
International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.5, October 2015

14

Efficient Algorithm for RNS Implementation of RSA

I.R. Fadulilahi
Department of Computer

Science
University for Development

studies,
Box 1350, Tamale, Ghana

E.K. Bankas
Department of Computer

Science
University for Development

Studies,
Box 1350, Tamale, Ghana

J.B.A.K. Ansuura
School of Computer Science

and Engineering
University of Electronic Science

and Technology of China,
611731, Chengdu, China

ABSTRACT

In this paper, we present an algorithm for Residue Number

System (RNS) implementation of RSA cryptography based on

an existing RNS division algorithm. The proposed algorithm

and that of the state of the art were written in C++

programming language to compare their efficiency with

respect to execution time. Experimental results show that our

algorithm can encrypt and decrypt text without loss of

inherent information and faster than the state of the art. It also

offers firm resistance to Brute-force and key sensitivity

attacks. Considering the moduli-set {2, 3, 5} experimental

results shows that, our proposed algorithm is 7.29% and

15.51%, faster than the state of the art algorithm for integer

and non-integer quotients respectively. Also, for the moduli-

set {7, 9, 11}, our algorithm is as well 11.29% and 10.36%

faster than that of the state of the art algorithm for integer and

non-integer quotient respectively. We carried out an error

analysis of the experimental results at 95 degrees significance

level.

Keywords
RSA, RNS, Cryptography, key, algorithm

1. INTRODUCTION
Individuals have secrets that need protection; these secrets

appear in areas like medical files, bank statements, paycheck,

investment portfolio and credit card bills. Others include

social security numbers, credit card numbers, bank account

numbers etc. Corporations also have secrets, these includes;

strategic reports, sales forecasts, technical product details,

research results, personnel files, and so on. [16]. In the past

before the advent of computers, security was simply a matter

of locking of doors or storing files in locked filling cabinet or

safe. Today files are stored in computer databases as well as

file cabinets.

Hard-drives and floppy disks hold many of our secrets. In the

beginning the best way was to provide security to these data

through the Operating System (OS), by locking it using a

password.

However, various attacks on passwords have rendered this

mode of security vulnerable and attacks bypass the OS. For

your secrets to be secured, it may be necessary to add

protection not provided by your computer (OS). One of the

most important tools for protecting data is cryptography [13].

Cryptography has many advantages, some of which include;
adding security to the process of authenticating people

identity, Improves privacy, such that, no one can break into

files to read your sensitive data. Improved data integrity,

which refers to a mechanism that tells us when something has

been altered. Also by applying the practice of authentication,

you can verify identities.

In recent times, there has been a vigorous and continuous

search for improving computer performance [1]. Researchers

are coming out with new ideas and technologies to make the

computer more efficient. The main task of a computer is

computing which deals with numbers all the time. Some

examples of number systems are binary number systems,

decimal number systems, [1]. Weighted Number System

(WNS) and Residue Number System (RNS) Binary and

decimal number systems, intrinsically limit the performance

of arithmetic units and processors built based on them.

Because of this limitation in Weighted Number System

(WNS), RNS has many advantages of computing large

numbers in computers over WNS. These include carry-free

addition and borrow free subtraction, which are the challenges

to binary and decimal number system, because in RNS a

number is represented by the residues of all moduli, and the

arithmetic can be performed on each modulus independently.

Therefore RNS offers the properties of parallelism [17].

Even though RNS has many advantages over WNS in terms

of encoding large numbers into a set of smaller numbers to

speed up computations, the following are time-consuming

operations in RNS which affect the wide spread application of

RNS in areas like cryptography; overflow detection, sign

detection, magnitude comparison and division. Among them,

division has modular operations application as can be found in

cryptography [17]. Currently, fast hardware implementations

of RSA cryptosystem is under study while confidentiality and

security requirements are becoming more and more important.

In view of this emerging problem of digital security,

cryptographers keep increasing the key-length. Recently, it is

assumed that a 1024-bit key-length makes a reasonable choice

for the cryptography popularly known as RSA, and current

analysis predict that 2048-bit or 4096-bit key will become the

standard in a near future [16].

