
International Journal of Computer Applications (0975 – 8887) 

Volume 127 – No.2, October 2015 

44 

Parallel Implementation of Scheduling Algorithms 

on GPU using CUDA 

Nipun Agarwal 
Department of CSE 

College of Engineering 
Roorkee, Roorkee-247667, 

Uttarakhand, India 

Aman Goyal 
Department of CSE 

College of Engineering 
Roorkee, Roorkee-247667, 

Uttarakhand, India 

Gaurav Maheshwari, 
Alok Dugtal 

Department of CSE 
College of Engineering 

Roorkee, Roorkee-247667, 
Uttarakhand, India

 

ABSTRACT 
The future of computation is the GPU, i.e. the Graphical 

Processing Unit. The graphics cards have shown the 

tremendous power in the field of image processing and 

accelerated generating of 3D scenes, and the computational 

capability of GPUs have promised its developing into great 

parallel computing units. It is quite simple to program a 

graphical processor to perform many parallel tasks. But after 

understanding the various aspects of the graphical processor, 

it can be used to perform other useful tasks as well. This paper 

shows how CUDA can fully utilize the tremendous power of 

these GPUs. CUDA is NVIDIA’s parallel computing 

architecture which enables terrible increase in computing 

performance, by gearing the power of the GPU. In the first 

phase, several operating system algorithms in single threaded 

CPU environment are implemented using C language, then 

the same algorithms are implemented on CUDA and CUDA 

enabled GPU in a parallel environment and finally 

comparison of their performance and results to their 

implementation in GPU and CPU are shown. 

General Terms 
GPU, GPGPU, Parallelization, Multicore  

Keywords 
CUDA, Scheduling Algorithms, FCFS, SJF, RR, PBS 

1. INTRODUCTION 
GPU computation has provided a huge bound over the CPU 

with respect to the computational speed. Hence it is one of the 

most interesting areas of modern computational research and 

development. GPU is a graphical processing unit which 

primarily enables us to run high definition graphics on our 

PC, which are the essential demand of modern computing 

world. The main job of the GPU is to compute 3D functions. 

As these types of calculations are very difficult to perform on 

the CPU, the GPU can help them to run more efficiently. 

Though, GPU is introduced for graphical purposes, it has now 

evolved into computing, accuracy and performance. Using the 

GPU for processing non graphical objects is known as the 

General Purpose GPU or GPGPU, whch is used for 

performing very complex mathematical operations in parallel 

to achieve low time complexity. The arithmetic power of the 

GPGPU is a result of its highly specialized computing 

architecture. [21][22]  

This paper proposes the use of CUDA technology on parallel 

platform to enhance the performance of the operating system 

scheduling algorithms: First Come First Serve (FCFS) 

algorithm, Shortest Job First (SJF) algorithm, Round-Robin 

(RR) algorithm and Priority based scheduling (PBS) 

algorithm. Scheduling is the process by 

which threads, processes and data flows are given access to 

system resources (e.g. processor time and communications 

bandwidth). This is usually done to maintain balance and 

share the system resources effectively and achieve a 

target quality of service. The need for these scheduling 

algorithm arises from the requirement for most modern 

systems to perform multitasking (executing more than one 

process at a time) and multiplexing (send multiple data 

streams simultaneously across a single physical channel) . The 

operating system algorithms form the core for resource 

allocation and their maximum utilization. Scheduling is a 

complex job which may require an extensive processing and 

thus is better performed on a parallel processor. The paper 

demonstrates the performance of scheduling algorithms as to 

check how fast the algorithm could perform. [7-11] It 

compares and contrast the working time and corresponding 

efficiency of normal execution of the serial code implemented 

in C language on single threaded CPU as compared to GPU 

implementation. The CUDA implementation of the 

scheduling algorithms uses the CUDA-C language and the 

recent NVIDIA CUDA Software Development Kit (SDK) 6.0. 

