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ABSTRACT
Cell segmentation has gained significant importance in modern bi-
ological image processing applications. The commonly used im-
age segmentation algorithms are region based and depend on the
homogeneity of the intensities of the pixels in the region of in-
terest. But due to the highly inhomogeneous behavior of cell nu-
clei and background, feature overlapping between the two regions
lead to misclassification and poor segmentation results. This paper
proposes a method to segment the cell images taking into consid-
eration the intensity inhomogeneity issue. A fractional differential
term has been introduced in the clustering criteria for bias correc-
tion for improving the homogeneity of the cell images. A method
to optimize the fractional order for images has also been proposed.
Further an improved narrow band level set method using Chan Vese
model has been proposed to improve the computational speed of
the algorithm. The proposed method is evaluated on datasets of 2D
microscopy images and images with improved homogeneity have
been obtained. The results also show improved segmentation re-
sults and the time efficient bahaviour of the proposed method.
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1. INTRODUCTION
Most of the cell studies depend on the analysis of large cell clus-
ters with the help of microscopy imaging techniques. [13][12]. For
studying the intracellular phenomena, fluorescence microscopy is
often used as it allows biologists to perform live cell experiments
with high sensitivity and specificity. Analysis of cell populations
give information about average cell characteristic and the dynamic
behavior of the cells. The complexity of performing the cell anal-
ysis is increasing with large volume of the image data being ana-
lyzed. Manual processing of such data is time consuming and error
prone, creating a demand for automated techniques [17][11]. Thus,
automated analysis of cellular structure has become a need to de-
scribe complex biological processes.
Cell segmentation is one of the most basic processing steps in
many biological cell image applications. Automatic segmentation

is much more time efficient compared to time consuming man-
ual processes. However, automated cell segmentation techniques
are much more challenging. These challenges arise from differ-
ent image acquisition techniques and complex topology of the cells
such as touching cells and overlapping cells [4]. Some of the im-
age acquisition techniques require the images to be captured in a
controlled environment in order to take care of the biological phe-
nomenon resulting in poor image quality such as in phase contrast
images. In the case of fluorescent images, low concentration of flu-
orescent label needs to be applied to limit the effect of cytotoxicity
on the cells. This results in a low signal to noise ratio in the image
data, making the task of automated detection more challenging. The
topological changes include shape deformation, close contact and
overlap of cells. Different stages of cell cycle such as mitosis and
apoptosis add to the complexity of the problem. The segmentation
algorithms proposed in the recent past produced efficient results on
regions with little or no cell crowding, however they could not sep-
arate touching cells accurately. The watershed algorithm is one of
the most commonly used segmentation method to overcome this
challenge. However it often results in over segmentation [20]. In-
tensity inhomogeneity has been a big issue in cell segmentation.
Segmentation is considerably difficult for inhomogeneous images
due to overlapping between the intensity ranges of the regions to be
segmented. This makes it impossible to identify these regions based
on the pixel intensity. In addition, the presence of intensity inhomo-
geneities due to the illumination variations increases the automa-
tion complexity. In this paper, we propose a method to improve the
homogeneity value of the cell images leading to better segmenta-
tion results. Further, a boxcar function based Chan-Vese level set
model has been proposed and implemented in a narrowband to im-
prove the speed of segmentation.
The rest of the paper is organized as follows: Section 2 briefly de-
scribes the related work from the cell biology and image processing
literature. In Section 3, we give an overview of the local intensity
clustering criterion which constitutes the basis of our algorithm.
The proposed method is described in Section 4. The performance
of the proposed algorithm was evaluated on three real biological
image datasets. Section 5 contains a performance evaluation of the
method and presents the results. Finally, Section 6 concludes the
paper.
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2. RELATED WORK
Image segmentation methods are broadly classified into two types:
edge based [8] and region based [18]. Region based methods have
many advantages over the edge based models such as robustness to
initial conditions and boundary leakage problems in images with
weak boundaries [7]. But the typical region based models tend to
rely on the homogeneity of the images to be segmented as they
identify each region of interest by using a certain region descriptor
to guide the motion of the active contour. As it is difficult to define a
region descriptor for images with intensity inhomogeneities, many
methods have been proposed in the past to overcome this problem.
In [10] iterative B-spline fitting for estimation of shading artifacts
in fluorescence images was proposed but was limited to low noise
images. Moreover, the optimal choice of threshold was found by
exhaustive search. [1] proposed a probabilistic framework that en-
abled image registration, tissue classification, and bias correction
to be combined within the same generative model. A technique for
optimising the model parameters was described. The authors in [9]
proposed a method that separated the intensity inhomogeneity cor-
rection field into multiplicative and additive components. The ad-
ditive component was proved useful for microscopic images but
much less for MR images [9]. Li et al. [7] proposed a method using
the local intensity clustering criterion. A variational level set frame-
work for segmentation and bias correction of images with intensity
inhomogeneities was presented.
As the major limitation of the level set method is the slow speed of
the algorithm due to its iterative nature, many methods have been
proposed to improve the speed of the level set method. A narrow-
band level set method was proposed in [15] to segment out the can-
cerous tissue from the healthy tissue in brain images. A narrow
band region based active contours model for noisy images was pro-
posed in [19]to improve the speed of the level set method in noisy
images. Wang et al [2]proposed a periodic monotonic speed func-
tion in the level set implementation to segment the aorta from the
abdominal images. The paper proposes a narrowband method to
improve the speed of the Chan-Vese level set model for cell seg-
mentation.