The ability to perform fast arithmetic on large integers is still

a major issue for the implementation of public key

cryptography and digital signature, particularly from the

hardware design point of view [16].

In traditional cryptography, encryption and decryption

operations are performed with the same key, that is,

symmetric key cryptography. This means that the party

encrypting the data and the party decrypting it need to share

the same decryption key. If two parties already share a secret

key, they could easily distribute new keys to each other by

encrypting them with prior keys. From symmetric key

encryption, researchers continue to build knowledge towards

unsymmetrical key encryption. [4] Suggested that, encryption

and decryption could be done with a pair of different keys.

The decryption key would be kept secret, and the encryption

key could be made public. This concept was called public-key

cryptography. Every computer can use that encryption key to

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.5, October 2015

15

protect data sent to the site. However, only the site has the

corresponding decryption key that can decrypt the data and

the concept of digital signatures were also introduced. [4],

Their key agreement is confronted with the problem of

discrete logarithms and integer factorization. In 1977, a public

key cryptosystem was invented by [4] called the RSA public

key cryptography. However, only integers are encrypted in

RSA. Fast RNS division algorithms for fixed divisors with

application to RSA encryption, was first written by [1],

however their algorithm was restricted to only division with

integer quotient. Due to the fact that it was iterative, it was

time consuming. In [16], a full RNS implementation which

was based on the Chinese Remainder Theorem (CRT) and

Montgomery Multiplication (MM), and base extension are

presented. The main drawback of CRT emerges from the

required modulo-M operation, which is time consuming and

rather expensive in terms of area and energy consumption for

large M [7]. In 2013, a division algorithm was presented in [4]

without using CRT/MRC or MM. They used the parity

checking technique and highest powers of two to perform

division in RNS, however it is also iterative. Meanwhile, a

non-iterative and pure RNS division algorithm has been

presented in [10] and this solved the looping problem and

restriction to integer quotient. In this paper, we propose an

efficient RNS implementation of RSA cryptography based on

based on a non-iterative and pure RNS division algorithm by

Mansoureh and Mohammed (2012). In fact, this algorithm

avoids overall loop and supports all numbers in the range as

denominator. The remaining part of this paper is as follows:

In Section 2, RNS division algorithm is presented with

emphasis on the one proposed by Mansoureh and Mohammad

(2012), sections 3, 4, 5, and 6 presents RSA Cryptography,

the proposed algorithm and performance analysis of the

proposed algorithm and the conclusions respectively.

2. DIVISION IN RNS
Division is one of the main obstacles that discourage the use

of RNS. In RNS representation, division is not a simple

operation. The analogy between division in conventional

representation and RNS representation does not hold.

In conventional representation, we represent division as

follows:

 ……………………………………… (1)

This can be written as

 ………………………………… (2)

 Where q, is the quotient

In RNS, the congruence:

 ………………… .(3)

Multiplying both sides by the multiplicative inverse of y,

we can write:

 ………………….. (5)

The Equation

q
y

x


 is equivalent to

myxq mod1

Only if it has an integer value, otherwise, multiplying by the

multiplicative inverse in RNS representation will not be

equivalent to division in conventional representation

Example 2.1

Consider an RNS with m=7, we want to compute the

following quotient:

In the first case (a)

This is equivalent to division in conventional representation.

We notice in part (b), that division in RNS is not equivalent to

that in conventional representation when the quotient is a non-

integer value. Due to this fact, division in RNS is usually done

by converting the residues to conventional representation,

performing the division, and then converting back to RNS

representation. Tedious and complex conversion steps result

in undesired overhead. This is one of the main drawbacks of

RNS representation.

However, in cryptography this could serves as an advantage to

adding security to cryptosystem.

Moreover, many other algorithms for division in RNS are

presented. Some of these iterative algorithms work by

subtracting denominator from numerator in a major loop, until

numerator gets less than denominator. Quotient is equal to the

number of iterations of this major loop. Some of them use

Newton iteration to compute reciprocal and then compute

quotient [12], [13].

Another common way for division is using the definition of

division. In this algorithm, first the position of the most

significant non-zero bit in the divisor and dividend is

determined, then, according to the difference between these

two positions, divisor is shifted to the left and is subtracted

from dividend. These actions are repeated in a major loop

until the result is smaller than divisor.

