
International Journal of Computer Applications (0975 – 8887) 

Volume 127 – No.5, October 2015 

45 

On the Prediction of Average Monsoon Rainfall in 
Bangladesh with Artificial Neural Network

Md. Habibur Rahman 
Lecturer  

Department of Statistics 
Jahangirnagar University 

Bangladesh 

M.A. Matin, PhD 
Professor  

Department of Statistics 
Jahangirnagar University 

Bangladesh

 

ABSTRACT 

The monsoon rainfall has very important affect on the 

agricultural production, livestock as well as human ecology. 

In this study, try to fit Artificial Neural Network (ANN) 

model to predict average monsoon rainfall. For the ANN 

models monthly average rainfall, sea surface temperature, 

wind speed, monsoon rainfall, temperature is used as inputs to 

predict the monsoon rainfall. The feed forward network was 

trained using a variety of algorithms. For the different 

networks use sigmoid transfer function, tan sigmoid transfer 

function and linear transfer function. The total sample was 

divided into a training set (first 75 percent) and a testing set 

(last 25 percent). The data pertaining to the years 1961 to 

2005 have been explored to develop the predictive models. 

The model performance is measured by prediction error, 

mean square error, root mean square error, correlation, 

similarity, mean percentage error and mean absolute 

percentage error. Finally, the prediction performance of 

artificial neural network has compared with polynomial curve 

fitting, Fourier series, auto regressive moving average model 

(ARMA), and multiple linear regressions.  The average 

monsoon rainfall prediction based on Artificial Neural 

Network was found to be superior to that based on 

polynomial curve fitting, multiple linear regression, ARMA 

model and Fourier series. Finally, made cluster analysis 

between actual average monsoon rainfall and predicted 

average monsoon rainfall by different ANN and other 

statistical models. From the dendrogram, it is evident that the 

actual monsoon rainfall and predicted rainfall by ANN fall in 

one cluster. The ANN model gives more accurate prediction 

compared to other models.    

General Terms 

Monsoon rainfall, multiple linear regressions, polynomial 

curve fitting, Fourier series. 

Keywords 

Artificial Neural Networks, Similarity, Cluster analysis, 

Activation function, Prediction. 

1. INTRODUCTION 
Bangladesh is the country where economy is largely depends 

on agriculture. The impact of low and high precipitation is 

very important for agricultural production. Livestock and 

human ecology depends on the water system especially 

rainfall. Drought of different intensities occurs across 

Bangladesh. Rice and other crops productions are severely 

affected by dryness. To make better understanding of rainfall 

system which can help the formulation of policies that might 

include preserve and an efficient use of rainfall water in near 

future. In order to implement a better policy the policy makers 

especially farmers need to know the future state of amount of 

rainfall. Since in all weather happenings, rainfall plays the 

most imperative role in human life especially human 

civilization to a great extent depends upon its frequency and 

amount to various scales.  

Being depended on time and space, it is a chaotic system. The 

weather forecasting is one of the most imperative and 

demanding operational responsibilities carried out by 

meteorological services all over the world. It is a complicated 

procedure that includes numerous specialized fields of know-

how. The task is complicated because in the field of 

meteorology   all decisions are to be taken in the visage of 

uncertainty. A number of authors Brown and Murphy (1988), 

Handerson and Wells (1988), Wilks (1991), Elsner and Tsonis 

(1992), Jacovides et al. (1994), Kondratyev and Varotsos 

(2001a, b), Cartalis and Varotsos (1994), Varotsos et al. 

(2001) have discussed the uncertainty associated with the 

weather systems. Chaotic features associated with the 

atmospheric phenomena also have been attracted the attention 

of the modern scientists Varotsos (2005), Varotsos and Krik-

Davidoff  (2006), Sivakumar (2000), Sivakumar et al. (1999), 

Men et al. (2004). 

The task also requires sophisticated statistical models, which 

do not need making assumptions regarding the system. Many 

studies around the globe have developed stochastic weather 

models which are basically statistical models that can be used 

as a random number generators whose   output resembles the 

weather data to which they have been fit (Wilks 1999).  

Hu (1964) initiated the implementation of artificial neural 

network, an important soft computing methodology in 

weather forecasting (Surajit C. and Manojit C., 2007). There 

after a voluminous development in the field of applications of 

ANN has opened up a new avenue in forecasting task 

involving atmosphere related phenomena (Gardner and 

Dorling, 1998), Hsieh and Tang (1998). Michaelides et al 

(1995) compared the performance of ANN with multiple 

linear regressions in estimating missing rainfall data over 

Cyprus. Kalogirou et al. (1997) used ANN in rainfall 

prediction by splitting the available data into homogeneous 

subpopulations. Wong et al. (1999) constructed fuzzy rules 

bases with the aid of Self Organization Map (SOM) and back 

propagation neural networks and then with the help of the rule 

based developed predictive model for rainfall over 

Switzerland using spatial interpolation. 

