
International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.3, October 2015

31

A Simple and Efficient Algorithm for Line and Polygon

Clipping in 2-D Computer Graphics

Sushil Chandra Dimri
Professor and Head

Graphic Era University
Dehradun

ABSTRACT

The most popular lines clipping algorithms are Cohen-

Sutherland and Liang-Barsky line clipping algorithm. These

algorithms are complex and the steps of calculation are very

high. This paper proposes a simple new line clipping

algorithm for 2D space which uses the parametric equation of

the line. This algorithm further easily extended to the polygon

clipping by considering the edge of the polygon as a line. The

proposed algorithm is numerically tested for a numbers of

random line segments and the results show the simplicity and

less complex behavior of the algorithm.

Keywords

Line clipping algorithm, Cohen-Sutherland line clipping

algorithm, Liang-Barsky line clipping algorithm. 2D space

1. INTRODUCTION
Clipping is a basic and important problem in computer

graphics. It is the process which removes that portion of an

image which lies outside a specified region called the clip

window. Line clipping is useful in 2D-3D designing, building

architecture, different transformations, animation, VLSI

circuits design, and too many more. In 2D there are 5 types of

clipping – i) point clipping ii) Line clipping iii) Polygon

Clipping iv) Curve clipping v) Text clipping, in this paper

our focus is on line clipping only . The most popular line

clipping algorithm are the Cohan-Sutherland line clipping

algorithm, the Liang-Barsky line clipping, the Cyrus-Beck

line clipping and the Nicholl – Lee– Nicholl line clipping

algorithm [1, 2 and 3].

The Cohen–Sutherland algorithm was developed by Danny

Cohen and Sutherland. This algorithm is used for line

clipping. The algorithm divides a two-dimensional plane into

9 regions ,every region is assigned a 4 bit code by code

assignment scheme, the code for clip window is 0000, using

these 4- bit code algorithm determines whether the line is

clipping candidate or not also which lines are completely out

and which completely inside the clip window . For clipping

candidate lines algorithm determines the point of intersection

of the line with the boundaries of clip window and those

portion of lines clipped which lies outside of the clip window.

The algorithm needs to compute 4 bit code for each end point

of a line. This way the algorithm identifies the position of the

line with respect to clip window which increases the

calculation. Also algorithm creates some confusion when a

line passes through three regions. [1, 2, and 3]

The Liang-Barky Clipping algorithm uses the parametric

representation of a line, which changes the line in to a

collection of infinite number of points. Algorithm simply

identifies those points of line which lies inside the clip

window and clips those which are outside the clip window.

The umax and umin value of parameter u helps to determine the

point of intersection [4]. The Cyrus–Beck algorithm is a more

generalized line clipping algorithm which can deal with

different shape of clip window which are generally of

rectangular shape. Cyrus Beck is more efficient than

Sutherland–Cohen algorithm in which repetitive clipping is

used. [5].

The Nicholl–Lee–Nicholl algorithm is an efficient line

clipping algorithm that reduces the chances of clipping a

single line segment multiple times, as may happen in the

Cohen-Sutherland algorithm. This algorithm divides the

region around the clipping window into a number of different

sub regions, depending on the position of the initial point of

the line to be clipped. However, this algorithm is only

applicable in two dimensions [6]. Dörr [7] used both the

parametric representation line and out code for line clipping

and deviced a new algorithm. Sharma and Manohar [8]

proposed an algorithm based on geometric observations. Skala

[9,10 and 11] also proposed an O(lg N) algorithm for line

clipping against convex window.

Day [12].proposed a new algorithm for clipping lines against

rectangular windows.It is suitable for computations in both

object space (floating point arithmetic) and image space

(integer arithmetic). Guodong et. al., [13] clipping algorithm

is to save the unnecessary intersection calculations demanded

by traditional algorithms either for rejecting some totally

invisible lines or for clipping some partially visible lines.

