
International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.13, October 2015

32

An Efficient Technique for Indexing Temporal Databases

Mohammed M. Fouad
Faculty of Computing and Information Technology

King Abdulaziz University
Jeddah, Saudi Arabia

Mostafa G.M. Mostafa
Faculty of Computers and Information Sciences

Ain Shams University
Cairo, Egypt

ABSTRACT
Temporal databases added a new dimension to traditional

transaction databases. This dimension is the life time of each

item, i.e. exhibition period, starting from the partition when

this item appears in the transaction database to the partition

when this item no longer exists. Mining temporal association

rules became very interesting topic in many applications

nowadays. In this paper, an efficient technique is proposed for

indexing temporal databases in order to facilitate support

counting process during mining operation. Some experiments

were conducted using well-known real datasets to show the

performance of the proposed indexing technique with respect

to index size and running time of the mining algorithm. The

results show that the proposed indexing technique saves a lot of

running time and works efficiently with different databases

characteristics.

Keywords

Indexing Temporal Databases, Apriori Algorithm, Temporal

Association Rules (TAR).

1. INTRODUCTION
Extracting useful information from huge amount of data

becomes very essential research topic these days. As the size

and complexity of data increase, the need of efficient data

analysis algorithms is very critical. Mining association rules is

very interesting topic in the data mining and analysis fields. In

its simplest form, it is interested in finding hidden relations

between items in transactional databases, which were very

useful in some applications like market analysis, decision

making and business management [1].

Many algorithms were presented to solve the association rules

mining from transactional databases. These algorithms adopted

different approaches including: Level-wise Apriori and its

modified versions, Partitioning and FP-Tree and FP-Growth

algorithm [2, 3, 4].

The transactional databases become more complicated with

extra information added on which required different set of

algorithms to deal with the new information. For example,

frequent weighted itemsets mining topic appeared when items

in transactional database have different weights based on their

significance [5]. Hence, a broad range of algorithms proposed

to solve the problem of finding frequent weighted itemsets.

The research work in this paper is interested in working with

temporal databases with extra temporal dimension added on.

Temporal mining becomes an important topic in many areas

such as weather forecasting, economics and communications

[6]. In temporal database, each item has life time period,

starting from the partition when this item appears in the

transaction database to the partition when this item no longer

exists. This life time period is called Exhibition Period which

could be different from one item to another based on its

availability in the database [7].

The main objective of this paper is to propose a new data

structure for indexing temporal databases for fast support

counting. The first proposed index, called TIndex, has one

drawback which is the extra memory space needed to store the

index. This drawback is solved in its modified version, called

TIndex2, which requires less memory than the older version.

The experimental results show that using the proposed

indexing structure helps greatly in reducing the overall running

time for mining frequent temporal itemsets.

The rest of the paper is organized as follows. Related studies in

temporal association rules mining are discussed briefly in

section 2. Section 3 includes the detailed steps of the proposed

TIndex data structure with an illustrative example.

Experimental results and discussion are presented in Section 4,

and conclusions are finally drawn in Section 5.

2. RELATED WORK
There are different types of transactional databases. They differ

on the extra information provided with each transaction.

Simple, or Traditional, transactional database are simply list of

transactions, where each transaction holds group of items with

no extra details. Temporal databases included extra information

about the life time of this transaction in the database. Many

algorithms were proposed to deal with the mining process of

temporal association rules (TAR) in general or incremental

temporal databases.

Progressive Partition Miner (PPM) algorithm was proposed by

Lee et al. [8, 9] to discover all the frequent temporal itemsets.

The algorithm was designed to work on static databases, but it

could be utilized to work with incremental databases. Firstly,

the input database is partitioned into some parts based on time

granularity. Secondly, the algorithm scans all these parts one

by one and accumulates the level-2 candidate itemsets. Then

using scan reduction technique, all the candidates are generated

level by level and stored in the memory to be pruned. After

generating all the candidates, the algorithm scans the databases

transactions (sequentially) to calculate the support of each

candidate and remove the infrequent ones. The experiments

were conducted to compare PPM algorithm running time with

Apriori+ (modified Apriori for temporal mining [2]) on

synthetic datasets. The results showed a big performance gap

difference between both algorithms especially in low minimum

support values because Aprioi is very basic algorithm with no

pruning or optimization techniques

Chang et al. [7] proposed Segmented Progressive Filter (SPF)

