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ABSTRACT 

In this paper, we present an algorithm for Residue Number 

System (RNS) implementation of RSA cryptography based on 

an existing RNS division algorithm. The proposed algorithm 

and that of the state of the art were written in C++ 

programming language to compare their efficiency with 

respect to execution time. Experimental results show that our 

algorithm can encrypt and decrypt text without loss of 

inherent information and faster than the state of the art. It also 

offers firm resistance to Brute-force and key sensitivity 

attacks. Considering the moduli-set {2, 3, 5} experimental 

results shows that, our proposed algorithm is 7.29% and 

15.51%, faster than the state of the art algorithm for integer 

and non-integer quotients respectively. Also, for the moduli-

set {7, 9,   11}, our algorithm is as well  11.29% and 10.36% 

faster than that of the state of the art algorithm for integer and 

non-integer quotient respectively. We carried out an error 

analysis of the experimental results at 95 degrees significance 

level. 
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1. INTRODUCTION 
Individuals have secrets that need protection; these secrets 

appear in areas like medical files, bank statements, paycheck, 

investment portfolio and credit card bills. Others include 

social security numbers, credit card numbers, bank account 

numbers etc. Corporations also have secrets, these includes; 

strategic reports, sales forecasts, technical product details, 

research results, personnel files, and so on. [16]. In the past 

before the advent of computers, security was simply a matter 

of locking of doors or storing files in locked filling cabinet or 

safe. Today files are stored in computer databases as well as 

file cabinets. 

Hard-drives and floppy disks hold many of our secrets. In the 

beginning the best way was to provide security to these data 

through the Operating System (OS), by locking it using a 

password. 

However, various attacks on passwords have rendered this 

mode of security vulnerable and attacks bypass the OS. For 

your secrets to be secured, it may be necessary to add 

protection not provided by your computer (OS). One of the 

most important tools for protecting data is cryptography [13].    

Cryptography has many advantages, some of which include; 
adding security to the process of authenticating people 

identity, Improves privacy, such that, no one can break into 

files to read your sensitive data. Improved data integrity, 

which refers to a mechanism that tells us when something has 

been altered. Also by applying the practice of authentication, 

you can verify identities. 

In recent times, there has been a vigorous and continuous 

search for improving computer performance [1]. Researchers 

are coming out with new ideas and technologies to make the 

computer more efficient. The main task of a computer is 

computing which deals with numbers all the time. Some 

examples of number systems are binary number systems, 

decimal number systems, [1]. Weighted Number System 

(WNS) and Residue Number System (RNS) Binary and 

decimal number systems, intrinsically limit the performance 

of arithmetic units and processors built based on them. 

Because of this limitation in Weighted Number System 

(WNS), RNS has many advantages of computing large 

numbers in computers over WNS. These include carry-free 

addition and borrow free subtraction, which are the challenges 

to binary and decimal number system, because in RNS a 

number is represented by the residues of all moduli, and the 

arithmetic can be performed on each modulus independently. 

Therefore RNS offers the properties of parallelism [17]. 

Even though RNS has many advantages over WNS in terms 

of encoding large numbers into a set of smaller numbers to 

speed up computations, the following  are time-consuming 

operations in RNS which affect the wide spread application of 

RNS in areas like cryptography; overflow detection, sign 

detection, magnitude comparison and division. Among them, 

division has modular operations application as can be found in 

cryptography [17]. Currently, fast hardware implementations 

of RSA cryptosystem is under study while confidentiality and 

security requirements are becoming more and more important. 

In view of this emerging problem of digital security, 

cryptographers keep increasing the key-length. Recently, it is 

assumed that a 1024-bit key-length makes a reasonable choice 

for the cryptography popularly known as RSA, and current 

analysis predict that 2048-bit or 4096-bit key will become the 

standard in a near future [16].  

The ability to perform fast arithmetic on large integers is still 

a major issue for the implementation of public key 

cryptography and digital signature, particularly from the 

hardware design point of view [16].  

