
International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

10

Code Clone Detection using Sequential Pattern Mining

Ali El-Matarawy
Faculty of Computers and

Information, Cairo University

Mohammad El-Ramly
Faculty of Computers and

Information, Cairo University

Reem Bahgat
Faculty of Computers and

Information, Cairo University

ABSTRACT
This paper presents a new technique for clone detection using

sequential pattern mining titled EgyCD. Over the last decade

many techniques and tools for software clone detection have

been proposed such as textual approaches, lexical approaches,

syntactic approaches, semantic approaches …, etc. In this

paper, we explore the potential of data mining techniques in

clone detection. In particular, we developed a clone detection

technique based on sequential pattern mining (SPM). The

source code is treated as a sequence of transactions processed

by the SPM algorithm to find frequent itemsets. We run three

experiments to discover code clones of Type I, Type II and

Type III and for plagiarism detection. We compared the

results with other established code clone detectors. Our

technique discovers all code clones in the source code and

hence it is slower than the compared code clone detectors

since they discover few code clones compared with EgyCD.

Keywords
Sequential Pattern Mining, Clone Detection, Data Mining

1. INTRODUCTION
It is very common in computer programming to copy part of

the program from one place and paste it in another place and

then adapt it to fit in the new place. This happens for a variety

of reasons [3]. As a result, software systems often contain

sections of code that are very similar, called code clones [1].

Previous research shows that a significant fraction (between

7% and 23%) of the code in a typical software system has

been cloned [2, 3]. Sometimes code clones are created for

legitimate reasons, but other times they are not and they

deteriorate the quality of the code. One of the main drawbacks

of code clones is that the developer should modify multiple

copies of the same pieces of code if a change is needed in a

piece of code that has been cloned. Often this does not happen

with good quality because the programmer forgets where

(s)he duplicated the code and leaves some clones unchanged.

Fortunately, several (semi-automated) techniques for

detecting code clones have been proposed to help the

programmer find code clones and locate the locations of

duplicate code [1].

A recent study that was done on industrial systems shows that

inconsistent changes/updates to cloned code are frequent and

lead to severe unexpected behavior [4]. Several other studies

also show that software systems with code clones can be more

difficult to maintain [5, 6] and can introduce subtle errors [7,

8]. Thus code clones are considered one of the bad “smells”

of a software system [9] and it is widely believed that cloned

code can make software maintenance and evolution

significantly more difficult. Thus the detection, monitoring

and removal of code clones are important topics in software

maintenance and evolution [1, 9].

Over the last decade many techniques and tools for software

clone detection have been proposed [1]. This includes textual

approaches, lexical approaches, syntactic approaches,

semantic approaches, among others. Most of them are

oriented to a specific computer language and they range from

high precision to low precision, and from high recall to low

recall [27]. Little work was done to explore the potential of

using data mining techniques in code clone detection. In this

work, we developed a new method for code clone detection

that uses sequential pattern mining [21] for detecting code

clones. Our method treats source code lines as transactions

and its words as items. Then, we search for the most frequent

itemsets. We ran three experiments to evaluate our method

and compared it with state-of-the-art clone detectors that use

other techniques. Our approach was able to recover all code

clones of Type I and Type II. It also recovered clones of Type

III with high precision and high recall features. A key feature

of our technique is that it is language independent. Our

detector was written as a highly optimized database

application using Adaptive server SQL anywhere as a

database engine and PowerBuilder as a front end tool, which

they are very suitable for data mining techniques.

The rest of this paper is organized as follows. After presenting

some basic definitions and terminologies regarding clones in

section 2, we introduce some related work on clone detection

in section 3. In section 4 we introduce an overview for data

mining and its techniques, particularly the ones relevant to

code clone detection. In sections 5, 6 and 7, we introduce our

new approach for detecting clones. Three case studies are

reported in section 8. Section 9 analyzes the results and

discusses advantages and limitations of our approach. Finally

the paper is concluded in section 10 with statement of future

work.

2. BASIC DEFINITIONS
Mainly we followed the same basic definitions mentioned in

[1, 3].

Definition 1: Code Fragment. A code fragment is a

continuous part of the source code, may consist of one or

more lines. It can be of any granularity, e.g., function

definition, begin-end block, or sequence of statements.

Definition 2: Code Clone. A Clone occurs when a code

fragment is an identical to another code fragment according to

some basic criteria. These criteria may be syntactical,

semantical, or both of them. Clones can be typically identical,

or a having some differences such as in renaming identifiers.

Definition 3: Clone Types. There are two main kinds of

similarity between code fragments. Fragments can be similar

based on the similarity of their program text, or they can be

similar based on their functionality (independent of their text).

The first kind of clone is often the result of copying a code

fragment and pasting it into another location. In the following

we provide the types of clones based on both the textual

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

11

(Types 1 to 3) [10] and functional (Type IV) [23, 24]

similarities.

Type I: Identical code fragments except for variations in

whitespace, layout and comments.