In some other methods for dividing X by Y, first the proper 2k

is detected such that Y.2k ≤X ≤Y.2k+1. In the next iterations,

these two margins varied until quotient obtained. [9].

There is another method in which, instead of dividing two

proposed numbers, X and Y, two different numbers which

have the same ratio and are less than X and Y, are chosen. For

doing this, some new moduli are introduced, and at last, in a

major loop, the division result is calculated [14]. [5].

From the above, it is clear that these algorithms have three

major deficiencies:

1. All of them have an overall loop which increases

the complexity and delay of the algorithm.

2. Some of these methods exclude some numbers in

the range of acceptable inputs as a denominator in

division operation.

3. They have some operations in the binary or mixed

radix system or uses a lookup Table to perform an

RNS division.

In order to solve problems one and two, a non-iterative

division algorithm was proposed by [11].

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.5, October 2015

16

2.1 Pure RNS Division Algorithm by

Mansoureh and Mohammad (2012)

Input:
Input the modulo set

Output: K=X/Y and R=(X mod Y) in RNS, Condition: all

moduli are relatively prime numbers but

2.

1) Calculate Y-1= multiplicative inverse of Y

2) Calculate R = X mod Y

3) Calculate K= (X – R). Y-1

4) If any, , then set

 In which

End.

3. THE RSA CRYPTOSYSTEM
This cryptosystem uses computations in where n is the

product of two distinct odd primes p and q. for such an integer

n, note that

 …………………….… (6)

Let

 Where p and q are primes

Let

 And define

 …… (7)

For

 ……………………………….. (8)

 ……………………………… .(9)

The values n and b compose the public key, and the values (p,

q and a) form the private key.

4. THE PROPOSED ALGORITHM
We propose an algorithm based on Mansoureh and

Mohammed (2012) pure RNS division algorithm. Two

different moduli sets were considered that is,
 for n =2 [11], we had (2, 3, 5) and
 for n = 3 we had (7, 9,11). The

dynamic ranges are 29 and 692 respectively. We then did our

analysis on integer and non-integer quotients for the range of

values for X and Y within 29 and also for 692. In both cases

we run several examples for non-integer and integer quotients

regarding improper fraction. From Equation (8)

Let

 Where M is the quotient, X is the dividend and Y

is the divisor. Thus modified as:

 …………………………… (10)

From equation (9)

Let

 where Q is the cipher text, D is the dividend

and C is the divisor

Thus becomes

 (11).

This algorithm maintained the number of keys, both public

keys and private keys.

Thus: (n, b) composed the public keys and (p, q, a) forms the

secret keys.

For the Moduli sets

 For n=2; we have (2, 3, 5) and given

 For n=3; we have (7, 9, 11)

We consider the following assumptions:

4.1 Assumptions
The following are assumptions to our propose algorithm



 No denominators or divisors should be a multiple of

the chosen moduli set. Else the algorithm will break

down due to a zero multiplicative inverse in one of

the modulus

 After going through the division phase of the

algorithm, when the CRT display the decimal

equivalent of the RNS say (k) and its greater than

(n),then the expected plain text would be (k)n. that

is

4.2 The Encryption

 In the usual RSA encryption

Let

 where Q is the quotient, X is the

dividend and Y is the divisor

1) Input the moduli set,

2) Input

3) Input (n and b) the public keys

4)

5) Calculate Y-1= multiplicative inverse of Y

6) Calculate R = X mod Y

7) Calculate Q= (X – R). Y-1

8) If any, , then set
 .

Note: The Transformation

 . Is

based on Mansoureh and Mohammed (2012), and Q output

will appears in RNS representation.

9) Using CRT convert to Q i.e. the

decimal value

10) Hence

11)

12) End the program.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.5, October 2015

17

4.2.1 The Decryption

 In the usual RSA decryption

1) Input the moduli set,

2) Input (t, f, h)RNS

3) Input (p, q and a) the secret keys

4) Using the CRT convert to G the decimal

value.

5)
 ELSE

6) End the program.

The following example illustrates our algorithm.

