
International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.16, October 2015

22

Review on Reverse Engineering of Legacy Code

and Extraction of Class Diagrams

Upasana Choudhary
Student (M.Tech)

Department of computer science
Sanghvi Institute of Management & Science,

Indore

Maya Yadav
Assistant professor

Department of computer science
Sanghvi Institute of Management & Science,

Indore

ABSTRACT

We are living in the era of software and Information

technology. Where Reverse engineering has a big role in the

up-gradation and maintenance of old software. Precisely if it

comes to the reverse engineering of legacy code; so many

tools and software are available in the market but still market

requirement for reverse engineering of existing codes is

unfulfilled. Present paper focus on the various researches

published in consecutive years on the same topic. In this study

we have covered legacy code and their reverse engineering

feasibility as per the cost and time perspective, generation of

class diagrams, various problems faced by the different

researchers and possible solutions suggested. Conclusion of

the study is that we need to do some more experiments to

show the class diagram and their relationship and extracting

method level dependency while performing reverse

engineering of a legacy code by using different language tools

and techniques.

Keywords

Legacy Code, Class Diagram, Dependency

1. INTRODUCTION

Doing maintenance of old software which is developed by old

unknown software developers is very typical and difficult job.

Because understanding and doing any modification in these

codes, which are written in thousands of lines using

uncountable variables having multiple relationship among

their selves requires a high level of intellect and highly skilled

programmers. To make it easy Reverse engineering tools

provide useful high level information about the system being

maintained or upgraded.

2. BACKGROUND

The legacy code is nothing but the existing codes and class

diagram support the program understanding activities, can

drive refactoring and restructuring interventions and can be

used to assess the traceability of the design into the code.

Therefore, it is very important that the diagrams produced

from legacy code should be accurate, i.e., exploit all static

information present in the code in order to reverse engineer

entities and relations. There are so many tools are available in

the industry for reverse engineering of legacy codes like

Rational Rose, jGRASP, Eclipse and NetBins that will help

the developer with this undertaking. To acquire deep

knowledge of any subject a deep study of related topic is very

important hence present paper is the sequence of wide

literature review on reverse engineering published in IJCA as

Review on Reverse Engineering Techniques of Software

Engineering [8]. We have thoroughly discussed UML

diagrams and related study. And we found that there is a need

of experiments to be done on various theatrical concept

proposed in various research papers.

3. MOTIVATION
The important reason of focusing in reverse engineering of

legacy code class diagrams and their relationship is the wide

research scope available in this particular field. Still

researchers are trying to achieve more and more accurate

information. Even though some professionals found

inapplicability of reverse engineering of legacy code for very

long codes [2], they are accepting the possibility and

usefulness of good reverse engineering tools in near future.

4. SURVEY
In the present study some experimental studies are included.

First, Reverse engineering of legacy code framed in C++

language to show interrelationship between various classes

and second one is the Reverse engineering of PL/SQL legacy

code in the steel making domain which made it easier to

show a clear picture for stakeholders [1 & 6]. Legacy code

and class diagrams are the majorly covered by [1, 2, 3, 4 & 7]

where accuracy and interrelationship of various class

diagrams produced by various tools are more important than

just creating a class diagram with very less information [1, 3

& 7]. Details of every individual research are shown below in

a sequential order.

Ati Jain and Swapnil Soner [1] did an experiment to perform

reverse engineering on an existing source code as a part of

their project work to implement and upgrade the legacy code

framed in C++ language. In this paper the issues about

recollecting design information, such as finding variables,

functions and classes are discussed in depth. The reverse

engineering process used to extract the Data flow diagrams,

Control flow diagrams and class diagrams. Author has

developed a Reengineering method to automate the extraction

of DFDs, CFDs and class diagrams from any legacy C++

code. Various problems experienced during the experiment

and respective resolution has been reported.

Since it is well understood that all codes are not written by

using convention naming, also there is no certainty of a code

being well structured. Hence the very first problem discussed

is to identify a variable in a code. And the solution suggested

for this problem is to provide the user with a list of all

probable input and output variables so that user or expert can

select one and try to find out if there is any rule implemented

with that data or not. Moreover a user can also be provided

with a facility to store the description with a variable if

needed.