Type II: Syntactically identical fragments except for

variations in identifiers, literals, types, whitespaces, layout

and comments.

Type III: Copied fragments with further modifications such

as changed, added or removed statements, in addition to

variations in identifiers, literals, types, whitespaces, layout

and comments.

Type IV: Two or more code fragments that perform the same

computation but are implemented by different syntactic

variants.

Definition 4: Plagiarism. Plagiarism is a form of cheating. In

other words, plagiarism is an act of fraud. It involves stealing

someone else's work and lying about it afterward [25]. We

mean here by cheating is trying to steal the others by making

a copy from others’ document and paste it in your document.

Clone Relation Terminologies

Clone detection tools report clones in the form of Clone Pairs

(CP) or Clone Classes (CC) or both. These two terms speak

about the similarity relation between two or more cloned

fragments. The similarity relation between the cloned

fragments is an equivalence relation (i.e., a reflexive,

transitive, and symmetric relation) [11]. A clone-relation

holds between two code portions if (and only if) they are the

same sequences. Sequences are sometimes original character

strings, strings without whitespace, sequences of token type,

transformed token sequences and so on. In the following we

define clone pair and clone class in terms of the clone relation

[12]:

Clone Pair: A pair of code portions/fragments is called a

clone pair if there exists a clone-relation between them, i.e., a

clone pair is a pair of code portions/fragments which are

identical or similar to each other.

Clone Class: A clone class is the maximal set of code

portions/fragments in which any two of the code

portions/fragments hold a clone-relation, i.e., form a clone

pair.

3. RELATED WORK
According to [1] clone detection techniques can be divided

into string-based, token-based, parse tree-based, metrics-

based, PDG-based or hybrids-based techniques.

In string-based techniques, the target source program is

considered as a sequence of lines/strings. Two code fragments

are compared with each other to find sequences of same

text/strings. Once two or more code fragments are found to be

similar in their maximum possible extent, the target source

program is considered as sequence of lines/strings. Two code

fragments are compared with each other to find sequences of

same text/strings. Once two or more code fragments are found

to be similar in their maximum possible extent (e.g., w.r.t

maximum no. of lines), they are returned as clone pair or

clone class by the detection technique.

In the token-based detection approach, the entire source

system is lexed/parsed/transformed to a sequence of tokens.

This sequence is then scanned for finding duplicated

subsequences of tokens and finally, the original code portions

representing the duplicated subsequences are returned as

clones. Compared to text-based approaches, a token-based

approach is usually more robust against code changes such as

formatting and spacing.

In the tree-based approach, a program is parsed to a parse tree

or an abstract syntax tree (AST) with a parser of the language

of interest. Similar sub-trees are then searched in the tree with

some tree matching techniques and the corresponding source

code of the similar sub-trees is returned as clone pair or clone

class. The parse tree or AST contains the complete

information about the source code. Although the variable

names and literal values of the source are discarded in the tree

representation, more sophisticated methods for the detection

of clones can still be applied. PDG-based approaches [13, 14,

15] go one step further in obtaining a source code

representation of high abstraction than other approaches by

considering the semantic information of the source code. PDG

[16] contains the control flow and data flow information of a

program and hence carries semantic information. Once a set

of PDGs are obtained from a subject program, isomorphic

sub-graph matching algorithm is applied for finding similar

sub-graphs which are returned as clones.

Metrics-based approaches gather different metrics for code

fragments and compare these metrics’ vectors instead of

comparing code directly. There are several clone detection

techniques that use various software metrics for detecting

similar code. First, a set of software metrics called

fingerprinting functions are calculated for one or more

syntactic units such as a class, a function, or a method or even

statement and then the metrics’ values are compared to find

clones over these syntactic units. In most cases, the source

code is parsed to its AST/PDG representation for calculating

such metrics.

Hybrid-based techniques use a combination of syntactic and

semantic characteristics. Leitao [17] provides a hybrid

approach that combines syntactic techniques based on AST

metrics and semantic techniques (using call graphs) in

combination with specialized comparison functions [1].

A comparison of the techniques known from literature has

shown that so far there exists no single method that is superior

to all other methods in all situations [18, 19]. All techniques

have certain advantages and disadvantages. Techniques that

detect many clones (high recall) also return many code

fragments which are not clones (lower precision). In turn,

techniques with a high precision will usually have a lower

recall [27].

A related tool, Clone Miner, uses a data mining algorithm in

detecting code clones [26]. It has the following features:

 It is developed in C++.

 It use “market basket analysis” to detect code

clones

 It detects Type I and Type II only.

 It converts source code to XML using third party

tools and then processes the XML files. Hence, if

some source files fail to be converted to XML, it

cannot process them. It compares the code

structurally, i.e., it does the detection on AST.

 It divides the entry type of data into same file,

different files or directories, so it has some specific

code for each type. (similarly in [27]).

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

12

On the other hand EgyCD has the following features:

 It uses Apriori [21] sequential pattern mining

algorithm.