algorithm for mining frequent temporal itemsets. It also can be

utilized to handle incremental databases. The input database is

partitioned into some parts based on time granularity and parts

with similar items exhibition periods are processed together as

segments. The level-2 candidates from each segment are

generated and merged together to obtain the final level-2

candidate itemsets. Again, using scan reduction technique, all

the candidates are generated level by level and stored in the

memory to be pruned. After generating all the candidates, the

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.13, October 2015

33

algorithm scans the databases transactions (sequentially) to

calculate the support of each candidate and remove the

infrequent ones (similar to PPM algorithm). The authors

compared the running time of SPF algorithm with AprioriIP

(modified version of Apriori for temporal mining [2]) using

one synthetic dataset. The results show that SPF overcomes

AprioriIP especially in low minimum support values. SPF

should improve the performance slightly than PPM (although

no comparison found) due to segmenting the database parts

based on shared items exhibition periods.

Huang et al. [10] presented Twain algorithm for mining

frequent temporal itemsets mining. The proposed idea is much

similar to PPM and SPF algorithms. Twain algorithm starts by

processing the database parts one by one. In each part, the

level-2 candidates are found and checked against minimum

support threshold. The frequent ones are added directly to

output frequent itemsets. Again, starting from level-2 candidate

itemsets, the algorithm uses scan reduction technique to

generate the candidate itemsets in all levels and stores them in

the memory. After that, the algorithm scans the database

transactions (sequentially) to calculate the support of each

candidate (starting from level-3 candidate itemsets) and

remove the infrequent ones (similar to PPM and SPF

algorithm). Some experiments were conducted to compare the

running time of Twain algorithm with SPF and AprioriIP. The

results show slight enhancement in running time when

compared to SFP algorithm.

These algorithms have two main problems. The first problem is

using scan reduction technique which is not efficient in case of

large number of candidates because all these candidates must

fit in the memory at the same time. The second problem is in

the support counting process which is performed sequentially

(for each candidate, all the transactions are scanned). This is

not efficient in case of very large or dense databases.

Discovered temporal association rules can be used in different

data analysis based on required application analysis. As an

example, Linag et al. [11] modified Apriori algorithm to work

with temporal databases and proposed a new algorithm called

T-Apriori. After that, they used their proposed algorithm in

discovering temporal association rules from the red tide

monitoring data in Dapeng bay. Recently, Khairudin et al. [12]

utilized temporal association rules mining in web log data.

They investigated the effect of adding temporal information

into mining operation and its effect on output association rules

rather than traditional association rules. Their experimental

results showed that temporal association rules mining outputs

smaller number of rules rather than Apriori and FP-Growth

algorithms. Also, the results showed that the generated rules

have better quality and more meaningful than traditional ones.

3. INDEXING TEMPORAL DATABASES
In this section, TIndex data structure is presented for indexing

temporal databases and its drawbacks. Then the new TIndex2

data structure is introduced that solves some of these

drawbacks.

3.1 TIndex Data Structure
A new Tree-based data structure, called TIndex, is proposed

for indexing transactions in temporal database. The TIndex

improved Trie data structure to include temporal information of

each item.

The TIndex contains two main components: Tree and Header

Table. The Tree structure stores the transactions in the database

and Header Table holds the information about each item in the

database and a link to its first node in the tree. Each node in the

tree is a tuple <item, part, support>, where item is item name,

part is current part number and support is item frequency in

this part. In the final TIndex, the transaction is mapped into a

path from root to leaf and each node contains one item from

this transaction and its support in this path. For example,

consider the temporal database shown in Table 1 with two parts

P1 and P2.

Table 1. Example Temporal Database

 TID Transaction

P1

1 B D

2 B C D

3 B C

4 A D

P2

5 B C E

6 D E

7 A B C

8 C D E

P3

9 B C E F

10 B F

11 A D

12 B D F

Starting from transaction TID-1, a new node <B, 1, 1> is added

as child node to root and another new node <D, 1, 1> as child

to node B as shown in Figure 1-a. For TID-2, the root already

has child node <B, 1> so its support is incremented to be 2.

Then add new child node <C, 1, 1> as node B has no matching

child. For last item D, add a new node <D, 1, 1> as child to

node C as in Figure 1-b. For TID-3, just increment support of

node <B, 1> and its child <C, 1> as they already in the same

path. For last transaction in part P1, TID-4, root has no child

labeled <A, 1>, so a new node <A, 1, 1> is added as child to

root node. Then add new node <D, 1, 1> as child to <A, 1>.

