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ABSTRACT 

In the current scenario, with the transpiring big data 

explosion, data sets are often too large to fit completely inside 

the computers´ internal memory. In efficient processes, speed 

is not an option, it is a must. Hence every alternative is 

explored to further enhance performance, by expanding in-

place memory storage that enables more data to be resident in 

the memory, eliminating operation latency, and even 

deploying an in-memory database (IMDB) system where all 

the data can be kept in memory. However, the technique of in-

memory data handling is still at an infant stage and not viable 

in the current scenario. To tackle this problem a hierarchical 

hashing scheme is discussed where only one component of a 

big data structure resides in the memory. In this paper two 

data structures are explored: 1) Map which is implemented as 

self-balancing binary search trees or more commonly Red 

Black Trees and 2) Unordered Map which is based on hashing 

with chaining technique. Serialization and deserialization 

operations are also performed to free the internal memory and 

preserve the data structure object for later use. Operations 

such as read, write are performed, along with documentation 

of the results and illustrations of visual representations of the 

two algorithmic data structures. 
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1. INTRODUCTION 
In most large scale applications across multiple domains, data 

sets are too large to fit completely inside the computer’s 

internal memory. A major performance barrier is observed 

due to the I/O communication constraints between fast 

internal memory and slower external memory (such as 

secondary storage devices). In this paper, the state-of-the art 

in the design and performance of STL data structures for 

handling large data sets is analyzed. 

1.1 Horizons: Big Data Explosion 
Big Data Explosion has stimulated much research into 

constructing systems that support the handling of low latency 

in internal-external memory communication processes and 

improve real time data analytics. As a result of the high 

latency to disk access, existing hard disk based systems fail to 

provide timely response. The unacceptable performance was 

initially encountered by Internet companies such as Amazon, 

Google, Facebook and Twitter, [2] but is now also becoming a 

hindrance for other organizations which desire to provide a 

reliable real-time service (e.g., real-time auction services, 

advertising, social gaming). For example, trading companies 

must detect a sudden change in the stock market prices and 

react immediately (in milliseconds), which seems unlikely to 

achieve using traditional disk-based processing systems [3]. In 

order that we meet the strict requirements for analyzing large 

amounts of unstructured data in real-time and cater to requests 

in milliseconds, an IMDB system that loads the entire data 

into the Random Access Memory (RAM) as and when 

required, is necessary. Jim Grays farsighted insight that 

Memory is the new disk, disk is the new tape is slowly seen 

materializing into reality today [4]. We are living in an era 

that will gradually lead to the replacement of disks by 

improved memory constructs resulting in the role of disks 

becoming more archival. In recent decades, new 

breakthroughs are being created due to the emergence of 

multi-core processors and the availability of large amounts of 

main memory at tumbling costs. For instance, memory storage 

capacity and bandwidth have been doubling roughly every 

three years, while its price has been dropping by a factor of 10 

every five years [3]. Evolution of database systems over the 

last few decades is primarily driven by significant progress in 

hardware, availability of a large amount of data, emerging 

applications, collection of data at an unprecedented rate and 

so on. The landscape of the two types of database systems is 

increasingly divided based on the assortment of available 

application (i.e., applications depending on structured data, 

graphical data, and stream data input). Figure 1 shows state-

of-the-art commercial and related systems for disk-based 

memory and in-memory database systems and operations. 

Applications today range from large scale computation 

intensive activities such as Big Data problems solved by using 

technologies like Map Reduce in Hadoop to fast real-time 

based applications that require lossless data transmit at the 

risk of low computational power. With such a diverse range of 

applications, memory requirements are scaling at an 

unprecedented rate. In efficient day-to-day processes, speed is 

not an option, it is a must. Hence every alternative is explored 

to further enhance performance, by expanding in-place 

memory storage that enables more data to be resident in the 

memory, eliminating operation latency, and even deploying 

an in-memory database (IMDB) system where all the data can 

be kept in memory. However, the technique of in-memory 

data handling is still at an infant stage and not viable in the 

current scenario. To tackle this problem a hierarchical hashing 

scheme is discussed where, at a time, only one component of 

a big data structure resides in the memory.  
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Fig 1. The (Partial) Landscape of Disk-Based Management 

Systems 

2. STANDARD TEMPLATE LIBRARY 

CONTAINERS 

2.1 STL Container: Unordered Map 

Unordered maps fall under the subset of associative con-

tainers that use a pair of a key and a mapped value to store the 

corresponding elements. In an unordered map, the key value 

is usually used to uniquely identify the element, while the 

mapped value stores the content associated to this key. These 

data structures allow for fast retrieval of individual contained 

elements based on their mapped keys. Internally, the elements 

in the unordered map are not sorted in any particular order 

with respect to either their key or mapped values, but 

organized into buckets depending on their hash values to 

allow for fast access to individual elements directly by their 

key values (with a constant average time complexity on 

average)[8]. Results indicate that Unordered map constructs 

are much faster than map containers to access individual 

elements by their key value, but are generally less efficient for 

range traversal through a subset of their elements. However 

when sorted data is required in the output, Unordered Maps 

even after applying additional sorting algorithms, are equally 

efficient as Red Black Trees(that automatically produce sorted 

results). 