Differentiating between two basic elements which serves to

control the software execution i.e. low-level control structure

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.16, October 2015

23

and high level structure is another issue explained. And the

Solution proposed was that the former should be included as

part of the processing described in the detailed design [], the

latter needs to be recorded in a control flow diagram and its

control specification. The technical reason behind this is to

recover too much of the control structure.

And the very important and key problem discussed is how to

show dependency of various classes on each other. This

problem was tackled by using various methods i.e.

inheritance, aggregation and association to find the

relationship between various classes, for detailed explanation

refer [1].

Bruce W. Weide and Wayne D. Heym [2] discussed the

feasibility of reverse engineering of a long legacy code in

terms of cost effectiveness and attainability. Aim of the author

was to gain a sufficient understanding of the whats, hows, and

whys of the legacy system as a whole that its code can be re-

engineered to meet new requirements on behaviour,

performance, structure, system dependencies etc..

Observations and implications, the nature of the reverse

engineering task and the intractability Results were discussed

thoroughly. Author of this paper has reported that the Reverse

engineering of large legacy systems is intractable in the

following sense: Given real legacy code, the time required to

show the validity of a proposed explanation for why it

exhibits any significant system-level behaviour is at least

exponential in the size of the source code. And the key point

can be noted from this research that it does not mean that the

task of re-engineering of a legacy code is impossible. It means

that it is prohibitively costly for large legacy systems.

Giuseppe Antonio Di Lucca et al. [3] has given brief of a

method for recovering an O-O model together with the objects

and relationships among them. Author has implemented an

approach integrates the results of reverse engineering of both

the procedural code and the persistent data stores of the

system, and utilized a number of heuristic criteria to display a

class diagram. A preliminary experiment carried out to verify

the results from proposed method on a COBOL medium-sized

system. The effectiveness of the proposed method was

evaluated on the basis of recovered adequate (about 90 %)

abstractions (both classes and relationship among them).

Eventually it is reported that proposed method is giving

encouraging results. Measure adequacy is given as,

Where M is the set of abstractions selected by the method, N

is the subset of components in M that can be associated with a

concept of the application domain, and denote the

number of components in the M and N sets. However

consideration of aspects like completeness and precision of

abstractions along with the adequacy could have been results

in accurate measurement of effectiveness while investigation

of the proposed method effectiveness is carried out.

Mariano Ceccato et al.[5] have inferred a structured data

model in such a language as part of a migration of eight

million lines of code to Java and discussed the common

idioms of coding that were observed. They explained reverse

engineering of a structured data model from the unstructured

model provided by BAL, using program transformation. Also

described basic cases that may occur in BAL code and how

they map them to Java. Conclusion given by author is that the

proposed approach is quite general and can be applied to a

number of programming languages that support arbitrary data

layout in memory.

Martin Habringer et al. [6] developed tool to support the

reverse engineering of PL/SQL code into a more abstract and

comprehensive representation. Which can be more useful as

an input for stakeholders to manually analyze legacy code, so

that it will become easy to identify obsolete and missing

business cases, and, finally, to support the re-formation of a

new system. Through this study they have shown the results

of reverse engineering PL/SQL legacy code in the steel

making domain. Data flow from the production data to the

result data containing error messages is analyzed on the basis

of an abstract syntax tree, The results from this analysis is

used to produce expected high-level representation as shown

in figure.1.

Fig 1. Data Flow Graph generated by our tool

While reading the paper two important points were noted,

very First, the high-level representation generated by the

proposed tool, which was basically customized for the

analyzed legacy code, could be able to give a clear picture for

stakeholders on comparing to general-purpose representations

which can be created by conventional reverse engineering

tools. And second conclusion reported is, generating adequate

representations needs a faster feedback from stakeholders and

sophisticated analysis techniques such as symbolic execution.

Paolo Tonella and Alessandra Potrich [7] proposed an

algorithm in order to achieve more accuracy of the UML class

diagram generated from the code. Specifically, author has

discussed the unclear and missing inter-class relations in

extracted class diagrams. The proposed approach was applied

to several software components developed at CERN.