 It detects three types (Type I, Type II, Type III) as

well as plagiarism.

 It uses a database tool which is more suitable for

data mining algorithm.

 It works directly on the source code not on XML

representation of the code.

 It detects all code clones regardless the source code

is in one file, different files or directories.

 It is not oriented towards a specific language

4. SEQUENTIAL PATTERN MINING
Data mining [20, 21] is the process of extracting interesting

(non-trivial, implicit, previously unknown and potentially

useful) information or patterns from large information

repositories such as: relational database, data warehouses,

XML repository, etc. Also data mining is known as one of the

core processes of Knowledge Discovery in Database (KDD).

Sequential pattern mining [21] is trying to find the

relationships between occurrences of sequential events, to

find if there exists any specific order of the occurrences.

In sequential pttern mining [22] frequent itemsets are used to

illustrate relationships within large amounts of data. The

classical example is the analysis of the buying-behavior of

customers. The database consists of a set of transactions, and

each transaction is a set of items from a universal itemset I.

The goal is to find itemsets I that are subsets of many

transactions T in the database D, (I ⊆ T). An itemset is

called frequent, if it occurs in a percentage that exceeds a

certain given support count σ [27]:

σ (I) =
 ⊆

 ≥ σ

In EgyCD, we are not interested in the percentage of itemsets.

Instead, we are interested in their count:

 σ (I) = ⊆ ≥ σ where σ > 1

Most SPM algorithms are based on Apriori algorithm [21],

AprioriAll. Sequential pattern mining was first introduced in

[23] by Agrawal, and three Apriori based algorithms were

proposed. Given the transaction database with three attributes

customer-id, transaction-time and purchased-items, the

mining process was decomposed into five phases:

Sort Phase: the original transaction database is sorted with

customer-id as the major key and transaction time as the

minor key, the result is a set of customer sequences.

L-itemsets Phase: the sorted database is scanned to obtain

large 1-itemsets according to the predefined support

threshold.

Transformation Phase: the customer sequences are replaced

by those large itemsets they contain, and all the large itemsets

are mapped into a series of integers to make the mining more

efficient. At the end of this phase the original database is

transformed into a set of customer sequences represented by

those large itemsets.

Sequence Phase: all frequent sequential patterns are

generated from the transformed sequential database.

Maximal Phase: those sequential patterns that are contained

in other super sequential patterns are pruned in this phase,

since we are only interested in maximum sequential patterns.

Since most of the phases are straightforward, researchers

focused on the sequence phase in [17].

5. GENERAL DESCRIPTION OF EgyCD
Following Apriori-based approaches, our approach builds up

larger itemsets (clones in this case) from combining smaller

ones and then efficiently searches the source code to verify

their presence. It does not compare source code segments as

done in many other code clone detectors.

EgyCD tool consists of four steps:

1. The user selects the source files either it is in the directory

or in different directories to apply the tool on.

2. The tool transforms the source code to transactions of

itemsets.

3. EgyCD algorithm is applied to discover frequent itemsets

in the source code that exceed a given frequency threshold.

4. The algorithm prunes all code clones that appear

completely in other code clones to avoid duplicate results

and report only original clones not included in others.

Now we briefly describe how EgyCD algorithm works.

Assume that T is the set of all source code statements, where

each statement is considered a transaction. First, the algorithm

starts by getting the first itemset F which is the set of all

repeated statements in the source code. Then it initializes a

counter i to 1. It also initializes a set CC to be equal to F,

where CC is a set that will always contain all code clones

discovered so far. Set CCi is a subset of CC that always

contains all code clones of length i while i increases from an

iteration to the next. Another set Si will always contain all

possible code clones of length i. The second step is to do

Cartesian product CCi x F and store the results in S. The third

step is checking each item in the Cartesian product of length i

+ 1 to see if it exists in the set of all transactions T (i.e., the

set of all source code lines in sequence) or not. If an item in

the Cartesian product set exists as subsequence of transactions

in T, then we add it to the code clones set, CC. Since the

result of the Cartesian product can be massive, it is possible to

generate the results on the fly in the memory without storing

them and process them directly in the third step by checking

their presence in the transactions. The fourth step prunes all

code clones in CC of length i that exist in code clones of

length i + 1. The fifth step is incrementing i by 1. The sixth

step is trying to reduce the set F by pruning all items that

didn't appear as a last item in any of code clones of length i.

Finally the algorithm iterates over steps two to six until all

items of the Cartesian product don't exist in any transactions.

Below is the pseudo code of the algorithm.