2.1.1 Hashing using Unordered Map:  
In computing applications, a hash table (hash map) is a data 

structure used to implement a structure that can map keys to 

values, broadly known as the associative array. A hash table 

relies on a proper hash function to calculate an index into a set 

of buckets or slots, from which the correct value can be then 

retrieved. In ideal conditions, no hash collision (different keys 

that are assigned by the hash function to the same bucket) 

occurs and the hash function assigns each key to a single 

bucket. But it is possible that the hash function generates 

identical hash values for two keys causing both keys to point 

to the same bucket. Instead, most hash table designs assume 

that hash collisions will occur and must be accommodated in 

some way. In this paper, it is assumed to have access to hash 

functions that behave as truly random functions, independent 

of the sequence of operations to be performed. This means 

that any hash function value h(x) is uniformly random across 

the input domain x and independent of hash function values 

on elements different from x. The efficient functioning of a 

hash table depends on the fact that the table size is 

proportional to the number of entries. When the size of hash 

table is fixed, and common structures are used, hash table 

works similar to a linear search, except with a better constant 

factor. Further for achieving better memory management 

implicit resizing is carried out in the hash table. Resizing is 

accompanied by a full or additive table rehash operation 

whereby existing items are mapped to new bucket locations. 

To constrain the amount of memory wasted due to empty 

buckets, some implementations also shrink the size of the 

table, followed by a rehash, when items are deleted. From the 

point of space-time trade-offs, this operation is similar to the 

de-allocation in dynamic arrays. 

2.2 STL Containers: Map 
Maps are another subset of associative containers that adhere 

to a specific order while storing elements formed by a key and 

a mapped value pair. In a map, the key value are generally 

used to sort the objects and uniquely identify the elements, 

while the content associated to this key is shown by the 

mapped values. The types of key and mapped value may 

differ. Internally, the elements in a map are always sorted by 

its key following a specific criterion involving strict weak 

ordering indicated by its internal comparison object [10]. Map 

containers are generally slower than unordered map 

containers to access individual elements by their key. 

However, they allow range iteration on subsets based on the 

underlying order, which is missing from unordered map 

containers. Maps are typically implemented as self balancing 

binary search trees. 

 

Fig. 2. An example of a red-black tree 

 

2.2.1 Using Red Black Trees:  

A red black tree is a type of binary search tree with an extra 

bit of data per node, its color, which can be either red or 

black. This extra bit of information ensures an approximately 

balanced tree by restricting how nodes on any path from the 

root to the leaf are colored. Thus, it is a data structure which 

works as a self-balancing binary search tree. Balance is 

preserved by coloring each node of the tree with one of two 

colors (standardized as ’red’ and ’black’) in a way that 

satisfies certain properties, which effectively constrain how 

unbalanced the tree can become in the worst case. Whenever 

the tree is modified, the coloring properties of the new tree are 

stored by subsequent rearrangement and repainting of nodes. 

The properties are designed in such a way that this 

rearrangement can be performed efficiently. The balancing of 

the tree though not perfect, is good enough to guarantee 

searching in O(log n) time, where n is the total number of 

elements in the tree. Tree insertion and deletion operations, 

along with the node rearrangement and recoloring, are also 

performed in O(log n) time. 
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Fig. 3. Comparison of Map and Unordered Map STL 

Containers 

3. EXPERIMENT  

3.1 Data Set  
Data sets containing 1 billion entries are considered. Each 

entry has a unique integer as its key and an 8 bit character as 

value. This data is generated using a Python script which 

selects few million random entries for a given range (For 

example: 2-6 Million). Test is performed on ranges of size 1 

million, 2 million, 4 million and 8 million entries. For 

example, with respect to 8 million range ranges of 0-8 million, 

16-24 million and so on are considered. 

3.2 Methodology 
In this data set hashing of up to 16 million entries is 

performed on both Unordered Maps and Maps. Performance 

of these data structures degrade as the number of entries 

increase. Hence, a hierarchical hashing scheme based on 

range of integer keys is used. The first hash function is based 

on integer key range which decides the hash table a particular 

entry will go into. Instead of populating a single data structure 

object with huge data (around 2 GB), multiple hash table 

objects (for both unordered map and map) are used for storing 

the data. The hashing at the second level occurs in STL Maps 

and Unordered Maps which use the inbuilt hashing functions. 

Due to large data and limited memory (RAM), all objects 

cannot reside in memory at the same time. Hence, 

serialization of objects which are not required at that time is 

carried out. Def: The process of transforming an object in 

memory into a stream of bytes in order to store the object or 

transmit it over a database, network is called serialization. The 

primary purpose is to store the state of the object to be able to 

recreate it when needed. The reverse operation is called 

deserialization. This helps in freeing the internal memory 

(RAM) and preserving the data in secondary storage for later 

use. Boost Library in C++ is used for the purpose of 

serialization and deserialization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Overview of internal hierarchical hashing scheme 

3.3 Experimental Results 
Write operations are performed on each data structure object 

(implemented using both Map and Unordered Map) which can 

handle data entries having a total size ranging from 20MB to 

200 MB. Data stored in even 10 such objects takes 2 GB of 

space which is not available in RAM of normal computers. 

