
International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

5

Map vs. Unordered Map: An Analysis on Large Datasets

Akanksha Bindal
Department of Computer

Engineering
Delhi Technological University

New Delhi, India

Prateek Narang
Department of Computer

Engineering
Delhi Technological University

New Delhi, India

S. Indu, PhD
Department of Electronics and

Communication
Delhi Technological University

New Delhi, India

ABSTRACT

In the current scenario, with the transpiring big data

explosion, data sets are often too large to fit completely inside

the computers´ internal memory. In efficient processes, speed

is not an option, it is a must. Hence every alternative is

explored to further enhance performance, by expanding in-

place memory storage that enables more data to be resident in

the memory, eliminating operation latency, and even

deploying an in-memory database (IMDB) system where all

the data can be kept in memory. However, the technique of in-

memory data handling is still at an infant stage and not viable

in the current scenario. To tackle this problem a hierarchical

hashing scheme is discussed where only one component of a

big data structure resides in the memory. In this paper two

data structures are explored: 1) Map which is implemented as

self-balancing binary search trees or more commonly Red

Black Trees and 2) Unordered Map which is based on hashing

with chaining technique. Serialization and deserialization

operations are also performed to free the internal memory and

preserve the data structure object for later use. Operations

such as read, write are performed, along with documentation

of the results and illustrations of visual representations of the

two algorithmic data structures.

General Terms

Advanced Data Structures, Algorithms, Memory management

et al.

Keywords

Map, Unordered Map, Boost C++, Serialization, Hierarchical

hashing, Memory management

1. INTRODUCTION
In most large scale applications across multiple domains, data

sets are too large to fit completely inside the computer’s

internal memory. A major performance barrier is observed

due to the I/O communication constraints between fast

internal memory and slower external memory (such as

secondary storage devices). In this paper, the state-of-the art

in the design and performance of STL data structures for

handling large data sets is analyzed.

1.1 Horizons: Big Data Explosion
Big Data Explosion has stimulated much research into

constructing systems that support the handling of low latency

in internal-external memory communication processes and

improve real time data analytics. As a result of the high

latency to disk access, existing hard disk based systems fail to

provide timely response. The unacceptable performance was

initially encountered by Internet companies such as Amazon,

Google, Facebook and Twitter, [2] but is now also becoming a

hindrance for other organizations which desire to provide a

reliable real-time service (e.g., real-time auction services,

advertising, social gaming). For example, trading companies

must detect a sudden change in the stock market prices and

react immediately (in milliseconds), which seems unlikely to

achieve using traditional disk-based processing systems [3]. In

order that we meet the strict requirements for analyzing large

amounts of unstructured data in real-time and cater to requests

in milliseconds, an IMDB system that loads the entire data

into the Random Access Memory (RAM) as and when

required, is necessary. Jim Grays farsighted insight that

Memory is the new disk, disk is the new tape is slowly seen

materializing into reality today [4]. We are living in an era

that will gradually lead to the replacement of disks by

improved memory constructs resulting in the role of disks

becoming more archival. In recent decades, new

breakthroughs are being created due to the emergence of

multi-core processors and the availability of large amounts of

main memory at tumbling costs. For instance, memory storage

capacity and bandwidth have been doubling roughly every

three years, while its price has been dropping by a factor of 10

every five years [3]. Evolution of database systems over the

last few decades is primarily driven by significant progress in

hardware, availability of a large amount of data, emerging

applications, collection of data at an unprecedented rate and

so on. The landscape of the two types of database systems is

increasingly divided based on the assortment of available

application (i.e., applications depending on structured data,

graphical data, and stream data input). Figure 1 shows state-

of-the-art commercial and related systems for disk-based

memory and in-memory database systems and operations.

Applications today range from large scale computation

intensive activities such as Big Data problems solved by using

technologies like Map Reduce in Hadoop to fast real-time

based applications that require lossless data transmit at the

risk of low computational power. With such a diverse range of

applications, memory requirements are scaling at an

unprecedented rate. In efficient day-to-day processes, speed is

not an option, it is a must. Hence every alternative is explored

to further enhance performance, by expanding in-place

memory storage that enables more data to be resident in the

memory, eliminating operation latency, and even deploying

an in-memory database (IMDB) system where all the data can

be kept in memory. However, the technique of in-memory

data handling is still at an infant stage and not viable in the

current scenario. To tackle this problem a hierarchical hashing

scheme is discussed where, at a time, only one component of

a big data structure resides in the memory.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