T = set of all source code statements

F = set of repeated statements in the

code

CC = F

stillMore = true

i = 1

While (stillMore)

{

 stillMore = false

Si+1 = CCi x F

If i > 1 then

 Si+1 = Check_Apriori(Si+1)

End if

 For all e Si+1
 {

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

13

 if e T then
 add e to CC

 stillMore = true

 end if

 }

prune CC by removing all e CC

where |e| = i and e  f and f CC
where |f| = i+1

i = i + 1

prune all non used elements in F

}

Figure 1. Pseudo-code of EgyCD Algorithm

Check_Apriori(Si+1)

{

 For all e Si+1
 {

X = all elements in e except

first element

 if e ₵ Si then

 prune e from Si

end if

}

Return Si+1

}

Figure 2. Pseudo-code of Check_Apriori(Si+1)

Below is an example explaining how the algorithm works to

detect code clones of Type I.

Type I Example

Suppose we have the following code:

c = a+ b;

d = 2 * n;

..........

..........

c = a+ b;

d = 2 * n;

..........

..........

The final result should be CC= {(c = a + b; , d = 2 * n;))}

First iteration

F = {c = a + b; , d = 2 * n;}

CC = FFound = true

i = 1

stillMore = true
iteration 1:
{
 stillMore = false

 Si+1={c= a+ b; , d = 2 * n;} x {c = a + b; , d = 2 * n;}
 Si+1 = {(c = a + b; , c = a + b;)
 , (c = a + b; , d = 2 *n;)
 , (d = 2 *n; , c = a + b;)
 , (d = 2 *n;; , d = 2 *n;)}
 CC = { c = a + b; , d = 2 * n;
 , (c = a + b; , d = 2 *n;)}
 CC = { (c = a + b; , d = 2 *n;) }
 stillMore = true

 i = 2
 F = { d = 2 * n; } // after pruning
}
Iteration2:

{
 stillMore = false

 Si+1 = { (c = a + b; , d = 2 *n;) } x { d = 2 * n; }
 Si+1 = { (c = a + b; , c = a + b; , d = 2 * n) }
 Si+1 = Ф // After
Check_Apriori(S)

 stillMore = false

 CC = { (c = a + b; , d = 2 *n;) }
 i = 3
 F = Ф
}
No more loops since stillMore = false and

CC = { (c = a + b; , d = 2 *n;) }

6. OPTIMIZATION TRICKS ADDED TO

APRIORI
We have done some modifications to Apriori for increasing

the speed of EgyCD such as:-

a. Pruning F at the end of each iteration to decrease

the cardinality of the first itemset and consequently

the cardinality of the resultant set of the Cartesian

product.

b. The Apriori property states that any subset of a

frequent set is frequent [21]. For stores system

sorting items in transactions is meaningless but in

code clones sorting statements is a major concept,

so we check apriori property only for one subset

which is the union of a code clone but after

removing the first statement of that code clone and

the new added statement.

c. By using the SQL features in where conditions we

get all items of Si+1 that exist in sequence in the

source code then we check if it is a code clone or

not.

d. EgyCD is applied inside the database and not in the

application.

7. IMPLEMENTATION DETAILS
The algorithm was implemented in a database application

using Adaptive Server SQL Anywhere version 11.0 with add

on In-Memory version 11.0 and PowerBuilder 11.5. This has

multiple advantages. First, it perfectly matches the application

of Apriori-based algorithms which are developed for mining

databases. Second, the expressive power of SQL supports

processing of transactions very easily and smoothly. Finally,

PowerBuilder has powerful visualization capabilities that

allow us to visualize code clones in very simple ways and can

also be upgraded with new views if needed. For every

language to be supported, language specific tables are filled

with the style of comments, reserved words and symbols,

begin and end markers of compound statements, statements

separator, etc.

The proposed algorithm can be applied to Type I, Type II and

Type III but not Type IV. It can also be used to detect

plagiarism in written text not only in source code. We discuss

the specifics of each code clone type below.

We have 2 modes for EgyCD, prune and no prune, if the user

wants to see all code clones and its subsets code clones in the

source code, (s)he will choose no prune mode and if the user

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

14

wants to see only all code clones and the program should

delete all the code clones subsets, hence the user should select

prune mode.

7.1. Detecting Type I
Applying EgyCD on Type I is very straightforward. The only

preprocessing step needed is removing white spaces, tabs,

comments, etc. After that we convert the source code into a

database structure then we apply the algorithm on it to get all

code clones.

7.2. Detecting Type II
In this type, we first apply the preprocessing step applied to

Type I. Then we do a transformation by replacing each non-

reserved word in the source code by the letter "X". We also

replace any data type by the letter "T". This is shown in

Figure 3. Then, we convert the source code into a database

structure and we apply the algorithm.

int a, b, c ;

cin >> a >> b;

c = a + b;

cout ≪ c;

int x, y, z ;

cin >> x >> y;

z = x + y;

cout ≪ z;

 3.a Source code before transformation

T X, X,X ;

cin>>X>>X;

X=X+X;

cout≪X;

T X, X,X ;

cin>>X>>X;

X=X+X;

cout≪X;

3.b Source code after transformation

Figure 3

7.3. Detecting Type III

In order to detect Type III, we do the same process as in

detecting Type II. But in converting the source code into

database structure, we keep track of the boundaries of code

segments (specifically functions, methods and blocks) in a

specific database table. These information are segment

number, segment start line and end line, file name and parent

segment number in case of nested segments.