For

4.2.2 The Encryption Algorithm
 Let

1) Input the moduli set

2) Input

3) Input (n and b) the public keys 7

4)

5) Calculate Y-1= multiplicative inverse of Y Else If

any, , then set

 i.e. 17-1 w.r.t (7, 9, 11) = (5, 8, 2)

6) Calculate R = X mod Y=(578)17=

7) Calculate Q= (X – R). Y-1=

8) Using CRT convert to (34) i.e. the

decimal value

9) Hence

10)

11) Hence

 is send as the encrypted

massage where X and Y or Q is the plain text.

12) End the program.

4.2.3 The Decryption Algorithm

Let

 where G is the cipher text, D is the dividend

and C is the divisor.

1) Input {7,9,11} the moduli set,

2) Input (G)RNS=(6,9,1)

3) Using the CRT convert (G)RNS=(6,7,1) to decimal

34

4) Input (p, q and a) = 23 the secret key

5) dk[6,7,1]23mod(187) = dk[34]23mod(187) = (6,7,1)

6) Using (CRT)transform (6,7,1)RNS to 34

7) Hence is decrypted

8) End the program.

5. PERFORMANCE ANALYSIS OF THE

PROPOSED ALGORITHM
Security analysis was performed to test the effectiveness of

the proposed algorithm to known RSA attacks (key space, and

key sensitivity analysis). Experimental results showed that the

proposed algorithm is highly secured against such attacks.

5.1 Key Space Analysis
The brute force attack is computationally infeasible for

cryptosystems with sufficiently large key space. The proposed

algorithm is a public key cryptosystem which has

The proposed algorithm achieves an efficient coding process

when the key space K is large, note that, n depends on p and

q. however, we adapt 1024bits as our key space as with the

DES. This gives us the combination of choices. .

 .

Diffie and Hellman(1976) outlined a "brute force" attack on

DES by "brute force" is meant that you try as many of the 256

possible keys as you have to before decrypting the cipher-text

into a sensible plaintext message. Our key space is

5.2 Sensitivity Analysis
The greatest sensitivity analysis in our algorithm is that

explained in example 2.3 (a, and b) respectively. In (a)

division in RNS is equivalent to division in conventional

representation.

Where as in part (b), we notice that division in RNS is not

equivalent to that in conventional representation when the

quotient is a non-integer value. This can enhance the

sensitivity of the key. A good cryptosystem should be

sensitive to secret keys. A slight change in the key value

should lead to a significant change in either a plain text or a

cipher text. The addition of the used of the moduli set also

help in security of the algorithm. There must be moduli set to

be agreed on by both parties. The parameters (p, q, n, a, and b)

in our examples resulted in significant difference with the

actual answers during our experiment. Table 1 below

illustrates these changes between conventional division and

RNS division.

5.3 Executing Time Analysis for the Moduli

set (7, 9, 11)
This moduli set used larger dynamic range, which gives room

for larger domain for values of X and Y. the average time for

integer quotient in this scheme is 16822.3 microseconds

approximately 17seconds and that of non-integer is 15228.1

microseconds approximately 15sec. Table 2 did the

comparison between the average times for the two different

moduli sets, and it was observed that they both have almost

the same average time. We compared our algorithm to some

state of the art algorithms, and it reveal that our algorithm has

the best average time for both integer and non-integer quotient

with respect the two different moduli sets used. Table 3

explained these.

Observed that when the moduli set is chosen such that it has a

small dynamic range, the algorithm would be limited to just a

few numbers qualified for encryption and thus, attackers can

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.5, October 2015

18

easily break the algorithm. The encryption time for these

moduli set is higher than the decryption time. The average

time to do a complete encryption and decryption with respect

to an integer quotient is 16822.3microseconds which is

approximately 17seconds, and that for a non-integer quotient

is 15228.1microseconds approximately15 seconds. Tables 2

illustrate these

5.3.1 Executing Time Analysis for the

Moduli-set (2, 3, 5)
The freedom of number representation in RNS is limited by

the Dynamic range which is dependent on the moduli set. It is

observed that when the moduli set is chosen such that it has a

small dynamic range, the algorithm would be limited to just a

few numbers qualified for encryption and thus, attackers can

easily break the algorithm. The encryption time for these

moduli set is higher than the decryption time.