6

Fig 1. The (Partial) Landscape of Disk-Based Management

Systems

2. STANDARD TEMPLATE LIBRARY

CONTAINERS

2.1 STL Container: Unordered Map

Unordered maps fall under the subset of associative con-

tainers that use a pair of a key and a mapped value to store the

corresponding elements. In an unordered map, the key value

is usually used to uniquely identify the element, while the

mapped value stores the content associated to this key. These

data structures allow for fast retrieval of individual contained

elements based on their mapped keys. Internally, the elements

in the unordered map are not sorted in any particular order

with respect to either their key or mapped values, but

organized into buckets depending on their hash values to

allow for fast access to individual elements directly by their

key values (with a constant average time complexity on

average)[8]. Results indicate that Unordered map constructs

are much faster than map containers to access individual

elements by their key value, but are generally less efficient for

range traversal through a subset of their elements. However

when sorted data is required in the output, Unordered Maps

even after applying additional sorting algorithms, are equally

efficient as Red Black Trees(that automatically produce sorted

results).

2.1.1 Hashing using Unordered Map:
In computing applications, a hash table (hash map) is a data

structure used to implement a structure that can map keys to

values, broadly known as the associative array. A hash table

relies on a proper hash function to calculate an index into a set

of buckets or slots, from which the correct value can be then

retrieved. In ideal conditions, no hash collision (different keys

that are assigned by the hash function to the same bucket)

occurs and the hash function assigns each key to a single

bucket. But it is possible that the hash function generates

identical hash values for two keys causing both keys to point

to the same bucket. Instead, most hash table designs assume

that hash collisions will occur and must be accommodated in

some way. In this paper, it is assumed to have access to hash

functions that behave as truly random functions, independent

of the sequence of operations to be performed. This means

that any hash function value h(x) is uniformly random across

the input domain x and independent of hash function values

on elements different from x. The efficient functioning of a

hash table depends on the fact that the table size is

proportional to the number of entries. When the size of hash

table is fixed, and common structures are used, hash table

works similar to a linear search, except with a better constant

factor. Further for achieving better memory management

implicit resizing is carried out in the hash table. Resizing is

accompanied by a full or additive table rehash operation

whereby existing items are mapped to new bucket locations.

To constrain the amount of memory wasted due to empty

buckets, some implementations also shrink the size of the

table, followed by a rehash, when items are deleted. From the

point of space-time trade-offs, this operation is similar to the

de-allocation in dynamic arrays.

2.2 STL Containers: Map
Maps are another subset of associative containers that adhere

to a specific order while storing elements formed by a key and

a mapped value pair. In a map, the key value are generally

used to sort the objects and uniquely identify the elements,

while the content associated to this key is shown by the

mapped values. The types of key and mapped value may

differ. Internally, the elements in a map are always sorted by

its key following a specific criterion involving strict weak

ordering indicated by its internal comparison object [10]. Map

containers are generally slower than unordered map

containers to access individual elements by their key.

However, they allow range iteration on subsets based on the

underlying order, which is missing from unordered map

containers. Maps are typically implemented as self balancing

binary search trees.

Fig. 2. An example of a red-black tree

2.2.1 Using Red Black Trees:

A red black tree is a type of binary search tree with an extra

bit of data per node, its color, which can be either red or

black. This extra bit of information ensures an approximately

balanced tree by restricting how nodes on any path from the

root to the leaf are colored. Thus, it is a data structure which

works as a self-balancing binary search tree. Balance is

preserved by coloring each node of the tree with one of two

colors (standardized as ’red’ and ’black’) in a way that

satisfies certain properties, which effectively constrain how

unbalanced the tree can become in the worst case. Whenever

the tree is modified, the coloring properties of the new tree are

stored by subsequent rearrangement and repainting of nodes.

The properties are designed in such a way that this

rearrangement can be performed efficiently. The balancing of

the tree though not perfect, is good enough to guarantee

searching in O(log n) time, where n is the total number of

elements in the tree. Tree insertion and deletion operations,

along with the node rearrangement and recoloring, are also

performed in O(log n) time.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

7

Fig. 3. Comparison of Map and Unordered Map STL

Containers

3. EXPERIMENT

3.1 Data Set
Data sets containing 1 billion entries are considered. Each

entry has a unique integer as its key and an 8 bit character as

value. This data is generated using a Python script which

selects few million random entries for a given range (For

example: 2-6 Million). Test is performed on ranges of size 1

million, 2 million, 4 million and 8 million entries. For

example, with respect to 8 million range ranges of 0-8 million,

16-24 million and so on are considered.

3.2 Methodology
In this data set hashing of up to 16 million entries is

performed on both Unordered Maps and Maps. Performance

of these data structures degrade as the number of entries

increase. Hence, a hierarchical hashing scheme based on

range of integer keys is used. The first hash function is based

on integer key range which decides the hash table a particular

entry will go into. Instead of populating a single data structure

object with huge data (around 2 GB), multiple hash table

objects (for both unordered map and map) are used for storing

the data. The hashing at the second level occurs in STL Maps

and Unordered Maps which use the inbuilt hashing functions.