Andreev and Sofianska [14] reduced the computational load

by identifying the basic cases of the locations of the line

segment with respect to the window. Sobokow, et. al., [15]

encoded the line instead of encoding its end points and

showed improvement over the then existing algorithms. The

algorithm is similar to the Cohan Sutherland algorithm but in

contrast to the CS algorithm, it does not need to iterate to find

out the clipped segment. The line code is an 8-bit number

instead of 4-bit out-code used in the Cohan Sutherland

algorithm. A large number of cases need to be considered and

that’s why there is a big switch statement or a long else-if

ladder in the implementation algorithm.

The proposed algorithm expresses the line in parametric form,

which represents the line as a collection of infinite points.

Initially a lines end point coordinates are checked with the

boundaries of the clip window then the line passes to next step

of algorithm.

The line is then tested whether it intersect the left boundary ,

right boundary ,bottom boundary and upper boundary and the

respective values of parameter u is recorded. If value of u is

less than 0 and greater than 1 simply discard that point. Also

there is a condition if x coordinate of the point (in case of

bottom and upper boundary)or y coordinate (in case of left

and right boundary) does not satisfies the condition then

discards the point even if u lies between 0 and 1. Lastly there

are only2 points which remains, protect the line between these

two points and delete the rest. The proposed algorithm is

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.3, October 2015

32

unique and simple since it does not divide the 2D plane in sub

region also there is neither uses 4 bit code system, nor the use

of vector algebra.

2. PROPOSED NEW ALGORITHM
AB , A(x1.y1) and B(x2,y2) ,C(x3.y33) and D(x4,y4) and E(x5.y5)

and F(x6,y6) are the line segments which we want to clip

against the clip window PQRS shown in figure 1.1.

The boundaries of clip window is given by x= a, x=b y=c and

y=d. line segment AB intersect the clip boundaries at point T,

V, L and W.

Fig 1.1 – Proposed Algorithm

3. ALGORITHM – Clip Line
(Clip Window (a, b, c, d), line(x1, y1, x2, y2))

Initial condition check:

if (x1 and x2) < a), the line completely outside of clip window

If ((x1 and x2)>b), the line is completely outside of clip

window

If (y1 and y2) < c, the line is completely outside of clip

window

 If ((y1 and y2)>d) the line is completely outside of clip

window

If (a≤ x1, x2≤b) && (c ≤ y1, y2≤d) then line lies complete

inside the clip window.

Otherwise- parametric equation of line AB

x=x1+u (x2-x1) or x=x1+u (Δx) , y= y1+u (y2-y1) or

y= y1+u (Δy) , where 0≤u≤1

Step-1:

 a= x1+u. (Δx) , u=(a- x1)/ Δx, if 0 ≤ u≤1 , y= y1 + ((a- x1

).Δy)/ Δx , // left boundary intersection

 If (y<c && y>d) then discard the point even 0≤u≤1

otherwise record point (a, y)

Step-2:

 b= x1+u. (Δx) , u=(b- x1)/ Δx , if 0≤u≤1 , y= y1 +((b- x1).

Δy)/Δx // right boundary Intersection:

If (y<c && y>d), discard the point even 0≤u≤1 otherwise

record point (b, y)

Step-3:

c= y1+u. (Δy) , u=(c- y1)/ Δy , if 0≤u≤1 x= x1 +(c- y1). Δx)/

Δy // bottom boundary intersection:

If (x<a && x>b), discard the point even 0≤u≤1 otherwise

record Point (x, c)

Step-4:

d= y1+u. (Δy), u=(d- y1)/ Δy , if 0≤u≤1 , x= x1 +((d- y1).

Δx)/Δy // Upper boundary intersection:

If (x<a && x>b), discard the point even 0≤u≤1 otherwise

record Point (x, d)

Join the recorded points

Finally after the clipping the line is figure 1.2

Fig 1.2 Clipped line

For polygon clipping consider each edge of the as a line and

clip it using the same algorithm against the give clip window.

Finally we will remain with the clipped polygon.