In traditional cryptography, encryption and decryption 

operations are performed with the same key, that is, 

symmetric key cryptography. This means that the party 

encrypting the data and the party decrypting it need to share 

the same decryption key. If two parties already share a secret 

key, they could easily distribute new keys to each other by 

encrypting them with prior keys. From symmetric key 

encryption, researchers continue to build knowledge towards 

unsymmetrical key encryption. [4] Suggested that, encryption 

and decryption could be done with a pair of different keys. 

The decryption key would be kept secret, and the encryption 

key could be made public. This concept was called public-key 

cryptography. Every computer can use that encryption key to 
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protect data sent to the site. However, only the site has the 

corresponding decryption key that can decrypt the data and 

the concept of digital signatures were also introduced. [4], 

Their key agreement is confronted with the problem of 

discrete logarithms and integer factorization. In 1977, a public 

key cryptosystem was invented by [4] called the RSA public 

key cryptography. However, only integers are encrypted in 

RSA.  Fast RNS division algorithms for fixed divisors with 

application to RSA encryption, was first written by [1], 

however their algorithm was restricted to only division with 

integer quotient. Due to the fact that it was iterative, it was 

time consuming. In [16], a full RNS implementation which 

was based on the Chinese Remainder Theorem (CRT) and 

Montgomery Multiplication (MM), and base extension are 

presented. The main drawback of CRT emerges from the 

required modulo-M operation, which is time consuming and 

rather expensive in terms of area and energy consumption for 

large M [7]. In 2013, a division algorithm was presented in [4] 

without using CRT/MRC or MM. They used the parity 

checking technique and highest powers of two to perform 

division in RNS, however it is also iterative. Meanwhile, a 

non-iterative and pure RNS division algorithm has been 

presented in [10] and this solved the looping problem and 

restriction to integer quotient. In this paper, we propose an 

efficient RNS implementation of RSA cryptography based on 

based on a non-iterative and pure RNS division algorithm by 

Mansoureh and Mohammed (2012). In fact, this algorithm 

avoids overall loop and supports all numbers in the range as 

denominator.  The remaining part of this paper is as follows: 

In Section 2, RNS division algorithm is presented with 

emphasis on the one proposed by Mansoureh and Mohammad 

(2012), sections 3, 4, 5, and 6 presents RSA Cryptography, 

the proposed algorithm and performance analysis of the 

proposed algorithm and the conclusions respectively.  

2. DIVISION IN RNS 
Division is one of the main obstacles that discourage the use 

of RNS. In RNS representation, division is not a simple 

operation. The analogy between division in conventional 

representation and RNS representation does not hold. 

In conventional representation, we represent division as 

follows: 

 

 
  ……………………………………… (1) 

       

This can be written as 

     ………………………………… (2) 

 Where q, is the quotient 

In RNS, the congruence: 

            ………………… .(3)  

Multiplying both sides by the multiplicative inverse of y, 

we can write: 

                ………………….. (5)  

The Equation  

q
y

x


   is equivalent to 

 
myxq mod1

  

Only if it has an integer value, otherwise, multiplying by the 

multiplicative inverse in RNS representation will not be 

equivalent to division in conventional representation 

Example 2.1 

Consider an RNS with m=7, we want to compute the 

following quotient: 

   
 

 
               

 

 
 

In the first case (a) 

 

 
                 

This is equivalent to division in conventional representation. 

We notice in part (b), that division in RNS is not equivalent to 

that in conventional representation when the quotient is a non-

integer value. Due to this fact, division in RNS is usually done 

by converting the residues to conventional representation, 

performing the division, and then converting back to RNS 

representation. Tedious and complex conversion steps result 

in undesired overhead. This is one of the main drawbacks of 

RNS representation. 

 

 
                 

However, in cryptography this could serves as an advantage to 

adding security to cryptosystem. 

Moreover, many other algorithms for division in RNS are 

presented. Some of these iterative algorithms work by 

subtracting denominator from numerator in a major loop, until 

numerator gets less than denominator. Quotient is equal to the 

number of iterations of this major loop. Some of them use 

Newton iteration to compute reciprocal and then compute 

quotient [12], [13]. 