2. GPU COMPUTING 
CUDA (Compute Unified Device Architecture) is NVIDIA’s 

manufacturing GPU architecture featured in the graphic cards 

which has positioned itself as a new means for general 

purpose computing. CUDA C or C++ is an extension of the C 

or C++ programming languages for general purpose 

computing. For running multi threaded applications, there is 

no need of streaming computing in GPU because the cores 

can communicate and exchange information with each other. 

CUDA is only well fitted and useful for highly parallel 

algorithms. There is a need to have many threads in order to 

increase the performance of the algorithms while running on 

GPU.[12] Normally more the number of threads, better is the 

performance. CUDA can take full advantage of when writing 

in language C. The primary idea of CUDA is to have 

thousands of threads which are executing in parallel. All these 

threads usually execute the very same function or code, 

known as a kernel. All these threads are executed using the 

same instructions and different data. Each thread knows its 

own ID, and based on its own ID, it determines which pieces 

of data to work on.[3] 

A CUDA program consists of some phases that are executed 

on either the host (CPU) or a device such as a GPU. In the 

host code, no data parallelism phase is carried out. In some 

cases, little data parallelism is carried out in host code. In 

device code, phases which has high amount of data 

http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Flow_(computer_networking)
http://en.wikipedia.org/wiki/Load_balancing_(computing)
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Multiplexing


International Journal of Computer Applications (0975 – 8887) 

Volume 127 – No.2, October 2015 

45 

parallelism are carried out. A CUDA program is a unified 

source code comprising both, host and device code. The host 

code is straight forward code in C language, compiled with 

the help of standard C compiler only. That is what can be said 

as an ordinary CPU process. The device code is written using 

CUDA keywords for data-parallel functions, called kernels, 

and their associated data structures.[13-15] In some cases, 

kernels can be executed on CPU if there is no GPU device 

available but this facility is provided with the help of 

emulations features. The CUDA software development kit 

provides those features. 

CUDA Architecture comprises of three essential parts, which 

help the programmer to utilize effectively the full 

computational capability of the graphics card on the 

respective system. CUDA Architecture splits the GPU device 

into grids, blocks and threads in a hierarchical structure as 

shown in fig. 1. Since there are a number of threads in a block 

and a number of blocks in a grid and a number of grids in a 

single GPU, the parallelism that is achieved using such a 

hierarchical architecture is very huge.[23][24] 

 

 

 

Fig 1: Cuda Program Structure and memory hierarchy 

A grid is a group of many threads which are running the same 

kernel. These threads are not synchronized. Every call to 

CUDA from the CPU is made through one grid. On multi-

GPU systems, grids cannot be shared between different GPUs 

because they use many grids for maximum efficiency. Grids 

are composed of many blocks. Each block is a logical unit 

containing a number of co-coordinating threads and a certain 

amount of shared memory. Blocks too are not shared between 

multiprocessors. Every block in a grid use the same program. 

A built in variable "blockIdx" can be used to identify the 

current block. Blocks are themselves composed of many 

threads that run on the individual cores of the multiprocessors, 

but unlike grids and blocks, they are not restricted to a single 

core. Like blocks, each thread has an own ID called 

“threadIdx”. Thread IDs can be 1D, 2D or 3D based on the 

block dimensions. The thread ID is relative to the block that 

contains the thread. [4-6] 

3. SCHEDULING   ALGORITHMS 
Process scheduling is handled by process manager which 

oversees the removal of the running process from the CPU 

and also selects some other process based on any particular 

strategy. Process scheduling is one of the most essential things 

in multiprogramming operating systems. Using these systems, 

one can load more than one process at the same time into the 

executable memory and the processes which are loaded shares 

the CPU among them. 

 

Some terms associated with scheduling algorithms are: 

Turnaround time is the elapsed time between the time the job 

enters and the time that it terminates. This may include the 

delay of waiting for the scheduler to start the job because 

some other process is still running and others may be queued 

ahead. 

Turnaround Time=Waiting Time + Service Time 

Start time is the time when the task which is scheduled to run 

and actually gets to start running on the CPU. CPU bursts 

starts with this. 