The main objective of this study is to develop an artificial 

neural network model to forecast average rainfall during 

monsoon in Bangladesh. In doing so a comparison between 

ANN model and other Statistical predictive models, to 

training and testing of the model, to evaluate the goodness fit 

of the model. 
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2. THEORY BEHIND PREDICTIVE 

MODEL 
Forecasting is most often part of a larger process of planning 

and managing. A forecast is necessary to provide accurate 

estimates of the future for the larger process. 

2.1 Polynomial Curve Fitting 
The Curve fitting technique is used in many applications of 

data analysis. It is advantageous when the data is follows 

some pattern with a lesser amount of randomness about the 

mean. It actually develops an implicit equation for 

determining one variable with respect to one or more 

variables (Chernov N. and Lesort C., 2004). Polynomial curve 

fitting can be considered as Generalized Linear Least-Squares 

Regression (Arora S. and Khot S., 2003). 

A general implicit equation for a variable    in terms of 

variables x and y where  ,i ix y  is experimental data for 

i=1, 2,…,n can be written as ( ,  , ) 0P x y   . Here P  refers to 

polynomial. The coefficients of polynomial need to be 

determined for fitting the curve while the degree of the curve 

will determine the number of coefficients. Accordingly the 

polynomial curve will have only one parameter in estimating 

θ. In simple statement  ( )f y , where   is the dependent 

variable and y is independent variable. Or in other words, 
2 3

0 1 2 3    ........ n

na a y a y a y a y      . With available 

data; polynomial equations could be found in different 

degrees and corresponding mean square errors and correlation 

coefficients. If the observed values of   are i ; i= 1, 2, …, n. 

The best fitted residual should be least and is called the least 

squares. The polynomial curve fitting is a generalized form of 

least squares method where Mean square error is 

    
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


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2.2 Fourier Series Analysis 
Fourier series analysis has advantages in automated in 

forecasting and is extremely useful in data analysis. The 

Fourier series is a sum of sine and cosine functions that is 

used to describe a periodic signal. It is represented either in 

trigonometric form or in exponential form. The general form 

of the trigonometric Fourier series is 

      0

1

ˆ sin cos
n

i i

i

f t y a a n t b n t 


                 

0

ˆ, fittedor forecasted value at time ,

constant, harmonicof

, coefficients defining the amplitudes and phases,

=2 ,fourier frequency

i i

where y t

a n

a b

f n



 



 


                                             

where,  models any DC offset in the signal and is associated 

with the 0i  cosine term,   is the fundamental frequency 

of the signal, n is the number of terms (harmonics) in the 

series. 

 

 

2.3 Multiple Linear Regression 
The Regression analysis is used to predict the values of one or 

more response variables from the collection of predictor 

variables values.  It is also used in assessing the effects of the 

predictor variable on the responses.  

Let 1 2 3, , ,..., rz z z z be the r predictor variables thought to be 

related to a response variable Y . The classical regression 

model states that Y is composed of mean, which depend on 

the continuous manner on the 'iz s  and a random error  . The 

linear regression model with single response takes the form as 

Y Z    where                                                                                                          
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where the error terms are assumed to have the properties 

  0,andE     2
E I   . One of the objectives of the 

regression analysis is to develop an equation to predict the 

response for given values of predictor variables. Let b  be the 

trail values for  .  The method of least squares selects b  so 

as to minimize the sum of squares of the differences

     S b y Zb y Zb   , the coefficient b  chosen by the 

least squares criterion are called least squares estimator of the 

regression parameters   and denoted by  
1ˆ Z Z Z y


  . 

Hence the fitted regression model becomes ˆŶ Z   

2.4 Auto-Regressive Moving Average 

(ARMA) Models 
The Auto-Regressive Moving-Average (ARMA) method is 

used in modeling which widely used in hydrology, 

dendrochronology, and many other fields (Chatfield, C., 

2004). Auto-regressive Moving-average models are 

mathematical models of the persistence, or autocorrelation, in 

a time series (Helmut Lutkepohl and Markus Kratzig). An 

ARMA model can effectively be used to predict behavior of a 

time series from the past values alone. The ARMA model is a 

generalization of Auto-Regressive (AR) and Moving Average 

(MA) models and is a special case of Auto-regressive 

Integrated Moving Average (ARIMA) models. 