Figure 1-c shows the final TIndex after indexing all

transactions in part P1.

(a) (b) (c)

Fig. 1: TIndex for Part P1 in Example Database.

The same procedure is applied to parts P2 and P3, but change

current part to be 2 and 3 respectively. For transaction TID-5, a

new node <B, 2, 1> is added as child to root node. A new node

is added to the root node because it is not matched with node

<B, 1> as it is from different part. After adding all transactions

in the example database, the final TIndex for is shown in

Figure 2. Note that there is a connection, dashed lines, between

nodes that have same item to facilitate traversing in tree for fast

support counting.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.13, October 2015

34

Fig. 2: Complete TIndex for the Example Database in Table 1

In order to calculate the support of given itemset, start

searching the Header table with first item to determine the

starting nodes. Then search within each subtree about the

remaining items in this itemset. For example, consider the

support of itemset {B D} to be calculated. First, Header table is

examined to get the first node for item {B} that is <B, 1, 3>

and consider it root of first subtree to search for item {D}. It is

found in two paths (B-D) and (B-C-D) each with support 1.

Then use next link to find next node for item {B} that is <B, 2,

1>, but item {D} cannot be found in this new subtree. Then use

next link to find next node for item {B} that is <B, 3, 3> and

found {D] in one path (B-D-F). The final support is calculated

by adding the support of item {D}, last item in given itemset,

in all the found paths. In this case the support of itemset {B D}

is 3 because {D} has support 1 in each path of the three paths

found.

The main objective of the proposed TIndex is to minimize

search space when calculating support for candidate itemsets.

As noticed in previous example, rather than searching all

database transactions for itemset {B D}. The search space is

reduced to only 3 transactions, which allows fast support

counting especially in large and/or condensed databases. One

drawback of the proposed TIndex is that it requires extra

memory space to store the index tree and header table.

3.2 TIndex2 Data Structure
TIndex has a major drawback in storing transactions that share

same prefix. If these transactions are in different parts, then a

new branch will be created for each part. This will duplicate

many nodes especially in dense databases that will result in

extra memory space. For example, there are 4 transactions with

prefix {B-C}. In TIndex tree shown in Figure 2, there are three

different branches for these transactions because they are

distributed over the three parts of the example database.

To solve this issue, TIndex2 is proposed to handle common

prefix transactions in different parts. Some modifications

occurred over the proposed TIndex data structure. First, the

node in TIndex2 can store the support of each item in different

parts by adding list of parts in each node. For example, node

{B} will contain list of its support in the different parts as (1,

3), (2, 1) and (3, 3). The complete TIndex2 is shown in Figure

3.

As shown in Figure 3, TIndex2 is much more condensed than

TIndex because it combines shared prefixes from all parts

rather than create separate branch for each part. This will

reduce the overall required memory space for the final index

especially in the dense databases because many transactions

have common prefix.

Fig. 3. Complete TIndex2 for the Example Database in Table 1

4. EXPERIMENTAL RESULTS
Some experiments were conducted to evaluate the

performance of TIndex and TIndex2 data structures. Four real

datasets were used with different sizes and characteristics

varying from small to very large databases and for both low-

density and high-density databases. First the required memory

space is measured for each index to show the reduction ratio

in each database. Then Apriori algorithm [2] is used in the

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.13, October 2015

35

mining operation to compare the required running time in case

of using and not using the indexing technique.

4.1 Datasets
Four real databases (Chess, Mushroom, Retail and Accidents)

obtained from frequent itemset mining, data set repository

[13] are used in the experiments. Table 2 shows the statistical

information for the different databases used in the

experiments. For each database, it shows the number of

transactions (#Trans), number of distinct items (#Items) and

average number of items per transaction (TransSize). This

information gives a clear view about the density of the

database. For example, Retail database has 57 distinct items

with average transaction size of 13 items. This means that

Retail dataset will produce large number of candidates while

most of them will not be frequent because they are distributed

over the dataset with low density.