Response time is the delay that occurs between submitting a 

process and it being scheduled to run. Thus, it is the delay 

between a task being ready to run and when it actually starts 

running. 

Throughput refers to the number of processes that are 

completed within some amount of time. One can compare the 

throughput of several schedulers and get to know as to which 

scheduler processes more task as compared to other 

schedulers. [16-18] 

 

In the following section, we will explore a few scheduling 

algorithms. 

 

First-come First-served Scheduling (FCFS) follow first in first 

out strategy. As the process becomes ready, it joins the ready 

queue. When the current running process ceases to execute, 

the oldest process which is present in the Ready queue is 

selected for running after it. That is first entered process 

among the available processes in the ready queue. The 

average waiting time for FCFS is often long as compared to 

other algorithms. It is non-preemptive scheduling. [19] 

 

Shortest Job First Scheduling (SJF) associates with each 

process the length of the next CPU burst. The process which 

is expected to take the least processing time is selected for 

execution, among the available processes in the ready queue. 

If the next CPU bursts of two processes are the same then 

FCFS scheduling is used to break the tie. SJF can be 

preemptive or non-preemptive. [19][20] 

 

In Priority Based Scheduling (PBS), priority (an integer) is 

associated with each and every process. The CPU is allocated 

to the process with the highest priority amongst all. Generally 

process with the smallest integer is given the highest priority. 

Equal priority processes are scheduled in First Come First 



International Journal of Computer Applications (0975 – 8887) 

Volume 127 – No.2, October 2015 

46 

Serve fashion. It can be preemptive or Non-preemptive. 

[19][20] 

Round-Robin Scheduling (RR) algorithm is basically 

designed for time sharing systems. It is somewhat similar to 

FCFS with preemption added. Round-Robin Scheduling is 

also called as time-slicing scheduling and it is a preemptive 

version with a clock interrupt generated at periodic intervals. 

If and when the interrupt occurs, the process running is placed 

in the ready queue and the next ready job is selected on a 

First-come First-serve basis. This operation is known as time-

slicing, because each process is given a slice of time before 
being preempted. [19][20] 

4. IMPLEMENTATION 
As stated earlier the main objective of the present work is to 

analyze the various CPU scheduling algorithms. The foremost 

criterion for evaluating CPU scheduling is the waiting time 

and burst time of the processes that are under same set of 

conditions. The paper has implemented the four major 

scheduling algorithms namely First Come First Serve (FCFS) 

Scheduling, Shortest-Job-First (SJF) Scheduling, Priority 

Based Scheduling (PBS) and Round Robin (RR) Scheduling 

firstly on single threaded CPU environment and calculated the 

execution time of each algorithm, then, the same algorithms 

are implemented with NVIDIA’s GPU programming 

environment, CUDA v6.0. It then compares the execution 

time of the algorithms on both platform and calculates the 

speed up achieved in execution of the algorithms on GPU 

over CPU. The basics of CUDA code implementation are: 

a. Allocate the memory on the CPU. 

b. Allocate the same amount of memory on GPU using library 

function “CudaMalloc”. 

c. Input the data in memory allocated in CPU. 

d. Copy data from CPU to GPU memory using another library 

function CudaMemCpy having parameter 

(CudaMemcpyHostToDevice) to give the direction of the 

copy. 

e. Processing in now performed in GPU memory using kernal 

calls. Kernel calls transfer the control from CPU to GPU and 

also specify the number of grids, blocks and threads required 

for your program. In other words it defines the parallelism 

f. Copy back the final data from GPU to  CPU memory using 

library function CudaMemCpy having parameter 

(CudaMemcpyHostToDevice) 

g. Release the GPU memory or other threads using the library 

function CudaFree.[9] 

