding all transactions 

in the example database, the final TIndex for is shown in 

Figure 2. Note that there is a connection, dashed lines, between 

nodes that have same item to facilitate traversing in tree for fast 

support counting.  
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Fig. 2: Complete TIndex for the Example Database in Table 1

In order to calculate the support of given itemset, start 

searching the Header table with first item to determine the 

starting nodes. Then search within each subtree about the 

remaining items in this itemset. For example, consider the 

support of itemset {B D} to be calculated. First, Header table is 

examined to get the first node for item {B} that is <B, 1, 3> 

and consider it root of first subtree to search for item {D}. It is 

found in two paths (B-D) and (B-C-D) each with support 1. 

Then use next link to find next node for item {B} that is <B, 2, 

1>, but item {D} cannot be found in this new subtree. Then use 

next link to find next node for item {B} that is <B, 3, 3> and 

found {D] in one path (B-D-F). The final support is calculated 

by adding the support of item {D}, last item in given itemset, 

in all the found paths. In this case the support of itemset {B D} 

is 3 because {D} has support 1 in each path of the three paths 

found. 

The main objective of the proposed TIndex is to minimize 

search space when calculating support for candidate itemsets. 

As noticed in previous example, rather than searching all 

database transactions for itemset {B D}. The search space is 

reduced to only 3 transactions, which allows fast support 

counting especially in large and/or condensed databases. One 

drawback of the proposed TIndex is that it requires extra 

memory space to store the index tree and header table. 

3.2 TIndex2 Data Structure  
TIndex has a major drawback in storing transactions that share 

same prefix. If these transactions are in different parts, then a 

new branch will be created for each part. This will duplicate 

many nodes especially in dense databases that will result in 

extra memory space. For example, there are 4 transactions with 

prefix {B-C}. In TIndex tree shown in Figure 2, there are three 

different branches for these transactions because they are 

distributed over the three parts of the example database. 

To solve this issue, TIndex2 is proposed to handle common 

prefix transactions in different parts. Some modifications 

occurred over the proposed TIndex data structure. First, the 

node in TIndex2 can store the support of each item in different 

parts by adding list of parts in each node. For example, node 

{B} will contain list of its support in the different parts as (1, 

3), (2, 1) and (3, 3). The complete TIndex2 is shown in Figure 

3. 

As shown in Figure 3, TIndex2 is much more condensed than 

TIndex because it combines shared prefixes from all parts 

rather than create separate branch for each part. This will 

reduce the overall required memory space for the final index 

especially in the dense databases because many transactions 

have common prefix. 

 

Fig. 3. Complete TIndex2 for the Example Database in Table 1

4. EXPERIMENTAL RESULTS 
Some experiments were conducted to evaluate the 

performance of TIndex and TIndex2 data structures. Four real 

datasets were used with different sizes and characteristics 

varying from small to very large databases and for both low-

density and high-density databases. First the required memory 

space is measured for each index to show the reduction ratio 

in each database. Then Apriori algorithm [2] is used in the 
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mining operation to compare the required running time in case 

of using and not using the indexing technique.  

4.1 Datasets 
Four real databases (Chess, Mushroom, Retail and Accidents) 

obtained from frequent itemset mining, data set repository 

[13] are used in the experiments. Table 2 shows the statistical 

information for the different databases used in the 

experiments. For each database, it shows the number of 

transactions (#Trans), number of distinct items (#Items) and 

average number of items per transaction (TransSize). This 

information gives a clear view about the density of the 

database. For example, Retail database has 57 distinct items 

with average transaction size of 13 items. This means that 

Retail dataset will produce large number of candidates while 

most of them will not be frequent because they are distributed 

over the dataset with low density.  

Table 2. Databases Information [13] 

Dataset #Trans 

(DB) 

#Trans 

(db) 

#Items TransSize 

Chess 2,696 500 75 37 

Mushroom 7,125 1000 119 23 

Retail 80,000 8,163 57 13 

Accidents 306,183 34,000 468 33.8 

 

4.2 Memory Usage 
As illustrated earlier in section 3, TIndex and TIndex2 

indexing techniques should reduce the required memory for 

storing the temporal database. In this experiment, the required 

memory space for each dataset is measured. The 

corresponding TIndex and Tindex2 sizes are shown in Table 3 

and Table 4 respectively. 