Another common way for division is using the definition of 

division. In this algorithm, first the position of the most 

significant non-zero bit in the divisor and dividend is 

determined, then, according to the difference between these 

two positions, divisor is shifted to the left and is subtracted 

from dividend. These actions are repeated in a major loop 

until the result is smaller than divisor. 

In some other methods for dividing X by Y, first the proper 2k 

is detected such that Y.2k ≤X ≤Y.2k+1. In the next iterations, 

these two margins varied until quotient obtained. [9].  

There is another method in which, instead of dividing two 

proposed numbers, X and Y, two different numbers which 

have the same ratio and are less than X and Y, are chosen. For 

doing this, some new moduli are introduced, and at last, in a 

major loop, the division result is calculated [14]. [5].  

From the above, it is clear that these algorithms have three 

major deficiencies: 

1. All of them have an overall loop which increases 

the complexity and delay of the algorithm. 

2. Some of these methods exclude some numbers in 

the range of acceptable inputs as a denominator in 

division operation. 

3. They have some operations in the binary or mixed 

radix system or uses a lookup Table to perform an 

RNS division. 

In order to solve problems one and two, a non-iterative 

division algorithm was proposed by [11]. 
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2.1 Pure RNS Division Algorithm by 

Mansoureh and Mohammad (2012)  

 

Input:                                  
Input            the modulo set 

Output: K=X/Y and R=(X mod Y) in RNS, Condition: all 

moduli            are relatively prime numbers but 

2. 

1) Calculate Y-1= multiplicative inverse of Y 

2) Calculate R = X mod Y 

3) Calculate K= (X – R). Y-1 

4) If any,      , then set  

 

            In which      

End.  

 

3. THE RSA CRYPTOSYSTEM 
This cryptosystem uses computations in     where n is the 

product of two distinct odd primes p and q. for such an integer 

n, note that 

               …………………….… (6)                                                                                               

 

Let  

 

      Where p and q are primes 

  

Let 

       And define 

                             …… (7)                                                                

For 

                   
 

       
       ……………………………….. (8)   

                                                                                              

       
       ……………………………… .(9) 

                                                                                                      

       

The values n and b compose the public key, and the values (p, 

q and a) form the private key. 

 

4. THE PROPOSED ALGORITHM 
We propose an algorithm based on Mansoureh and 

Mohammed (2012) pure RNS division algorithm. Two 

different moduli sets were considered that is,         
         for n =2 [11], we had (2, 3, 5) and       
             for n = 3 we had (7, 9,11). The 

dynamic ranges are 29 and 692 respectively. We then did our 

analysis on integer and non-integer quotients for the range of 

values for X and Y within 29 and also for 692. In both cases 

we run several examples for non-integer and integer quotients 

regarding improper fraction. From Equation (8) 

Let 

   
 

 
  Where M is the quotient, X is the dividend and Y 

is the divisor. Thus modified as:  

   
 

 
   

 

 
 
 
      …………………………… (10) 

 

From equation (9) 

Let    
 

 
  where Q is the cipher text, D is the dividend 

and C is the divisor  

Thus becomes 

   
 

 
   

 

 
 
 
       ................................ (11).                                                                                            

 

This algorithm maintained the number of keys, both public 

keys and private keys. 

Thus: (n, b) composed the public keys and (p, q, a) forms the 

secret keys. 