Setting up the environment and writing programs in CUDA is 

a fairly simple task. But, it requires that the one must have a 

thorough knowledge of the architecture and knowledge of 

writing parallel codes. The most important part of 

programming in CUDA is the kernel calls wherein the 

programmer must determine the parallelism that is required by 

the program. The division of given data into appropriate 

number of threads is the major area which defines a successful 

code.[24] 

5. RESULTS AND DISCUSSIONS 
In order to analyze the performance of the implemented 

algorithms the speedup achieved on the execution with respect 

to time was evaluated for all the test results. All the tests on 

the algorithms were performed with the similar number of 

processing nodes or processors and therefore, the speedup in 

execution is not evaluated based on the number of processors 

used but by analyzing the speedup in execution time because 

of the change in parallelizing approach taken up in the 

program.[1-2] 

In general, the formula to calculate speedup using execution 

time for same number of processors is given by: 

S = Ts/Tp 

Where, Ts is the time it takes for execution of sequential 

algorithm and Tp is the it times for execution of parallel 

algorithm.[1-2] 

We have achieved the speedup of around 10-13x over a 

single-threaded CPU implementation when implemented on 

GPU. We tested the codes by running them on CPU and GPU 

respectively. Our test data contain the images shown in fig. 

2(a-h) 

 

 (a) FCFS on CPU 

                          

 
(b) FCFS on GPU 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 127 – No.2, October 2015 

47 

 

 

 

(c) SJF on CPU 

                    

 

(d) SJF on GPU 

 

 

(e) PBS on CPU 

 

 

 

 

(f) PBS on GPU 

 

 

(g) Round Robin on CPU 

 

 

(h) Round Robin on GPU 

Fig 2- (a-h). Execution time observed for implementation of algorithms on CPU and GPU 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 127 – No.2, October 2015 

48 

 

 

 

 

Fig 3: Comparative graphs of execution time observed (in milliseconds) 

 

Table 1 contains the data about the execution time as observed 

for the scheduling algorithms when executed on CPU and 

GPU respectively. The time complexity is improved to a good 

extent on GPU due to parallelized approach. 

Table 1: Execution time obtained for various algorithms

Algorithm Used CPU Time (in ms) GPU Time (in ms) 

First Come First Serve 1.0 0.0972 

Shortest Job First 1.0 0.0783 

Priority Based 1.0 0.0780 

Round Robin 2.0 0.1498 

Overall comparison of speed up achieved in different 

operating system scheduling algorithms as compared with 

execution time on CPU is represented in the Fig 4. 

 

 

 

Fig 4: Speedup achieved on various algorithms

0 

0.5 

1 

1.5 

2 

CPU  GPU 

1 

0.0972 

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 m

Se
c)

 
First Come First Serve Algorithm 

0 

0.5 

1 

1.5 

2 

CPU  GPU 

1 

0.0783 

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 m

Se
c)

 

Shortest Job First Algorithm 

0 

0.5 

1 

1.5 

2 

CPU  GPU 

1 

0.078 Ex
e

cu
ti

o
n

 T
im

e
 (

in
 m

Se
c)

 

Priority Based Algorithm 

0 

0.5 

1 

1.5 

2 

CPU  GPU 

2 

0.1498 

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 m

Se
c)

 

 Round Robin Algorithm 

0 2 4 6 8 10 12 14 

FCFS 

SJF 

RR 

PRIORITY 

10.28 

12.77 

13.35 

12.28 

 SPEED UP (xCPU) 



International Journal of Computer Applications (0975 – 8887) 

Volume 127 – No.2, October 2015 

49 

6. CONCLUSION 
This paper introduces a GPU implementation of the operating 

system scheduling algorithms. The algorithms were designed 

for the NVIDIA CUDA platform to work in parallel with 

many threads in execution. It implements the operations of 

calculating the waiting time and turnaround time on the GPU 

and it uses the latest features of the NVIDIA CUDA SDK 6.0 

on Geforce 740m processor. With the help of the GPU the 

execution time of various algorithms was found to be 10.28-

13.35x faster than on the CPU using C code. This is a 

significant enhancement in the performance of the algorithms. 