Table 3. Memory Usage Analysis - TIndex 

Dataset Dataset 

size 

(MB) 

TIndex 

size 

(MB) 

Reduction 

Ratio (%) 

Chess 18.443 10.465 43.3 

Mushroom 9.169 6.887 24.9 

Retail 92.372 64.284 30.4 

Accidents 677.814 511.631 24.5 

 

As shown in Table 3, TIndex reduces the required memory to 

store each database because transactions with shared prefix 

have the same path. The reduction ratio is affected by 

database characteristics. For example, Chess dataset is very 

dense and most of its transactions share the same prefix, so 

TIndex achieves 43.3% reduction ratio. On the other hand, 

Accidents dataset is sparse one, so TIndex achieves only 

24.5% reduction ratio in this case. 

As shown in Table 4, TIndex2 achieves better reduction ratio 

than TIndex because it combines the transactions with shared 

prefix from all parts. This works efficiently with dense 

databases such as Chess and Retail as TIndex2 achieves 

60.2% and 46.3% reduction ratio respectively. In case of 

Mushroom and Accidents datasets, TIndex2 requires only 

about one third of the overall dataset size.  

Table 4. Memory Usage Analysis – TIndex2 

Dataset Dataset 

size 

(MB) 

TIndex2 

size 

(MB) 

Reduction 

Ratio (%) 

Chess 18.443 7.331 60.2 

Mushroom 9.169 5.696 37.9 

Retail 92.372 49.627 46.3 

Accidents 677.814 435.398 35.8 

Chess Mushroom Retail Accidents
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 Fig. 4. Memory Space for TIndex and TIndex2 

Figure 4 shows overall comparison between TIndex and 

TIndex2 required memory.  It is clear that TIndex2 saves 

extra memory space than TIndex and also reduce the required 

memory to store input temporal databases.  

4.3 Running Time  
The objective of this experiment is to show the performance 

of the proposed TIndex2 indexing technique in the mining 

operation. Traditional Apriori algorithm is used and a 

modified version of Apriori, called Apriori-TIndex, that is 

used TIndex data structure in support counting process. 

Figures 5-8 show the measured running time with different 

minsupp threshold values in the four real datasets. 

Chess dataset is very dense dataset that generates huge 

number of candidates that requires most of the running time to 

calculate the support of these candidates. As shown in Figure 

5, using TIndex with Apriori algorithm reduces the overall 

running time and achieves about 2.86 speed-up ratio. The 

speed-up ration is not large because building TIndex for such 

database adds extra running time before mining algorithm 

begins working. 
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Fig. 5. Running Time Comparison – Chess Dataset 

As shown in Figure 6, the running time of Apriori+TIndex 

algorithm is very low compared to Apriori algorithm alone. At 

low minsupp values, Apriori generates huge number of 

candidates that requires extra running time to calculate their 

support and remove infrequent ones. For example, at 30% 

minsupp, Apriori algorithm needs about 90 seconds, while 
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adding TIndex requires only 15 seconds, which achieves 

speed-up ratio about 6 times.  

65 60 55 50 45 40 35 30 25 20 15

0

50

100

150

200

250

 

 

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

minsupp (%)

 Apriori

 Apriori+TIndex

Mushroom Dataset

Fig. 6. Running Time Comparison – Mushroom Dataset  
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Fig. 7. Running Time Comparison – Retail Dataset 

In Figure 7, TIndex works efficiently with Apriori algorithm 

because there are many numbers of candidates that requires 

extra running time for support counting. This extra running 

time covers the required time for building TIndex because 

dataset is also dense one. This allows Apriori+TIndex 

algorithm to achieve about 4.5 speed-up ratio on average than 

traditional Apriori algorithm alone. 
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Fig. 8. Running Time Comparison – Accidents Dataset 

Accidents dataset is very sparse, which produces small 

number of candidates. On the other hand, the dataset size is 

large, which needs extra time when calculating support of 

these candidates. As shown in Figure 8, using TIndex 

improves the overall mining running time by one third on 

average. 

5. CONCLUSION 
In this paper, the problem of mining temporal association 

rules is addressed. The problem mainly interested in finding 

frequent temporal itemsets in temporal databases. A new 

indexing technique, called TIndex, is proposed for indexing 

temporal database. The proposed TIndex data structure suffers 

from high memory usage problem because it separates 

transactions from each part. To solve this problem, TIndex2 

data structure is proposed. It combines the transactions from 

different parts as they share same prefix items. The 

experimental results on real datasets show that TIndex2 

requires less memory than TIndex that achieves better 

reduction ratio.  

To check the effect of the proposed indexing technique in the 

mining process, the running time of Apriori algorithm alone is 

compared with the modified one that includes TIndex data 

structure. The experimental results show that using the 

proposed indexing technique achieves great performance in 

the mining process because support counting of candidate 

itemsets is the bottleneck of the mining algorithm which 

requires the big share of overall running time. 
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