3. FRAMEWORK FOR BIAS FIELD ESTIMATION
In this section, we provide a brief overview of the segmentation al-
gorithm by Li et al. [7]. This framework was chosen as the base for
the development of the proposed algorithm because it is the most
elegant and promising method available for simultaneous bias cor-
rection and segmentation. It is based on the level set representation,
which makes it easily extendable from the original formulation in
2-D to 3-D.

3.1 Image Model
The model used to describe the images with intensity inhomogene-
ity is basically a multiplicative model of the artifact as given in

M = bT + n (1)

where M is the measured image intensity, T is the true image b is
the component that accounts for intensity inhomogeneity.
The component b is referred to as bias field (or shading image). It is
assumed to be slowly varying in the entire image domain. The true
image intensities T are approximately constant within each class of
tissue i.e. it is piecewise constant. The additive noise n is assumed
to be zero mean Gaussian noise. The final goal in image segmen-
tation is to separate the image domain Ω into N disjoint regions
based on the observed image M . However, due to intensity inho-

mogeneity caused by the bias field b, the measured intensities are
not separable by using traditional intensity based methods. Li et al.
[7] proposed a method for joint segmentation and bias correction.
The method uses K-means clustering algorithm by minimizing a
weighted objective function. Based on the model of images with
intensity inhomogeneities, a local intensity clustering criterion was
defined for image intensities in the neighborhood of each point. In
the level set formulation, this criterion defined energy in terms of
the level set functions that represent the partition of the image do-
main and a bias field that accounts for the intensity inhomogeneity
of the image. By minimizing this energy, the method was able to
segment the image and estimate the bias field simultaneously. The
present work attempts to further improve the homogeneity of the
images by using GL Fractional derivative.

3.2 Local Intensity Clustering Property
Li et al considered a circular neighborhood with a radius ρ centered
at each point y . For a slowly varying bias field b, the values b(x)
for all x in the circular neighborhood are close to b(y). Then, from
the image model in (1) ,

M(x) = b(y)ci + n(x) (2)

For the intensities in the neighborhood, the K-means algorithm is
an iterative process to minimize the clustering criterion [17] which
can be written as

Fy =

N∑
i=1

∫
|M(x)−mi|2 ui(x) dx (3)

where mi is the cluster center of the ith cluster, ui is the member-
ship function of the region Ωi to be determined. A clustering cri-
terion for classifying the intensities in the neighborhood has been
defined as

Ey =

N∑
i=1

∫
K(y − x) |M(x)− b(y)ci|2 dx (4)

where K(y − x) is introduced as a non-negative window function.
The energy in (4) is expressed in terms of the regions Ω1, . . . ,ΩN .
The energyE is converted to a level set formulation by representing
the disjoint regions with a number of level set functions.

4. PROPOSED METHOD
The present paper proposes a method to make bias correction of
cell images more efficient and improve the homogeneity of the cell
images by using Fractional derivative. The paper also proposes a
method to optimize the fractional order for a given test image. Fur-
ther, the paper proposes a boxcar function based Chan Vese nar-
rowband model to improve the speed of the level set method for
cell segmentation.

4.1 Fractional Derivatives
In cell images, the gray level value between adjacent pixels is
highly correlated with significant self similarity. Such fractal
like structures are often expressed by the complex texture detail
features [6]. Fractional differential is an efficient method to deal
with such fractal problems. Fractional Calculus is non integer
order calculus. The commonly used definitions of fractional
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derivative under Euclidean measurement are Grunwald- Letnikov
and Riemann-Liouville [14].