After applying EgyCD to detect code clones of Type II, we do

some calculations to detect code clones of Type III in the

segments identified in the source code. As we mentioned in

3.b, each line in the transactions belongs to a code segment;

simply the calculations calculates first code segment clones

from the code clones that are generated by the proposed

algorithm. Now we have N code segments (CS1,CS2,….CSn)

that will be similar to each other by a clone percentage. For

each code segment, we will calculate its code segment clone

percentage, (CSCPi), to be equal to the number of repeated

items in the CSi over the total number of items in the CSi. We

then remove all code segment clones that will have CSCP less

than the percentage that will be defined by the user and those

removed code segments will be subtracted from N. If N

became 1 then regardless the CSCP of its related code clones

segments it will be removed, i.e the value one means no code

clones exist for that N code segments. After that we will

prune all CS clones that are subset of other CS clones if their

parent code segments are similar.

To clarify further the detection of Type III, we give the

following example:-

Suppose we have two code fragments of Type III and after

applying transformation as in detecting Type II they become

as in figure 4. Suppose also that the user sets 55% for the

threshold percentage.

1. TX,X,X ;
2. cin >> X >> X;
3. X=X+X;
4. ---------
5. ---------
6. ---------

7. Cout≪ X;

1. TX,X,X ;
2. cin >> X>> X;
3. ---------
4. X=X+X;

5. Cout≪ X;

Figure 4. Source code after transformation

For the left code fragment we get its CSCP = 4/7 = 57% and

for the right code fragment we get its CSCP = 4/5 =80%.

EgyyCD will detect these two code fragments as code clones

of Type III and it will display them with their corresponding

CSCP.

7.4. Displaying the Plagiarized Text and

its Quality
To easily visualize the detected code clones, EgyCD lets the

user defines the quality of the code clones in the application

setting screen. Four fields are given for controlling the display

of code clones, two fields for defining the excellent degree of

similarity for code clones, the length of the code clone field

and the counting of code clones field. The same two fields are

used for defining the good degree of similarity for code

clones. If the resultant text clone length is greater than or

equal to the length field value for excellent quality and its

repetition is greater than or equal to the counter of the code

clone field value for excellent quality then the background of

this code clone will be in red. However, if the resultant code

clone length is greater than or equal to the length field value

for good quality and its repetition is greater than or equal to

the count code clone field value for good quality then the

background of this code clone will be in orange otherwise the

text clone background color is green.

By using this way, the user can easily notice and differentiate

the most important text clones.

7.5. Calculating Code Clone File Ratio
To submit some information that may be useful to EgyCD

users, we calculate a ratio called code clone file ratio (CCFR)

for each file selected by the user for detecting code clones

inside it. It is equal to the full size in lines of all code clones

inside the file over the total size of the file in lines.

CCFR = Size of code clones in the file in lines / size of the

file in lines

The user can see this ratio if (s)he displayed again her/his

selected files. The user will find that this ratio is calculated

and displayed in the row of each file. If the ratio is greater

than a specific percentage set by the user in the EgyCD

setting then the background color will be red for this row.

Otherwise the background will be in white.

8. CASE STUDIES
We have three cases studies. The first case compares the

number of code clones and its corresponding time among

EgyCD, NICAD [28] and simCAD [29] for Type I. The

second case compares the number of code clones and its

corresponding time among the same three tools for Type II.

The third case study was done on a large Java system to detect

code clones of Type I. No need to do a case study for Type III

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

15

since Type II is a sub-case from Type III and it will give the

whole information we need about the algorithm.

The first and the second case studies are applied for the same

set of files. This is the example set of 25 C language files

bundled with NICAD’s clone detector. We divided them into

5 groups; the first group contains 5 files and each consequent

group contains the files of the pervious group and has 5

additional files. So, the last group contains 25 files. The total

size of these files is 332 KB and they collectively contain

about 8545 lines of code.

The third case study is for a very large scale to show that

EgyCD can detect code clones for large scale systems. We

randomly selected 2151 files from the JDK. Their size is 21.8

MB.

We choose NICAD and simCad tools for three reasons. First,

they are relatively mature and acceptable in the scientific

community. Second, they are available for use and their

authors kindly supported us when using them and running the

comparisons. Third, some of them, particularly NICad, were

already used to examine some of the target systems and the

results were available by the authors which ensure the validity

of our results using the same tool on the same system.

8.1. The first case study
The purpose of the first case study experiment is to find out

how EgyCD performs relative to other tools in terms of time,

total number of code clones and the number of code clones

discovered per second. EgyCD was compared against NICAD

and simCAD for finding Type I clones.

S

e

q

.

Size in

Lines

EgyCD NICAD simCAD

No. of

Clones

T. in

Sec.

No. of

Clones

T. in

sec.

No. of

Clones

T. in

sec.