GPU has shown tremendous potential and a further 

performance increase is expected with better optimization and 

more advanced GPUs. 

7. REFERENCES 
[1]  Shuai C., Michael B., Jiayuan M., David T., Jeremy W. 

S., Kevin S.,  Performance Study of General-Purpose 

Applications on Graphics Processors Using CUDA 

[2]  Maria Andreina F. Rodriguez, “CUDA: Speeding Up 

Parallel Computing”. 

[3] Wikipedia- “http://en.wikipedia.org/wiki/CUDA” 

[4]  Anthony Lippert – “NVIDIA GPU Architecture for 

General Purpose Computing” 

[5]  David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 – 

“CUDA Threads” 

[6] Yadav K., Mittal A., Ansari M. A., Vishwarup V., 

“Parallel Implementation of Similarity Measures on GPU 

Architecture using CUDA” 

[7] Direct Compute Programming Guide 

(http://developer.download.NVIDIA.com/compute/DevZ

one/docs/html/DirectCompute/doc/DirectCompute_Progr

amming_Guide.pdf) 

[8]  Singh B.M., Mittal A., Ghosh D., Parallel 

Implementation of Niblack’s Binarization Approach on 

CUDA. 

[9]  Peter Zalutaski “CUDA – Supercomputing for masses.” 

[10] Practical Applications for CUDA 

(http://supercomputingblog.com/cuda/practical-

applicationsfor-cuda/) 

[11] Matthew Guidry, Charles McClendon, “Parallel 

Programming with CUDA”. 

[12] NVIDIA Corporation. NVIDIA CUDA Compute Unified 

Device Architecture Programming Guide, June 2008.  

[13] Danilo De Donno et al., “Introduction to GPU 

Computing and CUDA Programming: A Case Study on 

FDTD,” IEEE Antennas and Propagation Magazine, June 

2010. 

[14] Practical Applications for CUDA 

http://supercomputingblog.com/cuda/practical-

applications-for-cuda 

[15] GPU Gems 2, Chapter 35. GPU Program Optimization 

http://http.developer.NVIDIA.com/GPUGems2/gpu 

gems_chapter35.html  

[16] Process Scheduling. Available online: 

https://www.cs.rutgers.edu/~pxk/416/notes/07-

scheduling.html 2003-2015. 

[17] CPU Scheduling. Available online: 

http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSyst

ems/5_CPU_Scheduling.html 

[18] Types of Scheduling. Available online: 

http://www.go4expert.com/articles/types-of-scheduling-

t22307/ 

[19] Alexandra Fedorova. “Operating System Scheduling for 

Chip Multithreaded Processors”, 

https://www.cs.sfu.ca/~fedorova/thesis  

[20] Daniel Alexander Taranovsky, CPU “Scheduling in 

Multimedia Operating Systems”,1999 

[21] David Tarditi, Sidd Puri, Jose Oglesby,  “Accelerator: 

Using Data Parallelism to Program GPUs for General-

Purpose Uses”, October 2006 

[22] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, 

Jeremy W. Sheaffer, Kevin Skadron, “A Performance 

Study of General-Purpose Applications on Graphics 

Processors Using-CUDA”  

[23] Manish Arora, “The Architecture and Evolution of CPU-

GPU Systems for General Purpose-Computing“. 

[24] Jayshree Ghorpade , Jitendra Parande , Madhura 

Kulkarni , Amit Bawaskar, “GPGPU PROCESSING IN 

CUDA ARCHITECTURE” Advanced Computing: An 

International Journal ( ACIJ ), Vol.3, No.1, January 2012  

 

IJCATM : www.ijcaonline.org 

http://developer.download.nvidia.com/compute/DevZone/docs/html/DirectCompute/doc/Direct
http://developer.download.nvidia.com/compute/DevZone/docs/html/DirectCompute/doc/Direct
http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/5_CPU_Scheduling.html
http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/5_CPU_Scheduling.html
https://www.cs.sfu.ca/~fedorova/thesis