For a one dimensional signal s(t) with support domain Ω = [d, t],
if Ω is divided into n equal parts by interval step h = 1, then
n =

[
t−d
h

]
= t−d

h
. Then the ν order Grumwald-Letnikov (GL)

based fractional differential can be expressed by:

G
d D

v
t = lim

h→0
s
(v)
h (t)h−v

n∑
q=0

[
−v
r

]
s(t− q + h) (5)

where

[
−v
q

]
=

(−v)(−v + 1)......(−v + q − 1)

Γ(q + 1)
(6)

and Γ is the gamma function
For a one dimensional signal s(t), it has the following expression:

sv(t) = s(t) + (−v)s(t− 1) +
(−v)(−v + 1)

2
s(t− 2)

+
(−v)(−v + 1)(−v + 2)

6
s(t− 3) + .............

+
Γ(−v + 1)

Γ(n+ 1)Γ(−v + n+ 1)s(t− n)
(7)

As image is a two dimensional signal, a two dimensional mask
has been obtained and fractional differential operation has been
achieved by linear filtering [6]. The duration of the two dimen-
sional digital image on x and y coordinates has been defined as
x ∈ [x1, x2] and y ∈ [y1, y2] respectively.
The x− y partial fractional differential of s(x, y) has been defined
as:

∂vs(x, y)

∂xv
≈ s(x, y) + (−v)s(x− 1, y)

+
(−v)(−v + 1)

2
s(x− 2, y) + ....... (8)

∂vs(x, y)

∂yv
≈ s(x, y) + (−v)s(x, y − 1)

+
(−v)(−v + 1)

2
s(x, y − 2) + ....... (9)

4.1.1 Theoretical Analysis. The Fourier Transform of the first or-
der differential of any quadratic integrable energy signal s(t) is
Ds(t). Ds(t) = (Ds)(w) = (iw)s(w) = d(w)s(w). Similarly,
from GL based definition, the Fourier Transform of fractional dif-
ferential of signal Dv

GLs(t) is given by

Dv
GLs(t) = sv(t)←→ (Dv

GLs)(w) = (iw)vs(w)

= dv(w)s(w) (10)

whereDv
GL is v order differential operator. dv(w) = (iw)v is filter

function.
The filter function of fractional differential is dv(w) = (iw)v =
|w|veiθv(w). The frequency response of fractional differential is
shown in Figure 1. It is clear that the frequency response of frac-
tional differential is non-linear in nature. When v = 0, fractional
differential is an all pass filter. When v < 0, it is a fractional inte-
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Fig. 1: Frequency Response of Fractional Differential

grator and it is low pass integral filter. When v > 0, it is a fractional
derivative operator. From the graph, it is observed that the fractional
differential non linearly enhances high frequency components of
a signal whereas nonlinearly inhibits low frequency components.
From Fig. 1 , we find that when w > 1, the enhancement of high
frequency components by fractional differential is less than inte-
gral one and the enhancement of high frequency edge components
is inferior to first order one. Moreover,when 0 < w < 1, the low
frequency components are preserved more efficiently than the first
order differential filter [6]. Hence, introducing fractional differen-
tial filter helps to extract lower frequency components in the cell
images more efficiently thus improving the homogeneity value of
the image.

4.1.2 Selection of Fractional Order. The fractional differential
operator can be used to improve the homogeneity of the images to
aid in better segmentation. But the optimal selection of the differen-
tial order is a critical problem. Based on the definition of Structural
Similarity Index(SSIM), a method to find the optimal fractional or-
der for a particular image is proposed.
Image quality assessment algorithms evaluate a test image X with
respect to a reference image Xr to assess the visual similarity of
the test image from the reference image. The structural similarity
(SSIM) metric identifies the similarity between two images based
on the assumption that the human visual system process structural
features from natural images, and, therefore, the quality of an image
depends on the structural similarity between the processed image
and the original image.
SSIM measures visual quality with a similarity measure between
two subwindows x and y of the two images as the product of three
components: meanm(x, y), variance v(x, y), and cross-correlation
r(x, y). The two subwindows, x and y, correspond to the same
spatial window of the two images X and Xr , respectively. The
SSIM value for the patches x and y is given as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(11)

where µx and µy are the average of x and y respectively. σ2
x and σ2

y

are the variance of x and y respectively. The overall SSIM image
quality index for the images X and Xr is computed by averaging
the SSIM values computed for small patches of the two images.
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The optimum fractional order for a given image is evaluated as

vopt = max(SSIM(I, Iv)) (12)

where I is the original image and Iv is the differentiated image
with fractional order v