The Auto-Regressive models and moving average models are 

combined to form one model called Auto-Regressive Moving 

Average model. The order of AR model is the time steps 

which the model will go back to predict the future value and 

the order of MA model is the past difference steps which the 

model will go to predict the future value. The auto-regressive 

model includes lagged terms on the time series itself, and that 

the moving-average model includes lagged terms on the noise 

or residuals. Combing the lagged terms; it gives what are 

called auto regressive moving average models. The order of 

the ARMA model is included in parentheses as ARMA (p, q), 

where p is the auto-regressive order and q the moving-average 

order. The simplest and most frequently used ARMA model is 

ARMA (1, 1) model (Pappas S.SP., Ekonomou, L. 

Karampelas P., Katsikas S.K and Liatsis. P., 2008).  

1 1 1 1t t t ty a y e be    .  
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where ty  is the mean-adjusted series in year t, 1ty  is the 

series in the previous year i.e. lag of one, 1a  is the lag-1 

autoregressive coefficient, where 1t te and e  are the residuals 

or the noise or the random-shock at times t and t-1, and 1b  is 

the first-order moving average coefficient. The residuals te  

are assumed to be random in time (not auto correlated), and 

normally distributed.                             

The general form of ARMA (p, q) model is given by  

   
1 1

1 1
p q

s t s ts s
L s y L s 

 
       

     ,  

where p and q are called orders of the model, s  is called 

AR model coefficients and s is called the MA model 

coefficients, L is an operator called lag operator when it 

operates on any data points; the result is the previous data 

value that is  s

t t sL y y  . In short form the ARMA model 

can be written as    t t
L y L    . This is the most general 

form of ARMA (p, q). Also it can be written as 

0 1 -1 - 1 -1 -=     ...   ...  t t p t p t q t q ty a a y a y be b e e                         

There are different methods to determine the order of the 

ARMA model. Some of them are auto-correlation function 

(ACF), partial auto-correlation function (PACF). The Order 

selection can be made on the basis of the model validity 

criteria; such as the Akaike’s information criteria (AIC) and 

the minimum description length (MDL) (L. Ljung, 1987).  

2.5 Artificial Neural Networks 
Forecasting is the part of a larger process of planning and 

managing most often which forecast is necessary to provide 

accurate estimates of the future for the larger process. 

Artificial neural networks are similar to the biological neural 

networks that are present in human brain. It is the networks 

constructed by connecting artificial neurons. It is the input out 

networks (Anil K. Jain, Jianchang Mao and Mohiuddin .K.M, 

1999). 

Feed forward neural network has become popular tool for 

solving complex prediction as well as classification problems.  

In general, a feed forward neural network consists of a    

lowermost input layer, any number of hidden layers, and an 

output layer. In a network, the total input received by neuron 

‘j’ in  1h th layer is defined as 

 

1 1

, state of the th neuron preceding th layer

weight of the connection between th neuron of  

th layer and th neuron of 1 th layer 

h h h h

j i ji j

i

h

i

h

ji

I O W

where O i h

W i

h j h

  









 

 1 threshold of  th neuron in 1 th layer

 tending node number, and

= receiving node number

h

j j h

i

j

   

  

If the threshold   is taken to be zero, the above equation 

modified to 

1h h h

j i ji

i

I O W  ,

 where, 1 1 or any other transfer function.
h
jIh

iO e
  

  
 The 

output value is compared to the desired output and error is 

calculated. Based on error, back propagate errors to adjust 

weight. Then calculate the residual standard error. If RMS is 

low enough then it should be validated.  

3. MATERIALS AND MODEL FITTING 

PROCEDURE FOR PREDICTION OF 

AVERAGE MONSOON RAINFALL 
The ANN approach has several advantages over conventional 

phenomenological or semi-empirical models, since they 

require known input data set without any assumptions. The 

model building process consists of the following sequential 

steps: (i) selection of the input and output for the supervised 

back propagation learning, (ii) selection of the activation 

function, (iii) training and testing of the model, and (iv) 

testing the goodness of fit of the model. 

In this paper, data pertaining to years 1961 through 2006 are 

explored to develop the predictive model. The inputs for the 

different model(s) are summarized below: average monsoon 

rainfall at time t  1
x , sea surface temperature  2

x , 

temperature  3
x ,  rainfall  4

x , wind speed  5
x , sea level 

pressure  6
x ,  rainfall of June  7

x , rainfall of July  8
x , 

rainfall of August  9
x , rainfall of September  10

x .The 

predictand is the average monsoon rainfall at time 1t   y  

in Bangladesh. The weather component  measure are recorded 

at different locations of Bangladesh by the Bangladesh 

Metrological Department. Table 1 shows the summary 

statistics of weather component. 