Also improvement of the relations in the UML class diagram

recovered from the code was presented. In the proposed tool,

Output of the type interface is used as a basis for computation

of the relation between classes. Results showed in the study

highlights that a substantial improvement is achieved when

the container type information is refined with the inferred

data. The number of relations otherwise missed is relevant and

the connectivity of the associated class diagrams is radically

different when containers are considered.

The positive outcome is that the class diagram is more

accurate than the one generated by other existing tools, it is

reported in research that the Experimental results suggest that

there is a relevant difference between the class diagrams

which exploit the inferred container type information with

respect to those that do not. However it was observed that a

large fraction of relations is missed if container types are not

determined. Moreover indirect benefits on the program

understanding activities are hard to predict. It is reported that

the diagrams are much closer to the mental model of the

application; therefore it can be used for the higher level of

understanding and for its evolution.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.16, October 2015

24

5. CONCLUSION
The study shows that reverse engineering of legacy code is a

good platform to bring a dynamic change in the field of IT

industry as well as other core business industries [6]. But as it

is associated with the finding of uncountable variables and

identifying relationship among them, hence it is very

complicated in nature. One possible way of solving this

complicated puzzle is to draw class diagrams that too with

detailed information like dependency based on class and

method level [1& 3]. However some studies shows that doing

reverse engineering of long codes is very costly and time

consuming hence seems unreliable. It does not mean that the

task of re-engineering of a legacy code is impossible. It means

that it is prohibitively costly for large legacy systems [2].

Above conclusion is given by respective authors on the basis

of their limited experience and experiments in this particular

field. Hence conclusion of the present study is that we need to

do some more experiments on reverse engineering of legacy

code with the help of some other high level language tools

like C#, Java etc. to rectify the problems unclear information

associated with class diagrams obtained with various tools.

As a part of our post graduation project work, we will come

with one more experiment on showing class diagrams with

more and accurate information by using any other language

tool discussed above.

6. ACKNOWLEDGMENTS
We are very thankful to all the experts who have contributed

towards development of the manuscript.

7. REFERENCES
[1] Ati Jain, Swapnil Soner, 2010. Reverse Engineering”:

Extracting Information from C++ code. International

Conference on Software Technology and

Engineering(ICSTE), IEEE ISBN No:978-1-4244-8666-

3, Vol.1, P.154-158

[2] Bruce W, Weide, Wayne D.Heym 1995, Reverse

Engineering of Legacy Code Exposed. Proceedings of

the 17th International Conference on Software

Engineering (ICSE’95) 0270-5257/95, IEEE ISSN No.

0270-5257, P.327

[3] Giuseppe Antonio Di Lucca, Anna Rita Fasolino, Ugo

De Carlini 2000, Recovering Class Diagrams from Data-

Intensive Legacy Systems. IEEE 1063-6773100

[4] Jianjun Pu, Zhuopeng Zhang, Yang Xu and Hongji Yang

2005, Reusing Legacy COBOL Code with UML

Collaboration Diagrams via a Wide Spectrum Language.

IEEE 0-7803-9093-8/05

[5] Mariano Ceccato, Thomas Roy Dean, Paolo Tonella,

Davide Marchignoli 2008, Data model reverse

engineering in migrating a legacy system to Java. 15th

Working Conference on Reverse Engineering, IEEE

ISSN No.1095-1350

[6] Martin Habringer, Michael Moser, Josef Pichler 2014,

Reverse Engineering PL/SQL Legacy Code: An

Experience Report. IEEE International Conference on

Software Maintenance and Evolution 1063-6773/14

[7] Paolo Tonella, Alessandra Potrich 2001, Reverse

Engineering of the UML Class Diagram from C++ Code

in Presence of Weakly Typed Containers. IEEE ISSN

No. 1063-6773

[8] Upasana Choudhary, Maya Yadav, 2015, Review on

reverse engineering techniques of software engineering.

IJCA 119(14):7-10

IJCATM : www.ijcaonline.org