The average time to do a complete encryption and decryption

with respect to an integer quotient is 16822.3 microseconds

which is approximately 17 seconds, and that for a non-integer

quotient is 15228.1 microseconds approximately 15 seconds.

5.4 Error Analysis of Our Proposed

Algorithm
We did the error analysis on our proposed algorithm in terms

of the average executing time. This was performed on the

different moduli set for {2, 3, 5} and {7, 9, 11}. Experimental

results revealed that the mean, standard deviation and

standard error are very minimal. Table 4 shows these

statistics. We assume a significant level of 0.05.

The confidence interval of the two different moduli sets are

shown in table 5. In table 6, we illustrated the percentage

difference between our proposed algorithm and that of the

state of the art we did the comparison with. The results

showed that, our proposed algorithm is 7.29%, 15.51%,

11.29% and10.36% better than that of the state of the art we

did the comparison with in terms of the moduli sets and the

type of quotient involved.

Table 1 Sensitivity Analysis of Integer and Non-Integer

Quotient

Exampl

e

Type of

quotien

t

Plaintext in

conventiona

l division

Plaintext

in RNS

Modul

i Set

Cipher

text

6/4 Non-

integrin

1.5

(7,9,11

)

6/2 Integer 3

(7,9,11

)

258/33 Non

integrin

7.8181

(7,9,11

)

Table 2 Average Time complexity for moduli-sets (2, 3, 5)

and (7, 9, 11) in microseconds

Type of quotient Average time

(7, 9, 11)

Average time

(2, 3, 5)

Non integer 19500.6 15228.1

Integer 18933.0 16822.3

Table 3 Comparison of our average times to some state of

the art Algorithm in microseconds

Type of algorithm Average Time With Respect to

Moduli Set

Our algorithm

(2,3,5) (7,9,11)

Non-integer quotient

15228.1 19500.6

Integer quotient 16822.3 18933.0

Chin, Y. H. & Behrooz,P. (1994)

(2,3,5) (7,9,11)

Non-integer quotient

20816.9 24008.1

Integer quotient 19468.6 23753.9

Table 4 Error Analysis of our Proposed Algorithm

 N Mini

mum

Maxi

mum

Sum Mean Std.

Devia

tion

 Stati

stic

Statist

ic

Statist

ic

Stati

stic

Statis

tic

Std.

Erro

r

Statis

tic

Delay

for

encrypti

on

{2,3,5}

10 2308 21011 1475

56

1475

5.60

1583.

749

5008.

255

Delay

for

decrypti

on

{2,3,5}

10 1395 22865 1414

38

1414

3.80

1662.

706

5257.

938

Delay

for

encrypti

on

{7,9,11

}

10 13442 22902 1835

09

1835

0.90

1029.

528

3255.

655

Delay

for

decrypti

on

{7,9,11

}

10 13391 29409 2008

27

2008

2.70

1346.

445

4257.

832

Valid N

(listwise

)

10

Table 5 Confidence Interval for the Error in our proposed

Algorithm

Moduli Set Confidence Interval

(2,3,5) Lower bound Upper bound

Encryption 14677.60 14833.60

Decryption 14063.88 14223.72

(7,9,11) Lower bound Upper bound

Encryption 18288.01 18413.79

Decryption 20010.78 20154.62

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.5, October 2015

19

Table 6 Percentage Difference between the proposed

Algorithm and Parhami

Quotient Parhami Proposed

Algorithm

Percentage

difference

(2,3,5) (7,9,11) (2,3,5) (7,9,11) (2,3,5) (7,9,11)

Delay

for

 Integer

19468.6 23753.9 16822.3 18933.0 7.29% 11.29%

Delay

for

Non-

integer

20816.9 24008.1 15228.1 19500.6 15.51% 10.36%

6. CONCLUSIONS
In this paper, an efficient algorithm based on RNS division

algorithm to implement RSA public key cryptography is

proposed. The proposed scheme can absorb and control the

emerging problem of growing key length in RSA. The

proposal algorithm is general and can be applied to RSA

cryptography. Fractions, decimals, and integers can all be

encrypted and decrypted. The proposed algorithm performed

relatively well comparing it to existing state of the art

algorithms. Experimental results demonstrates that, the

proposed scheme is 7.29% and 15.51%, faster than the state of

the art algorithm for integer and non-integer quotients

respectively with respect to the moduli set {2, 3 5}.