For the Moduli sets 

                   
 

 For n=2; we have (2, 3, 5) and given  

 

                    
 For n=3; we have (7, 9, 11)  

 

We consider the following assumptions: 

 

4.1 Assumptions 
The following are assumptions to our propose algorithm 

       

 No denominators or divisors should be a multiple of 

the chosen moduli set. Else the algorithm will break 

down due to a zero multiplicative inverse in one of 

the modulus 

 After going through the division phase of the 

algorithm, when the CRT display the decimal 

equivalent of the RNS say (k) and its greater than 

(n),then the expected plain text would be (k)n. that 

is                          
 

4.2 The Encryption 

       
        In the usual RSA encryption 

Let      
 

 
  where Q is the quotient, X is the 

dividend and Y is the divisor 

1) Input           the moduli set, 

2) Input                         

3) Input (n and b) the public keys 

4)    
 

 
   

 

 
 
 
       

5) Calculate Y-1= multiplicative inverse of Y 

6) Calculate R = X mod Y 

7) Calculate Q= (X – R). Y-1 

8) If any,      , then set            
    . 

Note: The Transformation 
 

 
               . Is 

based on Mansoureh and Mohammed (2012), and Q output 

will appears in RNS representation.  

9) Using CRT convert             to Q i.e. the 

decimal value 

10) Hence           
          

11)                          
        

12) End the program. 
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4.2.1 The Decryption 
       

              
 

 
                In the usual RSA decryption 

1) Input           the moduli set, 

2) Input (t, f, h )RNS 

3) Input (p, q and a) the secret keys 

4) Using the CRT convert         to G the decimal 

value. 

5)      
           ELSE         

  

           
 

 
 

6) End the program.   

 

The following example illustrates our algorithm. 

 
   

  
  

For 

                                          

4.2.2 The Encryption Algorithm  
 Let            

1) Input           the moduli set 

2) Input       
   
                   

   
           

3) Input (n and b) the public keys          7 

4)    
   

  
   

   

  
 
 
         

 

5) Calculate Y-1= multiplicative inverse of Y Else If 

any,      , then set 

                        

                 i.e. 17-1 w.r.t (7, 9, 11) = (5, 8, 2) 

6) Calculate R = X mod Y=(578)17= 
   
           

 

7) Calculate Q= (X – R). Y-1=         
                           

8) Using CRT convert             to (34) i.e. the 

decimal value 

 

9) Hence             
             

 

10)                          
           

11) Hence   
   
            is send as the encrypted 

massage where X and Y or Q is the plain text. 

12) End the program. 

 

4.2.3 The Decryption Algorithm  

Let    
 

 
  where G is the cipher text, D is the dividend 

and C is the divisor. 

1) Input {7,9,11}   the moduli set, 

2) Input (G)RNS=(6,9,1) 

3) Using the CRT convert (G)RNS=(6,7,1) to decimal 

34 

4) Input (p, q and a) = 23 the secret key 

5) dk[6,7,1]23mod(187) = dk[34]23mod(187) = (6,7,1) 

6) Using (CRT)transform (6,7,1)RNS to 34 

7) Hence       is decrypted 

8) End the program. 

5. PERFORMANCE ANALYSIS OF THE 

PROPOSED ALGORITHM 
Security analysis was performed to test the effectiveness of 

the proposed algorithm to known RSA attacks (key space, and 

key sensitivity analysis). Experimental results showed that the 

proposed algorithm is highly secured against such attacks. 

 

5.1 Key Space Analysis 
The brute force attack is computationally infeasible for 

cryptosystems with sufficiently large key space. The proposed 

algorithm is a public key cryptosystem which has   
                 

The proposed algorithm achieves an efficient coding process 

when the key space K is large, note that, n depends on p and 

q. however, we adapt 1024bits as our key space as with the 

DES. This gives us the combination of choices.     . 

      
                                  
   . 

Diffie and Hellman(1976) outlined a "brute force" attack on 

DES by "brute force" is meant that you try as many of the 256 

possible keys as you have to before decrypting the cipher-text 

into a sensible plaintext message. Our key space is      
    

5.2 Sensitivity Analysis 
The greatest sensitivity analysis in our algorithm is that 

explained in example 2.3 (a, and b) respectively.  In (a) 

division in RNS is equivalent to division in conventional 

representation. 