1 1915 80 3.00 9 0.08 3 1.2

2 4304 231 5.00 10 0.1 3 1.5

3 5949 345 7.00 11 0.5 3 1.8

4 7424 431 8.00 18 0.6 4 2.1

5 8454 486 12.00 20 0.7 4 2.4

Table 1. Results of Running EgyCD, NICAD and SimCad

on C files to detect Type I

Graph (1) Comparison of No. of Type I Code Clones

Detected

Graph (1) and Table (1) compare the number of code clones

detected by each tool, since EgyCD uses an Apriori-based

algorithm, it comprehensively detects all code clones in the

source code. Hence, EgyCD has a high precision and high

recall; it detects all code clones regardless of whether they are

meaningful or not.

As an Aprior-based algorithm, EgyCD builds code clones

without comparing among the source code functions or blocks

such as NICAD and simCAD.

Graph (2) Comparison of clone detection time by each tool

for Type I

Graph (2) and Table (1) compare the detection time for the

same group of files for each tool. EgyCD is slower in

comparison with NICAD and simCad, and this is because

EgyCD discovers much more code clones than NICAD.

It is also due to the nature of the EgyCD algorithm of building

code clones, especially in getting the second itemset of code

clones since its cardinality is so high and equals to the square

of the first itemset cardinality; the first itemset cardinality

equals to all items (lines) in the source code that appear more

than once in the source code.

Graph (3). Comparison of the time rates among the three

tools

To get the rate comparison among the three tools, we divided

the number of code clones detected in the source code by the

code clones detection time. We found that EgyCD and

simCAD almost have the same values but NICAD is different

especially in the first 2 points only as the graph illustrates.

0

100

200

300

400

500

600

1
9

1
5

4
3

0
4

5
9

4
9

7
4

2
4

8
4

5
4

N
o

. o
f

D
e

te
ct

e
d

 C
o

d
e

 C
lo

n
e

s

Size in Lines

Comparing No. of Code Clones

simCAD

NICAD

EgyCD

0

2

4

6

8

10

12

14

1
9

1
5

4
3

0
4

5
9

4
9

7
4

2
4

8
4

5
4

Ti
m

e
 in

 S
e

co
n

d
s

Size in Lines

Comparing Detection Time simCAD
NICAD
EgyCD

0.0000

20.0000

40.0000

60.0000

80.0000

100.0000

1
9

1
5

4
3

0
4

5
9

4
9

7
4

2
4

8
4

5
4

R
at

e
 =

 t
im

e
 /

 N
o

. o
f

co
d

e
 C

lo
n

e
s

Size in Lines

Code Clone per Time (Clone Rate)

simCAD
NICAD
EgyCD

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

16

8.2. The second case study
In this case study, we replicated case study 1 for the same

purposes but search for code clones of Type II.

The second case study compares the number of code clones

and its corresponding time among EgyCD, NICAD and

simCAD for Type II.

S

e

q

.

Size in

Lines

EgyCD NICAD simCAD

No. of

Clones

T. in

Sec.

No. of

Clones

T.

in

sec

No. of

Clones

T.

in

Sec.

1 1915 148 29.00 18 0.5 5 0

2 4304 345 50.00 21 0.5 6 0

3 5949 506 60.00 26 0.6 12 0

4 7424 636 68.00 38 0.6 16 0

5 8454 706 73.00 80 0.6 19 1

Table (2) Results of Running EgyCD, NICAD and SimCad

on C files to detect Type II

Graph (4). Comparison of No. of code clones detected by

each tool for Type II

Graph (4) and Table (2) compare the number of code clones

detected by each tool.

Graph (5). Comparison of detection time by each tool for

Type II

Graph (5) and Table (2) compare the detection time of code

clones by each tool.

Graph (6). Comparison of time rates among the three tools

We found that the three tools almost have the same values.

8.3. The third case study
The third case study is done on a large Java system to

examine the efficiency of EgyCD in detecting clones in large

systems. We selected random files from Java JDK, with total

size of almost 21 MB and 310861 LOCs.

EgyCD

S

e

q

.

No. of

Files

No. Of

Lines

Clone Size

(Lines)

No. of

Code

Clones

Time in

Hours

1 629 59665 10502 3105 0.07

2 868 102777 17895 5118 0.37

3 1315 154267 27392 7565 0.63

4 1782 230485 41328 10772 4.55

5 2151 310861 53420 14189 7.54

Table (3). Results of Running EgyCD on a large system

Graph (7). No. of Code Clones detected by EgyCD in a

large system

0

100

200

300

400

500

600

700

800

1
9

1
5

4
3

0
4

5
9

4
9

7
4

2
4

8
4

5
4

N
o

. o
f

D
e

te
ct

e
d

 C
o

d
e

 C
lo

n
e

s

Size in Lines

Comparing No. of Code Clones
simCAD

NICAD

EgyCD

0

10

20

30

40

50

60

70

80

1
9

1
5

4
3

0
4

5
9

4
9

7
4

2
4

8
4

5
4

Ti
m

e
 in

 S
e

co
n

d
s

Size in Lines

Comparison of Detection Time

simCAD
NICAD
EgyCD

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

1
9

1
5

4
3

0
4

5
9

4
9

7
4

2
4

8
4

5
4

 R
at

e
 =

 t
im

e
 /

 N
o

. o
f

co
d

e
 C

lo
n

e
s

Siz in Lines

Code Clones per Time (Clone Rate)