Table 2. Databases Information [13]

Dataset #Trans

(DB)

#Trans

(db)

#Items TransSize

Chess 2,696 500 75 37

Mushroom 7,125 1000 119 23

Retail 80,000 8,163 57 13

Accidents 306,183 34,000 468 33.8

4.2 Memory Usage
As illustrated earlier in section 3, TIndex and TIndex2

indexing techniques should reduce the required memory for

storing the temporal database. In this experiment, the required

memory space for each dataset is measured. The

corresponding TIndex and Tindex2 sizes are shown in Table 3

and Table 4 respectively.

Table 3. Memory Usage Analysis - TIndex

Dataset Dataset

size

(MB)

TIndex

size

(MB)

Reduction

Ratio (%)

Chess 18.443 10.465 43.3

Mushroom 9.169 6.887 24.9

Retail 92.372 64.284 30.4

Accidents 677.814 511.631 24.5

As shown in Table 3, TIndex reduces the required memory to

store each database because transactions with shared prefix

have the same path. The reduction ratio is affected by

database characteristics. For example, Chess dataset is very

dense and most of its transactions share the same prefix, so

TIndex achieves 43.3% reduction ratio. On the other hand,

Accidents dataset is sparse one, so TIndex achieves only

24.5% reduction ratio in this case.

As shown in Table 4, TIndex2 achieves better reduction ratio

than TIndex because it combines the transactions with shared

prefix from all parts. This works efficiently with dense

databases such as Chess and Retail as TIndex2 achieves

60.2% and 46.3% reduction ratio respectively. In case of

Mushroom and Accidents datasets, TIndex2 requires only

about one third of the overall dataset size.

Table 4. Memory Usage Analysis – TIndex2

Dataset Dataset

size

(MB)

TIndex2

size

(MB)

Reduction

Ratio (%)

Chess 18.443 7.331 60.2

Mushroom 9.169 5.696 37.9

Retail 92.372 49.627 46.3

Accidents 677.814 435.398 35.8

Chess Mushroom Retail Accidents

1

10

100

1000

R
e

q
u

ir
e

d
 M

e
m

o
ry

 (
M

B
)

Dataset

 Dataset Size

 TIndex Size

 TIndex2 Size

 Fig. 4. Memory Space for TIndex and TIndex2

Figure 4 shows overall comparison between TIndex and

TIndex2 required memory. It is clear that TIndex2 saves

extra memory space than TIndex and also reduce the required

memory to store input temporal databases.

4.3 Running Time
The objective of this experiment is to show the performance

of the proposed TIndex2 indexing technique in the mining

operation. Traditional Apriori algorithm is used and a

modified version of Apriori, called Apriori-TIndex, that is

used TIndex data structure in support counting process.

Figures 5-8 show the measured running time with different

minsupp threshold values in the four real datasets.

Chess dataset is very dense dataset that generates huge

number of candidates that requires most of the running time to

calculate the support of these candidates. As shown in Figure

5, using TIndex with Apriori algorithm reduces the overall

running time and achieves about 2.86 speed-up ratio. The

speed-up ration is not large because building TIndex for such

database adds extra running time before mining algorithm

begins working.

85 80 75 70 65 60 55

0

50

100

150

200

250

300

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

minsupp (%)

 Apriori

 Apriori+TIndex

Chess Dataset

Fig. 5. Running Time Comparison – Chess Dataset

As shown in Figure 6, the running time of Apriori+TIndex

algorithm is very low compared to Apriori algorithm alone. At

low minsupp values, Apriori generates huge number of

candidates that requires extra running time to calculate their

support and remove infrequent ones. For example, at 30%

minsupp, Apriori algorithm needs about 90 seconds, while

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.13, October 2015

36

adding TIndex requires only 15 seconds, which achieves

speed-up ratio about 6 times.

65 60 55 50 45 40 35 30 25 20 15

0

50

100

150

200

250

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

minsupp (%)

 Apriori

 Apriori+TIndex

Mushroom Dataset

Fig. 6. Running Time Comparison – Mushroom Dataset

55 50 45 40 35 30 25 20 15

0

1000

2000

3000

4000

5000

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

minsupp (%)

 Apriori

 Apriori+TIndex

Retail Dataset

Fig. 7. Running Time Comparison – Retail Dataset

In Figure 7, TIndex works efficiently with Apriori algorithm

because there are many numbers of candidates that requires

extra running time for support counting. This extra running

time covers the required time for building TIndex because

dataset is also dense one. This allows Apriori+TIndex

algorithm to achieve about 4.5 speed-up ratio on average than

traditional Apriori algorithm alone.