4.2 Three Phase Level Set Energy Minimization for
cell segmentation

4.2.1 Chan-Vese Model with boxcar function. A level set func-
tion is a function that takes positive and negative signs that are
used to represent the partition of a domain Ω into disjoint regions
Ω1,Ω2,ΩN depending upon the number of phases N of the levels
set formulation. If Φ is a level set function, then its sign defines two
distinct regions.
Ω1 = [x : Φ(x) > 0] and Ω2 = [x : Φ(x) < 0] which is the
partition of the domain in two different regions. As region based
level set methods have many advantages over edge based methods,
we have used region based method in this paper. Chan-Vese(CV)
model [18] is the most commonly used region based level set
model. It is based on the total squared difference of intensities of
the points inside and outside of the contour. Though the CV model
outperforms the traditional models, the major limitation is that it
may become extremely time consuming due to periodic reinitial-
ization of the level set.
The present work proposes a method to improve the speed of the
CV model by introducing boxcar function in the level set equation.
In the three phase level set case, the level set function Φ is used
to represent the two regions Ω1 and Ω2. In this case (N = 3), we
use two level set functions Φ1 and Φ2 to define three membership
functions as:

F1(Φ1,Φ2) = B(Φ1)B(Φ2) (13)

F2(Φ1,Φ2) = B(Φ1)(1−B(Φ2)) (14)

F3(Φ1,Φ2) = (1−B(Φ1) (15)

where B is Boxcar function defined as

b(x) = (m− n)Af(m,n : x) = A(H(x−m)−H(x− n))
(16)

where f(m,n;x) is the uniform distribution of x for the interval
[m,n], A is a constant and H(x) is the heaviside step function.
For the three phase case, the energy can be expressed by the fol-
lowing levels set formulation:

E =

∫ N∑
i=1

(∫
K(y − x) |I(x)− b(y)ci|2 dy

)
Bi(Φ(x)) dx

(17)
By introducing boxcar function in the evolution equation of the
level set, the time taken for each computations in the evolution pro-
cess of the level set is reduced as the boxcar function is unity only
for a defined interval.

4.2.2 Narrowband Level Set implementation and its convergence.
Throughout the evolution process of the level set, each point in the
entire image has to be computed according to the evolution equa-
tion. As solving the equation for every image pixel is extremely
time consuming, the level set function is calculated only on the

zero level set and in the 3 × 3 neighbourhood of pixels. Hence, a
narrowband level set algorithm has been used to further reduce the
computational time for segmentation. The steps of the proposed
model are as follows:

(1) Initialize the contour with a binary level set function having an
arbitrary shape.

(2) Select a narrowband of pixels around the zero level set.
(3) Evolve the level set function according to (17).
(4) Continue the process until the evolution converges and there is

no further change in the zero level set for several iterations.

5. EXPERIMENTAL RESULTS AND ANALYSIS
The proposed method was compared to the original algorithm by
evaluation on real microscopy images. The results have been tested
on two datasets.

5.1 Image Datasets
The proposed algorithm has been tested on images taken from three
different databases. The first dataset has been collected from Insti-
tute of Microbial Technology (IMTECH) Chandigarh. These are
the fluorescence and bright field images of THP1 cells(a human
macrophage cell line). THP1 is a cell line extracted from a leukemia
patient. It is used to test leukemia cell lines in analysis of protein-
protein interaction. These cells are large and round in shape. The
second dataset has been obtained from the Herlev database that is
publicly available. This database is provided by the Department of
Pathology at Herlev University Hospital and the Department of Au-
tomation at Technical University of Denmark [5]. The third dataset
is the Murphy lab database which is also publicly available [3].It
consists of 2D images of 3T3 cells.

5.2 Results and Discussion
In this section, we show the results for inhomogeneous cell images.
These images exhibit obvious intensity inhomogeneities. We first
demonstrate our method in the three phase case (i.e. N = 3). The
fractional differential order ν is selected based on the criteria dis-
cussed in Section 4.3. The proposed method has been implemented
on the datasets discussed above.
Figure 2 shows the results of the proposed method on the bright-
field image of THP1 cells. The figure also shows the histograms of
the original image, bias corrected image and GL differentiated bias
corrected image.