4. RESULT WITH NUMERIC VALUE

4.1: line Clipping
Clipping the line AB shown in figure 1.3 against the clip

window PQRS

Fig 1.3 Result

Line AB is neither outside nor inside the clip window (none

of the condition satisfied)

Parametric equation of line AB

x1 =2 , y1 =1 , x2 = 8 , y2 =8, Δx = x2-x1 =6 , Δy =

y2-y1 =7

x=x1+u (x2-x1) , x=x1+u (Δx) ,y= y1+u (y2-y1)

, y= y1+u (Δy)

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.3, October 2015

33

 x=x1+6u, y= y1+7u, Where

0≤u≤1,

i) For left boundary (x =4) intersection:

 a= x1+u (Δx)

4= 2+6u, u=2/6 =1/3

if 0 ≤u≤1 ,then y= y1+7u , y= 1+7x1/3 =10/3 = 3.33

If(c ≤y≤ d) i.e. 3 ≤y≤ 6 so record the point V (4, 3.33)

ii) For right boundary (x =7) intersection:

 b= x1+u (Δx), 7= 2+6u, u=5/6

if 0≤u≤1 , W(b, y),

y= y1+7u = 1+ 7x5/6 =41/6=6.83 , point W (7, 6.83)

if (c ≤y≤ d)i.e. 3 ≤y≤ 6, consider the point otherwise discard

the point. Since 6.83> 6 so discard the point W.

iii) For bottom boundary (y=3) intersection:

c= y1+u(Δy), 3= 1+7u ,u=2/7 , if 0≤u≤1

 x=x1+6u , x=2+6x2/7 =26/7=3.71, point T (3.71, c)

If (a ≤x≤ b) i.e. 4 ≤x≤ 7, consider the point otherwise discard

the point

 3.71 <4, discard the point T even 0≤u≤1

iv) For upper boundary (y=6) intersection:

d= y1+u(Δy) , 6 = 1 +7u , u =5/7 , if 0≤u≤1

x=x1+6u, x=2+6x5/7 =44/7=6.286

If (a ≤x≤ b) i.e. 4 ≤6.286 ≤ 7, consider the point otherwise

discard the point

Even 0≤u≤1 so record L (6.286, 6)

Thus we are remaining with two points V and L hence after

clipping the line is VL

Fig 1.4 - Clipped line VL

4.2 Polygon clipping
In the Polygon EGF (E (3, 5) G (6, 7) F (6, 2)), the edges

(lines) are EG, EF and GF are not in the category (out -side

Clip window)

For Polygon edge EG

x=3+u(6-3)=3+3u , y=5+u(7-5)=5+2u, 0 ≤ u ≤ 1

x1=3, x2=6 x1=3<x=4 (left boundary)

y1=5, y2=8 x2=6 <x=7 (right boundary)

For left boundary x=4

4=3+3u u=1/3 , 0 ≤ u ≤ 1

y=5+ (1/3)25+2/3=5.66

y1=3<y<y2=6 record- P1 (4, 5.66)

For right boundary x=7

7=3+3u

3u=4 u=4/3 (discard this value)

Bottom boundary

3=5+2u

-2=2u , u= -1 (discard this value)

For upper boundary y=6

6=5+2u, 2u=1, u=1/2

x=3+3(1/2) , =3+1.5=4.5

Record -P2 (4.5, 6)

Now Polygon edge EF we have E (3, 5) F(6,2)

x=3+3u

y=5-3u , 0 ≤ u ≤ 1

Left boundary x=4

4=3+3u , u=1/3

y=5-3(1/3) = 4 so record P3(4,4)

Right boundary x= 7

7=3+3u , u=4/3 (discard it)

Bottom boundary y= 3

3=5-3u , -2=-3u ,u=2/3

x=3+3u , 3+3(2/3) =5 , record - P4(5,3)

For upper boundary y= 6

6=5-3u, 1=-3u , u=-1/3(discard it)

Now Polygon edge FG F(6,2) G(6,7)

x=6+u (0) = 6

y=2+u(7-2) =2+5u

x=6 , 0 ≤ u ≤ 1 this line is parallel to y axis.

x=6, y=3, y=6 , P5 (6, 3) and P6 (6, 6)

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.3, October 2015

34

The polygon EGF clipping- the polygon is simply the

collection of finite number of edges, every edge is a line, we

can apply the same algorithm edge wise to clip the polygon.