Due to large data and limited memory (RAM), all objects

cannot reside in memory at the same time. Hence,

serialization of objects which are not required at that time is

carried out. Def: The process of transforming an object in

memory into a stream of bytes in order to store the object or

transmit it over a database, network is called serialization. The

primary purpose is to store the state of the object to be able to

recreate it when needed. The reverse operation is called

deserialization. This helps in freeing the internal memory

(RAM) and preserving the data in secondary storage for later

use. Boost Library in C++ is used for the purpose of

serialization and deserialization.

Fig. 4. Overview of internal hierarchical hashing scheme

3.3 Experimental Results
Write operations are performed on each data structure object

(implemented using both Map and Unordered Map) which can

handle data entries having a total size ranging from 20MB to

200 MB. Data stored in even 10 such objects takes 2 GB of

space which is not available in RAM of normal computers.

Hence serialization operations are performed after writing

each object and the corresponding CPU clock time is noted.

Later, reading data from these hash maps is done by loading

each object in memory through deserialization. Reading

operation is performed in which each read takes O(1) time.

The read can be either sequential or in any arbitrary order.

The unordered map produces output in a random order which

needs to be sorted based on keys. Thus some additional

sorting time is required for it but still it is more efficient than

maps. Four graphs are plotted for a single data structure object

which can handle data ranging from 20 - 200 MB. Multiple

such objects were used to perform the entire test but with a

single object residing in memory at a given time. The graphs

display the average time taken for various operations by one

such object. Results are displayed in Fig 5, 6, 7 and 8 for

Update, Serialization, Loading and Deserialization operations

respectively. The values for the dataset ranging from 1 million

to 16 million are tabulated and displayed in Table 1.

 Map Unordered_map

element ordering strict weak n/a

common balanced tree or red-
hash table

implementation black tree

 O(1) if no hash collisions,

search time log(n) Up to O(n) if there are hash

collisions, O(n) when hash

 is same for any key

Insertion time log(n) + rebalance Same as search

Deletion time log(n) + rebalance Same as search

needs comparators only operator < only operator ==

needs hash function no yes

common use case when good hash is not In most other cases

possible or too slow. Or

when order is required

OBJECT 1

OBJECT 2

OBJECT 3

OBJECT 4

OBJECT 5

OBJECT…

OBJECT N

Each object is
Map or
Unordered Map
in itself. Each
object can have
size 20-200 MB

Deserialized objects
(Stored in
secondary memory
for later use)

Objects in
current use
(in RAM)

Simple hash

function which

decides which

object will be

used for a given

range of entries

IMPLEMENTATION
OVERVIEW

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

8

FIG. 5. Comparison based on updating the data

structure object. Unordered Maps perform faster and

Maps become slow as number of entries increases

FIG. 6. Comparison based on serialization of data

structure object. Both Map and Unordered Map take the

same time

FIG. 7. Comparison based on deserializing and iterating

over the entire object (Excluding the sorting time for

Unordered Maps) This shows that Unordered Map is

faster to traverse than a Map

FIG. 8. Comparison based on deserializing and iterating

over the entire data object (Including the sorting time for

Unordered Maps) Note: Time for Unordered Map

including deserialization time, iteration time and sorting

time. The time for Map including only deserialization time

and iteration time as map implicitly produces sorted

output.

TABLE 1: Table displaying the time to perform update

and read operations for entries from 1 million - 8 million
Update Operations

Entries in

Million Time in seconds

 Unordered Map Map

1 15 21

2 32 43

4 63 90

8 127 192

16 260 384

 Update + Serialization

Entries in

Million Time in seconds

 Unordered Map Map

1 35 41

2 72 83

4 146 170

8 295 352

16 575 700

 Serialization + Deletion from memory

Entries in

Million Time in seconds

 Unordered Map Map

1 20 20

2 40 40

4 80 80

8 168 164

16 315 164

 Deserialization + Reading/Iteration

Entries in

Million Time in seconds

 Unordered Map Map

1 32 35

2 63 72

4 118 148

8 213 300

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

9

4. CONCLUSION
Results indicate that Unordered Maps perform better than

Maps in most cases for operations like updating, reading,

erasing and complete iteration over the data structure, as

illustrated in Table 1. Maps become slow as the internal tree

size increases. This happens because tree balancing operations

are more frequent when the entries are sequential. As the

number of entries increase the tree size also increase and thus

operations becomes slower. However, this is not the case for

Unordered Maps. The time to find the right bucket and push

the data into it is almost constant (having a O(1) amortized

time complexity) regardless of the number of entries to a

particular limit. After a particular limit is reached, rehashing

is done automatically/implicitly. Rehashing operations take

time but frequency of rehashing is very small as compared to

balancing operations in tree based maps. So, unordered maps

perform much better. It is also found that both data structures

take the same time for Serialization and Deserialization

operations. In case sorted output (based on keys) from

Unordered Maps is desired, sorting algorithms are

implemented to sort the random data obtained from them. In

this case, they take the same time as reading from Maps,

which implicitly produce sorted output.