Hence serialization operations are performed after writing 

each object and the corresponding CPU clock time is noted. 

Later, reading data from these hash maps is done by loading 

each object in memory through deserialization. Reading 

operation is performed in which each read takes O(1) time. 

The read can be either sequential or in any arbitrary order. 

The unordered map produces output in a random order which 

needs to be sorted based on keys. Thus some additional 

sorting time is required for it but still it is more efficient than 

maps. Four graphs are plotted for a single data structure object 

which can handle data ranging from 20 - 200 MB. Multiple 

such objects were used to perform the entire test but with a 

single object residing in memory at a given time. The graphs 

display the average time taken for various operations by one 

such object. Results are displayed in Fig 5, 6, 7 and 8 for 

Update, Serialization, Loading and Deserialization operations 

respectively. The values for the dataset ranging from 1 million 

to 16 million are tabulated and displayed in Table 1. 

 Map Unordered_map 
 

    

element ordering strict weak n/a 
 

   
 

common balanced tree or red- 
hash table  

implementation black tree  

 
 

   
 

  O(1) if no hash collisions, 
 

search time log(n) Up to O(n) if there are hash 
 

collisions, O(n) when hash  

  
 

  is same for any key 
 

    

Insertion time log(n) + rebalance Same as search 
 

    

Deletion time log(n) + rebalance Same as search 
 

   
 

needs comparators only operator < only operator == 
 

    

needs hash function no yes 
 

    

common use case when good hash is not   In most other cases 
 

 
possible or too slow. Or 

when order is required  
 

OBJECT 1 

OBJECT 2 

OBJECT 3 

OBJECT 4 

OBJECT 5 

OBJECT… 

OBJECT N 

 

 

 

Each object is 
Map or 
Unordered Map 
in itself. Each 
object can have 
size 20-200 MB 

Deserialized objects 
(Stored in 
secondary memory 
for later use) 

Objects in 
current use 
(in RAM) 

Simple hash 

function which 

decides which 

object will be 

used for a given 

range of entries 

IMPLEMENTATION 
OVERVIEW 
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FIG.  5.  Comparison based on  updating  the  data  

structure  object. Unordered Maps perform faster and 

Maps become slow as number of entries increases 

 

FIG. 6. Comparison based on serialization of data 

structure object. Both Map and Unordered Map take the 

same time 

 

FIG. 7. Comparison based on deserializing and iterating 

over the entire object (Excluding the sorting time for 

Unordered Maps) This shows that Unordered Map is 

faster to traverse than a Map 

 
FIG. 8. Comparison based on deserializing and iterating 

over the entire data object (Including the sorting time for 

Unordered Maps) Note: Time for Unordered Map 

including deserialization time, iteration time and sorting 

time. The time for Map including only deserialization time 

and iteration time as map implicitly produces sorted 

output. 

 

TABLE 1: Table displaying the time to perform update 

and read operations for entries from 1 million - 8 million 
Update Operations 

Entries in 

Million Time in seconds 

  Unordered Map Map 

1 15 21 

2 32 43 

4 63 90 

8 127 192 

16 260 384 

   Update + Serialization 

Entries in 

Million Time in seconds 

  Unordered Map Map 

1 35 41 

2 72 83 

4 146 170 

8 295 352 

16 575 700 

   Serialization + Deletion from memory 

Entries in 

Million Time in seconds 

  Unordered Map Map 

1 20 20 

2 40 40 

4 80 80 

8 168 164 

16 315 164 

   Deserialization + Reading/Iteration 

Entries in 

Million Time in seconds 

  Unordered Map Map 

1 32 35 

2 63 72 

4 118 148 

8 213 300 
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4. CONCLUSION 
Results indicate that Unordered Maps perform better than 

Maps in most cases for operations like updating, reading, 

erasing and complete iteration over the data structure, as 

illustrated in Table 1. Maps become slow as the internal tree 

size increases. This happens because tree balancing operations 

are more frequent when the entries are sequential. As the 

number of entries increase the tree size also increase and thus 

operations becomes slower. However, this is not the case for 

Unordered Maps. The time to find the right bucket and push 

the data into it is almost constant (having a O(1) amortized 

time complexity) regardless of the number of entries to a 

particular limit. After a particular limit is reached, rehashing 

is done automatically/implicitly. Rehashing operations take 

time but frequency of rehashing is very small as compared to 

balancing operations in tree based maps. So, unordered maps 

perform much better. It is also found that both data structures 

take the same time for Serialization and Deserialization 

operations. In case sorted output (based on keys) from 

Unordered Maps is desired, sorting algorithms are 

implemented to sort the random data obtained from them. In 

this case, they take the same time as reading from Maps, 

which implicitly produce sorted output. 
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