Where as in part (b), we notice that division in RNS is not 

equivalent to that in conventional representation when the 

quotient is a non-integer value. This can enhance the 

sensitivity of the key. A good cryptosystem should be 

sensitive to secret keys. A slight change in the key value 

should lead to a significant change in either a plain text or a 

cipher text. The addition of the used of the moduli set also 

help in security of the algorithm. There must be moduli set to 

be agreed on by both parties. The parameters (p, q, n, a, and b) 

in our examples resulted in significant difference with the 

actual answers during our experiment. Table 1 below 

illustrates these changes between conventional division and 

RNS division. 

5.3 Executing Time Analysis for the Moduli 

set (7, 9, 11) 
This moduli set used larger dynamic range, which gives room 

for larger domain for values of X and Y. the average time for 

integer quotient in this scheme is 16822.3 microseconds 

approximately 17seconds and that of non-integer is 15228.1 

microseconds approximately 15sec. Table 2 did the 

comparison between the average times for the two different 

moduli sets, and it was observed that they both have almost 

the same average time. We compared our algorithm to some 

state of the art algorithms, and it reveal that our algorithm has 

the best average time for both integer and non-integer quotient 

with respect the two different moduli sets used. Table 3 

explained these. 

Observed that when the moduli set is chosen such that it has a 

small dynamic range, the algorithm would be limited to just a 

few numbers qualified for encryption and thus, attackers can 
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easily break the algorithm. The encryption time for these 

moduli set is higher than the decryption time. The average 

time to do a complete encryption and decryption with respect 

to an integer quotient is 16822.3microseconds which is 

approximately 17seconds, and that for a non-integer quotient 

is 15228.1microseconds approximately15 seconds.  Tables 2 

illustrate these 

5.3.1 Executing Time Analysis for the 

Moduli-set (2, 3, 5) 
The freedom of number representation in RNS is limited by 

the Dynamic range which is dependent on the moduli set. It is 

observed that when the moduli set is chosen such that it has a 

small dynamic range, the algorithm would be limited to just a 

few numbers qualified for encryption and thus, attackers can 

easily break the algorithm. The encryption time for these 

moduli set is higher than the decryption time.  

The average time to do a complete encryption and decryption 

with respect to an integer quotient is 16822.3 microseconds 

which is approximately 17 seconds, and that for a non-integer 

quotient is 15228.1 microseconds approximately 15 seconds.  

5.4 Error Analysis of Our Proposed 

Algorithm 
We did the error analysis on our proposed algorithm in terms 

of the average executing time. This was performed on the 

different moduli set for {2, 3, 5} and {7, 9, 11}. Experimental 

results revealed that the mean, standard deviation and 

standard error are very minimal. Table 4 shows these 

statistics. We assume a significant level of 0.05. 

The confidence interval of the two different moduli sets are 

shown in table 5. In table 6, we illustrated the percentage 

difference between our proposed algorithm and that of the 

state of the art we did the comparison with. The results 

showed that, our proposed algorithm is 7.29%, 15.51%, 

11.29% and10.36% better than that of the state of the art we 

did the comparison with in terms of the moduli sets and the 

type of quotient involved. 

 

Table 1 Sensitivity Analysis of Integer and Non-Integer 

Quotient 

 
Exampl

e 

Type of 

quotien

t 

Plaintext in 

conventiona

l division 

Plaintext 

in RNS 

Modul

i Set 

Cipher 

text 

6/4 Non- 

integrin 

1.5   
   
           

(7,9,11

) 
  
   
           

6/2 Integer 3  
   
           

(7,9,11

) 
  
   
           

258/33 Non 

integrin 

7.8181   
   
           

(7,9,11

) 
  
   
           

 

Table 2 Average Time complexity for moduli-sets (2, 3, 5) 

and (7, 9, 11) in microseconds 

Type of quotient Average time 

(7, 9, 11) 

Average time 

(2, 3, 5) 

Non integer 19500.6 15228.1 

Integer 18933.0 16822.3 

 

Table 3 Comparison of our average times to some state of 

the art Algorithm in microseconds 

 
Type of algorithm Average Time With Respect to 

Moduli Set 

Our algorithm 

 

(2,3,5)                (7,9,11) 

Non-integer quotient  

15228.1               19500.6 

Integer quotient 16822.3               18933.0 

Chin, Y. H. & Behrooz,P. (1994) 

 

(2,3,5)                 (7,9,11) 

Non-integer quotient  

20816.9               24008.1 

Integer quotient 19468.6               23753.9 

 

Table 4 Error Analysis of our Proposed Algorithm 

  N Mini

mum 

Maxi

mum 

Sum Mean Std. 