100 95 90 85 80 75 70 65 60 55

0

400

800

1200

1600

2000

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

minsupp (%)

 Apriori

 Apriori+TIndex

Accidents Dataset

Fig. 8. Running Time Comparison – Accidents Dataset

Accidents dataset is very sparse, which produces small

number of candidates. On the other hand, the dataset size is

large, which needs extra time when calculating support of

these candidates. As shown in Figure 8, using TIndex

improves the overall mining running time by one third on

average.

5. CONCLUSION
In this paper, the problem of mining temporal association

rules is addressed. The problem mainly interested in finding

frequent temporal itemsets in temporal databases. A new

indexing technique, called TIndex, is proposed for indexing

temporal database. The proposed TIndex data structure suffers

from high memory usage problem because it separates

transactions from each part. To solve this problem, TIndex2

data structure is proposed. It combines the transactions from

different parts as they share same prefix items. The

experimental results on real datasets show that TIndex2

requires less memory than TIndex that achieves better

reduction ratio.

To check the effect of the proposed indexing technique in the

mining process, the running time of Apriori algorithm alone is

compared with the modified one that includes TIndex data

structure. The experimental results show that using the

proposed indexing technique achieves great performance in

the mining process because support counting of candidate

itemsets is the bottleneck of the mining algorithm which

requires the big share of overall running time.

6. REFERENCES
[1] Q. Zhao and S. Bhowmick, “Association Rule Mining: A

Survey,” Technical Report, Center for Advanced

Information Systems (CAIS), Nanyang Technological

University, Singapore, 2003.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining

association rules,” in Proc. Int. Conf. Very Large Data

Bases VLDB’94, 1994, pp. 487–499.

[3] J. Han, J. Pei, Y. Yin and R. Mao, “Mining frequent

patterns without candidate generation: a frequent-pattern

tree approach,” Data Mining and Knowledge Discovery,

vol. 8, no. 1, 2004, pp. 53–87.

[4] G. Grahne and J. Zhu, “Fast algorithms for frequent

itemset mining using FP-trees,” IEEE Trans. on

Knowledge and Data Eng., vol. 17, no. 10, 2005, pp.

1347–1362.

[5] B. Vo, F. Coenen and B. Le, “A new method for mining

Frequent Weighted Itemsets based on WIT-trees,” Expert

Systems with Applications, vol. 40, no. 4, 2013, pp.1256-

1264.

[6] H. Ning, H.Yuan and S. Chen, “Temporal association

rules in mining method,” The 1st International Multi-

Symposiums on Computer and Computational Sciences

(IMSCCS'06), Zhejiang, China, vol. 2, 2006, pp. 739–

742.

[7] C-Y. Chang, M-S. Chen and C-H. Lee, “Mining general

temporal association rules for items with different

exhibition periods,” in Proc. IEEE Int. Conf. Data

Mining, 2002, pp. 59–66.

[8] C-H. Lee, C-R. Lin and M-S. Chen, “On Mining General

Temporal Association Rules in a Publication Database,”

in Proc. IEEE Int. Conf. Data Mining, 2001, pp. 487–

499.

[9] C-H. Lee, M-S. Chen and C-R. Lin, “Progressive

partition miner an efficient algorithm for mining general

temporal association rules,” IEEE Trans. Knowledge and

Data Eng., vol. 15, no. 4, 2003, pp. 1004–1017.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.13, October 2015

37

[10] J-W. Huang, B-R. Dai and M-S. Chen, “Twain Two-end

association miner with precise frequent exhibition

periods,” ACM Trans. on Knowledge Discovery from

Data (TKDD), vo. 1, no. 2, 2007.

[11] Z. Linag, T. Ximming, L. Lin and J. Wenliang,

“Temporal Association Rule Mining Based on T-Apriori

Algorithm and its Typical Application,” International

Symposium on Spatio-temporal Modeling, Spatial

Reasoning, Analysis, Data Mining and Data Fusion ,

2005

[12] N. Khairudin, A. Mustapha and M. Ahmad, “Effect of

Temporal Relationships in Associative Rule Mining for

Web Log Data,” The Scientific World Journal, vol. 2014,

Article ID 813983, 10 pages, 2014.

[13] Frequent Itemset Mining Dataset Repository (Accessed 1

Spetember 2015). Available online at:

http://fimi.ua.ac.be/data/

IJCATM : www.ijcaonline.org

http://fimi.ua.ac.be/data/