5. ACKNOWLEDGMENTS
Our sincere thanks to all the professors in the Programming

Lab at College for their timely support and inputs.

6. REFERENCES
[1] Jeffrey Scott Vitter, Purdue University ”Dealing with

massive data” http://www.cs.purdue.edu/homes/jsv/

Papers/Vit.IO survey.pdf 2006.

[2] G. DeCandia, D. Hastorun, M. Jampani et al., Dynamo:

Amazons highly available key-value store, OSR, 2007.

[3] Hao Zhang, Gang Chen,Kian-Lee Tan et al., ”In-

Memory Big Data Management and Processing: A

Survey”

[4] S. Robbins, Ram is the new disk, InfoQ News, Jun. 2008.

[5] J. Ousterhout, P. Agrawal, D. Erickson et al., The case

for ramclouds: Scalable high-performance storage

entirely in dram, OSR, 2010.

[6] F. Li, B. C. Ooi, M. T. O zsu, and S. Wu, Distributed

data manage-ment using mapreduce,ACM Comput. Surv.,

2014.

[7] Wikipedia-Wikipedia.org.

[8] Standard C++ Library reference:

http://www.cplusplus.com/reference/unorderedmap/unor

dered map/ Cpp Reference Documentation

[9] The Boost C++ Libraries:

http://theboostcpplibraries.com/ Boost C++

Documentation

[10] Standard C++ Library reference:

http://www.cplusplus.com/reference/map/map/ Cpp

Reference Documentation

[11] HP, Vertica systems, 2011. [Online]. Available:

http://www.vertica. com

[12] D. J. DeWitt, R. H. Katz, F. Olken et al., Implementation

techniques for main memory database systems, in

SIGMOD 84, 1984.

[13] R. B. Hagmann, A crash recovery scheme for a memory-

resident database system,TC, 1986.

[14] T. J. Lehman and M. J. Carey, A recovery algorithm for

a high performance memory-resident database system, in

SIGMOD 87, 1987.

[15] M. H. Eich, Mars: The design of a main memory

database machine, in Database Machines and Knowledge

Base Machines.Springer US, 1988.

[16] D. J. DeWitt and J. Gray, Parallel database systems: The

future of high performance database systems, CACM,

1992.

[17] S. Wu, B. C. Ooi, and K.-L. Tan, Online aggregation, in

Advanced Query Processing. Springer Berlin Heidelberg,

2013

[18] S. Wu, S. Jiang, B. C. Ooi, and K.-L. Tan, Distributed

online aggregations, in PVLDB 09, 2009.

[19] T. J. Lehman and M. J. Carey, A study of index

structures for main memory database management

systems, in PVLDB 86, 1986.

[20] J. Rao and K. A. Ross, Cache conscious indexing for

decision-support in main memory, in PVLDB 99, 1999.

[21] D. B. Lomet, S. Sengupta, and J. J. Levandoski, The bw-

tree: A b-tree for new hardware platforms, in ICDE 13,

2013.

[22] T. Brown, F. Ellen, and E. Ruppert, A general technique

for non-blocking trees, in PPoPP, pp. 329342, ACM,

2014.

[23] T. Brown, Personal homepage.

[24] Oracle, Concurrentskiplistmap, 2014.

[25] D. Dice, Y. Lev, M. Moir, D. Nussbaum, and M.

Olszewski, Early experience with a commercial

hardware transactional memory im-plementation, tech.

rep., Sun Microsystems, Inc., 2009..

[26] A. C. Yao. On random 2-3 trees. Acta Informatica, 9,

159170, 1978.

[27] K.-Y. Whang and R. Krishnamurthy. Multilevel grid

filesA dy-namic hierarchical multidimensional file

structure. In Proceedings of the International Symposium

on Database Systems for Advanced Applications,

449459. World Scientific Press, 1992.

[28] J. S. Vitter and P. Flajolet. Average-case analysis of

algorithms and data structures. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, Volume A:

Algorithms and Complexity, chapter 9, 431524

IJCATM : www.ijcaonline.org