Here we have edges EG, EF and FG in this polygon shown in

figure 1.5.

5. CONCLUSION
The proposed algorithm is based on parametric form of

equation of line, which computes the point of intersection of

the line with the boundaries of clip window with simple

calculation. In other popular algorithms the complexity of

calculation are very high but the proposed algorithm is quite

simple and it is very easy to identify the clipping candidate

line and their points of intersection with the boundaries of clip

window. Further this algorithm can easily be modified for

polygon clipping by considering each edge of polygon as a

line segment.

6. ACKNOWLEDGEMENT
We wish to express our heartfelt gratitude and cordial thanks

to Prof (Dr.) Kamal Ghanshala (President Graphic Era

University) for his sincere and continual encouragement in

preparing this paper. Thanks are also due to Dr.R. C. Joshi

(Chancellor Graphic Era University, Ex HOD and Professor

(EC and CS Deptt) IIT Roorkee) and Assistant Professor Ms.

Neelam Kathait for their continual guidance, support and

helpful discussion.

7. REFERENCES
[1] J. D. Foley, A. van Dam, S. K. Feiner and J. F. Hughes,

“Computer Graphics: Principles and Practice”, Addison-

Wesley, (2nd edition), (1996).

[2] D. Hearn and P. Baker, “Computer Graphics with

OpenGL”, 3rd ed., Prentice Hall, (2004).

[3] D.F. Rogers. “Procedural elements for computer

graphics”. New York: McGraw-Hill, 1985. P.111–87.

[4] Y. D. Liang and B. A. Barsky, “A new concept and

method for line clipping”, ACM Transactions on

Graphics, vol. 3, no. 1, (1984).

[5] M. Cyrus and J. Beck, ―Generalized Two and Three

Dimensional Clipping,‖ Computers and Graphics, Vol. 3,

No. 1, 1978, pp. 23-28.

[6] T. M. Nicholl, D. T. Lee and R. A. Nicholl, “An efficient

new algorithm for 2-D line clipping: its development and

analysis”, Computer & Graphics, vol. 21, no. 4, (1987).

[7] M. Dörr, “A new approach to parametric line clipping”,

Computers & Graphics, vol. 14, no. 3-4, (1990).

[8] N.C. Sharma, S.Manohar Line clipping revisited: two

efficient algorithm basedon simple geometric

observations. Computers and Graphics 1992;

[9] V. Skala, “An efficient algorithm for line clipping by

convex polygon”, Computers & Graphics, vol. 17, no. 4,

(1993). 1992; 11(4): 241–5.

[10] V. Skala, “A new approach to line and line segment

clipping in homogeneous coordinates”, The Visual

Computer, vol. 21, no. 11, (2005). [15] D. F. Rogers,

“Procedural Elements for Computer Graphics”, 2nd

Edition, Tata McGraw-Hill, (2005).

[11] V. Skala,―O (lg N) Line clipping Algorithm in E ,

‖Computers and Graphics, Vol. 18, No. 4, 1994, pp. 517-

527.

[12] J. D. Day, “An algorithm for clipping lines in object and

image space”, Computers & Graphics, vol. 16, no. 4,

(1992).

[13] L. Guodong , W.Xuanhui , P. Qunsheng “An efficient

line clipping algorithm based on adaptive line rejection

“Computers & Graphics 26 (2002) 409–415

[14] R. Andreev and E. Sofianska, “New algorithm for two-

dimensional line clipping”, Computers & Graphics, vol.

15, no. 4, (1991).

[15] M.S. Sobleow,P. Pospisil, Y.H .Yang,: A Fast Two

Dimensional Line Clipping Algorithm via Line

Encoding, Computers & Graphics, Vol.11, No.4, pp.459-

467, 1987.

IJCATM : www.ijcaonline.org