simCAD

NICAD

EgyCD

0

2000

4000

6000

8000

10000

12000

14000

16000

5
9

66
5

1
0

2
77

7

1
5

4
26

7

2
3

0
48

5

3
1

0
86

1 N
o

. o
f

D
e

te
ct

e
d

 C
o

d
e

 C
lo

n
e

s

Size in Lines

No. of Code Clones EgyCD

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

17

Graph (8). Code Clones Detection Time by EgyCD in a

large system

9. ANALYSIS OF THE RESULTS AND

ADVANTAGES AND LIMITATIONS

OF EgyCD
In this section we analyze the results of our experiments and

discuss the pros and cons of EgyCD. Our experiments showed

the following:

 By being Aprior-based, EgyCD has 100% recall and

100% precision. It is very accurate and can detect all

code clones and do pruning if required for all code

clones that are subset of other code clones. This

accuracy comes from using Apriori algorithm and not

using an empirical method.

 EgyCD is not oriented to a specific language so it can be

applied on an source code.

 It can be applied to Type I, Type II and Type III.

 It can be applied on very large scale systems

On the other hand,

 It is not slow in execution but it is slower than other

famous algorithms. This disadvantage comes from two

factors, the first one is the algorithm high precision and

high recall in code clone detection, the second is that the

main core of the algorithm depends on database

processing and therefore we switch to hard disk

processing many times and this for sure will slow the

algorithm execution time. To improve its speed, the user

can use EgyCD after specifying her/his interest in a

specific clone count, i.e. the user is interested in code

clones that are repeated more than a specific number,

also this will increase EgyCD speed, and as we

mentioned in section 6, we increased the speed of

EgyCD by applying it inside the database itself not in the

application.

10. CONCLUSIONS AND FUTURE

WORK
In this paper, we presented a new clone detection algorithm

that utilizes sequential pattern mining to discover code clones.

We implemented the algorithm in a database-based language-

independent clone detector tool. It detects all code clones in

the source code with 100% recall due to the nature of the

Apriori-based algorithm. Precision was shown by

experimental studies to be very good. The proposed method is

not limited to a specific programming language and it can

detect code clones of Type I, Type II and Type III. We

presented a comparison with other tools that showed the

advantages and limitations of the tool.

Future work will include the utilization of multi-threaded

database programming and distributed systems to speed up

EgyCD. It will also include the deployment of further data

mining and non Apriori-based SPM algorithms to further

investigate the value of this family of algorithms in clone

detection EgyCD.

11. ACKNOWLEDGMENTS
Thanks to. Chanchal K. Roy, for his support and technical

comments as well as his encouragement for this work, also

thanks for Auni Ku and Ira for their support.

12. REFERENCES

[1] C. K. Roy, J. R. Cordy, R. Koschke, Comparison and

Evaluation of Code Clone Detection Techniques and

Tools: A Qualitative Approach. Comparison and

Evaluation of Code Clone Detection Techniques,

Science of Computer Programming, 74, 470-495, (2009).

[2] B. Baker, On Finding Duplication and Near-Duplication

in Large Software Systems, in: Proceedings of the 2nd

Working Conference on Reverse Engineering, WCRE

1995, pp. 86-95 (1995).

[3] C. K. Roy and J. R. Cordy, An Empirical Study of

Function Clones in Open Source Software Systems, in:

Proceedings of the 15th Working Conference on Reverse

Engineering, WCRE 2008, pp. 81-90 (2008).

[4] E. Juergens, F. Deissenboeck, B. Hummel and S.

Wagner. Do Code Clones Matter? In Proceedings of the

31st International Conference on Software Engineering

(ICSE’09), pp. 485–495, Vancouver, Canada, May 2009.

[5] J. H. Johnson. Identifying Redundancy in Source Code

Using Fingerprints. In Proceeding of the 1993

Conference of the Centre for Advanced Studies

Conference (CASCON’ 93), pp. 171–183, Toronto,

Canada, October 1993.

[6] B. Baker. On Finding Duplication and Near-Duplication

in Large Software Systems. In Proceedings of the

Second Working Conference on Reverse

Engineering(WCRE’95), pp. 86–95, Toronto, Ontario,

Canada, July 1995.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem and D. R. Engler.

An Empirical Study of Operating System Errors. In

Proceedings of the 18th ACM symposium on Operating

systems principles (SOSP’01), pp. 73–88, Banff,

Alberta, Canada, October 2001.