Table 1. : Comparison of homogeneity values using GLCM (Gray Level
Co-occurence Matrix)

Dataset Homogeneity value Homogeneity value
(clustering criteria) (proposed method)

THP1 0.9015 0.9543
3T3 0.8667 0.9967

The pixels of a cell image can be classified into two or three parts:
cell region and background or nucleus, cytoplasm and background
respectively. So, a cell image has a two peak or three peak dis-
tributed histogram model. Our method has been tested on cell im-
ages with promising results. Figure 2 shows a two peak distibuted
histogram and Figure 3 shows a three peak distributed histogram
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Fig. 2: Homogeneity improvement results for dataset 1 (a) Original image (b) Bias corrected image using clustering criteria (c) Bias corrected
image using proposed method (d) Histogram of original image (e) Histogram of bias corrected image using clustering criteria (f) Histogram
of bias corrected image using proposed method

Table 2. : Optimization of fractional order

SSIM(v = 0.2) SSIM(v = 0.5) SSIM(v = 0.9)

0.8238 0.8221 0.8196
0.8109 0.8073 0.8078
0.7754 0.7740 0.7612
0.6439 0.6356 0.6302
0.8348 0.8370 0.8399
0.8704 0.8711 0.8712
0.7611 0.7607 0.7577
0.9669 0.9598 0.9581
0.9699 0.9691 0.9663

of a cell image. It can be seen that the GL differentiated bias cor-
rected image shows an improvement in the homogeneity of the im-
ages. The improvement of the image quality in terms of intensity
homogeneity can be shown by comparing the histograms of the
bias corrected images and the GL differentiated bias corrected im-
ages. The peaks in the histograms of GL differentiated images are
well defined and well separated, each corresponding to a different
intensity region in the cell images. In contrast, the histograms of
the bias corrected images do not have well separated peaks due to
the mixture of the intensity distribution caused by bias. Moreover,
the homogeneity value of the images using the GLCM statistics in
Table 1 shows the improved performance of the proposed method.
As the homogeneity value of the images have improved, the over-
laps between the ranges of intensities of the different regions of the
cells have reduced. Moreover, the fractional differential order is se-

lected by (12). The SSIM values of different images for ν = 0.2,
0.5 and 0.9 have been tabulated in Table 2. For completeness of
the paper, the optimum fractional order is also illustrated using his-
togram evaluation. The histograms of the test images for ν = 0.2
and ν = 0.9 have been shown in Figure 4.
The main purpose of the above experiments was to validate the ef-
fectiveness of the proposed method for segmentation of the cells.
The proposed three phase Chan Vese narrowband algorithm has
been implemented to obtain the segmented images. The segmented
images have been evaluated by using accuracy, precision, sensitiv-
ity and F-score [16] metrics. Table 3 and Table 4 compare the ex-
isting method and the proposed method in terms of the above men-
tioned metrics. The results show improved performance of the pro-
posed method over the existing method. The computational times
of the proposed method in seconds have been compared with the
existing method for five different images from the databases dis-
cussed above and are tabulated in Table 5.

Accuracy = TP/(TP + FN + FP ) (18)

Precision = TP/(FP + TP ) (19)

Sensitivity = TP/(TP + FN) (20)

Fscore =
(2.precision.sensitivity)

(precision+ sensitivity)
(21)
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Fig. 3: Homogeneity improvement results for dataset 2 (a) Original image (b) Bias corrected image using clustering criteria (c) Bias corrected
image using proposed method (d) Histogram of original image (e) Histogram of bias corrected image using clustering criteria (f) Histogram
of bias corrected image using proposed method

Table 3. : Comparison of Segmentation results for dataset 1 (THP1)

Method Sensitivity Accuracy Precision F-score
Existing Method 96.28 95.7 99.4 82.48
Proposed Method 98.57 98.01 99.4 98.98

Table 4. : Comparison of Segmentation results for dataset 2 (3T3)

Method Sensitivity Accuracy Precision F-score
Existing method 90.29 80.55 93.54 89.224
Proposed Method 97.14 89.47 91.89 94.44

Table 5. : Comparison of computational times (in seconds) of the proposed
method with the existing method

Method THP1 3T3 Columnar Carcinoma Severe Dysplasia
Existing method 12.56 222.09 535.47 494.57 535.47
Proposed Method 11.40 209.55 499.45 401.51 494.24

6. CONCLUSION
In this paper, a fractional differential term has been introduced in
the clustering criteria for improving the homogeneity of the cell
images. Introducing fractional differential term in the algorithm im-
proves the homogeneity of the image by extracting high frequency
edge components and by nonlinearly preserving the low frequency
components. Thus the proposed method can extract more image de-
tails as compared to the existing method. The effectiveness of the
proposed method has been tested on different datsets. A method to
find the optimum value of fractional order for images has been pro-
posed. Further, a boxcar function based Chan Vese model in nar-

rowband implementation has been proposed to improve the com-
putational speed of the algorithm. The improvement in accuracy
of segmentation results have been validated using accuracy, sen-
sitivity, specificity and F-score metrics. Experimental results have
demonstrated the time efficient behaviour of the proposed method
as compared to the existing method.
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