Additionally, with the moduli-set {7, 9, 11}, the proposed

algorithm is 11.29% and 10.36% faster than that of the state

of the art for integer and non-inter quotients respectively. The

proposed algorithm would work efficiently when: - you

choose a larger dynamic range for larger domain, Non-integer

quotient is highly secured and sensitive relative to integer

quotient, and it is having the best time as well. It was

observed that the algorithm is having the best average time for

both integer and non-integer quotient relative to the state of

the art algorithm that it was compared to. The error analysis

was performed and we had a negligible error margin to the

proposed algorithm.

This paper has made some gains. However, development can

be looked at in the future in the following areas:-The

hardware implementation of the proposed system, Analyzing

the performance of the proposed techniques and other division

algorithm technique, The moduli set could also be enhanced

to increase the dynamic range relative to the key space, The

proposed algorithm can be tested on other public key

cryptosystem like the Elgamal, With the idea of the proposed

algorithm scaling in RNS could also be exploited for possible

application to RSA.

7. REFERENCES
[1] Behrooz. P. (1999). Computer Arithmetic Algorithm and

Hardware Design. New York Oxford University Press.

[2] Chin-Chen, C. and Jen-Ho, Y. (2013).A Division

Algorithm Using Bisection Method in Residue Number

[3] System. International Journal of Computer, Consumer

and Control.2 (1): 59-66.

[4] Chin-Chen, C. and Yeu-Pong, L. (2006). A division

algorithm for residue numbers, Applied Mathematics and

Computation in Elsevier.

[5] Diffie and Hellman (1976).New Direction in

Cryptography, IEEE Transactions on Information Theory

archive vol. 22 Issues 6Th November.

[6] Hiasat and Zohdy (1997).Design and Implementation of

an RNS Division Algorithm.IEEE.240-249.

[7] Hitz, M. and Kaltofen M. (1995).Integer division in

residue number systems. IEEE Transactions on

Computers. 44(8):983– 989.

[8] Hussein, E., Hasan, M. A. and Elmasry M. I. (1998).A

low power algorithm for division in residue number

system. IEEE.

[9] Jean-Claude, B. G. (1991). New Approach to Integer

Division in Residue Number Systems, Proceedings of

10th IEEE symposium on Computer Arithmetic,

Grenoble, France. 84–91.

[10] Laurent, I. and Jean-Claude, B. (2004). A Full RNS

Implementation of RSA Transactions on computers.

IEEE.53 (5):1-6.

[11] Mansoureh and Mohammed (2012). Non iterative RNS

division Algorithm, IMECS Vol. I. ISSN;2078-0966

online

[12] Mi, L. (2004).Arithmetic and Logic in Computer

Systems. John Wiley and Sons, Inc., Hoboken, New

Jersey.

[13] Nobuhiro, T. and Teruki, I. (2002).Design of High-Speed

RSA Encryption Processor Based on the Residue Table

for Redundant Binary Numbers. Systems and Computers

in Japan. 33(5):423-432.

[14] Omondi, A. and Premkumar, B., (2007). Residue

Number System Theory and Implementation. Imperial

College Press..

[15] Rivest, R., Shamir, A. and Adleman L. (1978).A method

for obtaining digital signatures and public key

cryptosystems. Communications of the ACM

.21(2):120–126.

[16] Steven Burnett and Stephen Paine (2004), RSA Security

Official Guide to Cryptography, Keller Graduate School

of Management of DeVry University Edition, ISBN 0-

07-225494-7.

[17] Szabo, N. and Tanaka, R. (1967), Residue Arithmetic

and Its Applications to Computer Technology. McGraw

Hill, New York.

[18] Yang J. H. Chang C. C and Chen Y. Y (2004), A High

Speed Division Algorithm in RNS using the Parity

Checking Technique. International Journal of Computer

Mathematics. 81(6).

IJCATM : www.ijcaonline.org