[8] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner:

Finding Copy-Paste and Related Bugs in Large-Scale

Software Code. IEEE Transactions on Software

Engineering, 32(3):176–192, 2006.

[9] M. Fowler. Refactoring: Improving the Design of

Existing Code. Addison-Wesley, 2000.

[10] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E.

Merlo, Comparison and Evaluation of Clone Detection

Tools, Transactions on Software Engineering, 33(9):577-

591 (2007).

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00
5

9
6

6
5

1
0

2
7

7
7

1
5

4
2

6
7

2
3

0
4

8
5

3
1

0
8

6
1

Ti
m

e
 in

 H
o

u
rs

Size in Lines

Detecticting Time EgyCD

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.2, October 2015

18

[11] Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue.

CCFinder: A Multilinguistic Token-Based Code Clone

Detection System for Large Scale Source Code.

Transactions on Software Engineering, Vol. 28(7): 654-

670, July 2002.

[12] Chanchal Kumar Roy and James R. Cordy, A Survey on

Software Clone Detection, September 26, 2007,

Technical Report No. 2007-541, School of Computing,

Queen’s University at Kingston, Ontario, Canada

[13] Raghavan Komondoor and Susan Horwitz. Using Slicing

to Identify Duplication in Source Code. In Proceedings

of the 8th International Symposium on Static Analysis

(SAS’01), Vol. LNCS 2126, pp. 40-56, Paris, France,

July 2001.

[14] Jens Krinke. Identifying Similar Code with Program

Dependence Graphs. In Proceed- ings of the 8th

Working Conference on Reverse Engineering

(WCRE’01), pp. 301-309, Stuttgart, Germany, October

2001.

[15] Chao Liu, Chen Chen, Jiawei Han and Philip S. Yu.

GPLAG: Detection of Software Plagiarism by Program

Dependence Graph Analysis. In the Proceedings of the

12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD’06), pp.

872-881, Philadelphia, USA, August 2006.

[16] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren.

The program dependence graph and its use in

optimization. ACM Trans. Program. Lang. Syst.,

9(3):319349,1987.

[17] A. Leitlao, Detection of Redundant Code Using R2D2,

Software Quality Journal, 12(4):361-382 (2004).

[18] Stefan Bellon, Daniel Simon: Vergleich von Klon-

erkennungstechniken, 5th Workshop on Software

Reengineering, 2003.

[19] Filip van Rysselberghe, Serge Demeyer: Evaluating

Clone Detection Techniques, Proceedings of the Inter-

national Workshop on Evolution of Large Scale Indus-

trial Applications ELISA 2003.

[20] M.-S. Chen, J. Han, and P. S. Yu. Data mining: an

overview from a database perspective. IEEE Trans. On

Knowledge And Data Engineering 8, 866-883 (1996).

[21] Q. Zhao, S.S. Bhowmick, Sequential pattern mining: a

survey, Technical Report Center for Advanced

Information Systems, School of Computer Engineering,

Nanyang Technological University, Singapore, (2003).

[22] C. Liu, C. Chen, J. Han and P. Yu, GPLAG: Detection of

Software Plagiarism by Program Dependence Graph

Analysis, in: Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, KDD 2006, pp. 872-881 (2006).

[23] M. Gabel, L. Jiang and Z. Su, Scalable Detection of

Semantic Clones, in: Proceedings of the 30th

International Conference on Software Engineering, ICSE

2008, pp. 321-330 (2008).

[24] R. Komondoor and S. Horwitz, Using Slicing to Identify

Duplication in Source Code, in: Proceedings of the 8th

International Symposium on Static Analysis, SAS 2001,

pp. 40-56 (2001).

[25] What is Plagiarism? Available online:

http://www.plagiarism.org/plagiarism-101/what-is-

plagiarism.

[26] Hamid Abdul Basit, Member, IEEE, and Stan Jarzabek,

A Data Mining Approach for Detecting Higher-level

Clones in Software.

[27] Vera Wahler, Dietmar Seipel, J¨urgen Wolff v.

Gudenberg, and Gregor Fischer, Clone Detection in

Source Code by Frequent Itemset Techniques, University

of W¨urzburg, Institute for Computer Science Am

Hubland, D . 97074 W¨urzburg, Germany.

[28] C. K. Roy and J. R. Cordy. “NiCad: Accurate Detection

of Near-Miss Intentional Clones Using Flexible Pretty-

Printing and Code Normalization", Proc. ICPC, 2008,

pp. 172-181.

[29] M. S. Uddin, C. K. Roy K. A. Schneider, A. Hindle, "On

the Effectiveness of Simhash for Detecting Near-Miss

Clones in Large Scale Software Systems",

10.1109/WCRE.2011.12 P: 13 - 22

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6079770&contentType=Conference+Publications&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A6079519%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6079770&contentType=Conference+Publications&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A6079519%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6079770&contentType=Conference+Publications&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A6079519%29
http://dx.doi.org/10.1109/WCRE.2011.12