Devia

tion 

 Stati

stic 

Statist

ic 

Statist

ic 

Stati

stic 

Statis

tic 

Std. 

Erro

r 

Statis

tic 

Delay 

for 

encrypti

on 

{2,3,5} 

10 2308 21011 1475

56 

1475

5.60 

1583.

749 

5008.

255 

Delay 

for 

decrypti

on 

{2,3,5} 

10 1395 22865 1414

38 

1414

3.80 

1662.

706 

5257.

938 

Delay 

for 

encrypti

on  

{7,9,11

} 

10 13442 22902 1835

09 

1835

0.90 

1029.

528 

3255.

655 

Delay 

for 

decrypti

on 

{7,9,11

} 

10 13391 29409 2008

27 

2008

2.70 

1346.

445 

4257.

832 

Valid N 

(listwise

) 

10       

 

Table 5 Confidence Interval for the Error in our proposed 

Algorithm 

 
Moduli Set Confidence Interval 

(2,3,5)   Lower bound                       Upper bound 

Encryption 14677.60                                   14833.60 

Decryption 14063.88                                    14223.72 

(7,9,11) Lower bound                       Upper bound 

Encryption 18288.01                                     18413.79 

Decryption 20010.78                                     20154.62 
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Table 6 Percentage Difference between the proposed 

Algorithm and Parhami 

Quotient Parhami Proposed 

Algorithm 

Percentage 

difference 

(2,3,5) (7,9,11) (2,3,5) (7,9,11) (2,3,5) (7,9,11) 

Delay 

for 

 Integer 

19468.6 23753.9 16822.3 18933.0 7.29% 11.29% 

Delay 

for  

Non-

integer 

20816.9 24008.1 15228.1 19500.6 15.51% 10.36% 

 

6. CONCLUSIONS 
In this paper, an efficient algorithm based on RNS division 

algorithm to implement RSA public key cryptography is 

proposed. The proposed scheme can absorb and control the 

emerging problem of growing key length in RSA. The 

proposal algorithm is general and can be applied to RSA 

cryptography. Fractions, decimals, and integers can all be 

encrypted and decrypted. The proposed algorithm performed 

relatively well comparing it to existing state of the art 

algorithms. Experimental results demonstrates that, the 

proposed scheme is 7.29% and 15.51%, faster than the state of 

the art algorithm for integer and non-integer quotients 

respectively with respect to the moduli set {2, 3 5}. 

Additionally, with the moduli-set {7, 9, 11}, the proposed 

algorithm is 11.29% and 10.36% faster than that of the state 

of the art for integer and non-inter quotients respectively. The 

proposed algorithm would work efficiently when: - you 

choose a larger dynamic range for larger domain, Non-integer 

quotient is highly secured and sensitive relative to integer 

quotient, and it is having the best time as well. It was 

observed that the algorithm is having the best average time for 

both integer and non-integer quotient relative to the state of 

the art algorithm that it was compared to. The error analysis 

was performed and we had a negligible error margin to the 

proposed algorithm.  

This paper has made some gains. However, development can 

be looked at in the future in  the following areas:-The 

hardware implementation of the proposed system, Analyzing 

the performance of the proposed techniques and other division 

algorithm technique, The moduli set could also be enhanced 

to increase the dynamic range relative to the key space, The 

proposed algorithm can be tested on other public key 

cryptosystem like the Elgamal, With the idea of the proposed 

algorithm scaling in RNS could also be exploited for possible 

application to RSA. 
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