Table 1. Summary Statistics 

 

Name Mean Standard 

Deviation 

Standard 

Error 

Coefficient 

of variation 

Skewness Kurtosis Minimum Maximum 

Monsoon  

Rainfall 
407.3 50.2 7.49 12.3 -0.2 -0.5 303 511 

Sea Surface 

Temperature 
28.5 0.2 0.03 0.7 0.4 1.1 28 29 

Temperature 25.4 0.3 0.05 1.3 1.1 2.1 25 26 

Rainfall 162.4 22.4 3.33 13.8 -0.1 -0.5 117 209 

Wind Speed 1.32 0.4 0.06 31.3 0.3 -0.4 0.5 2 

Sea Level 

Pressure 
1009 0.8 0.12 0.1 1.7 4.3 1008 1012 
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It is interesting to see that the time series of Bangladesh 

monsoon rainfall are not pair wise correlated. The manual 

Pearson correlations between predictand and predictors 

values are presented in Table 2.  

Table 2. Following table present the Correlation between predictand and predictors 

 

Name Sea Surface 

Temperature 

Temperature Rainfall Wind 

Speed 

Sea Level 

Pressure 

Monsoon 

Rainfall (t+1) 

Monsoon Rainfall (t) -0.12 -0.14 0.26 -0.19 -0.18 0.15 

Sea Surface Temperatures 
 

0.47 0.05 -0.27 0.11 -0.13 

Temperature 
  

-0.14 -0.16 -0.18 -0.33 

Rainfall 
   

-0.12 0.01 0.13 

Wind Speed 
    

-0.13 0.01 

Sea Level Pressure 
     

0.03 

 

All the correlation values are too small, indicating that the 

relationships are highly nonlinear. The Pearson correlation 

between the monsoon rainfall and predictors are neither too 

low nor significantly high. Thus, the necessity of 

implementing ANN in the prediction problem is felt highly 

relevant. The first 75 percent data are taken as the training 

set and the remaining 25 percent data are taken as the test set 

or validation set. 

 

To avoid the asymptotic effect the raw data are scaled 

according to (Surajit, C., 2007) min

max min

0.1 0.8 i
i

x x
z

x x

 
   

 
, 

where, iz  denotes the transformed appearance of the raw 

data ix . After the modeling is completed, the scaled data are 

reversed scaled according to  

 

  min max min

1
0.1

0.8
i iP x y x x

 
       

 
,  

where, iP  denotes the prediction in original scale. 

 

After developing the model through training and testing, 

performance and goodness of fit of the model has to be 

checked out or validated. The overall prediction error (PE) is 

measured as (Perez and Reyes, 2001).  

predicted actual

actual

y y
PE

y


 .                                                                 

 

where,  implies the average of the whole test set. The 

predictive model is identified as a good one if the PE  is 

sufficiently small, that is close to zero. The model with 

minimum PE  is identified as the best prediction model. 

 

4. ARTIFICIAL NEURAL NETWORK 

MODEL 

4.1 ANN Model type 1 
The ANN model type 1 fit on the basis of six inputs such as 

monsoon rainfall, rainfall, sea level pressure, sea surface 

temperature, wind speed and temperature at time t to predict 

the monsoon rainfall at time  1t  . The network 

components are presented in Table 3. 

 

 

Table 3. Basic network Components of the ANN model 

Type 1 

 

Network Architecture 

Number of inputs 6 Number of output 1 

Number of Hidden layer 1 Hidden layer size 2 

Learning parameter 0.2 
Initial weight 

range 
±0.5 

Momentum 0.8   

Total rows in data 45 
No. of training 

cycles 
300 

Save training weights 

With least 

training 

error 

Training mode 
On-

line 

Training/Validation set Partition data into training/validation set 

Activation function in Hidden layer Sigmoid 

Activation function in Output layer Sigmoid 

 

4.2 ANN Model type 2 
The ANN model type 2 fit on the basis of four inputs such as 

monsoon rainfall, rainfall, sea surface temperature, and 

temperature at time t to predict the monsoon rainfall at time

 1t  . The network components are presented in Table 4. 

Here, the hyperbolic tangent function used as activation 

function in the hidden layer and output layer. 

 

Table 4. Basic network Components of the ANN model 

Type 2 

 

Network Architecture 

Number of inputs 4 
Number of 

output 
1 

Number of Hidden 

layer 
2 

Size in Hidden 

layer 2  
2 

Size in Hidden layer 1  3 
Initial weight 

range 
±0.5 

Learning parameter 0.2 Momentum 0.7 

Total rows in data 45 
No. of training 

cycles 
210 

Save training weights 
With least 

training error 
Training mode 

On-

line 

Training/Validation set Partition data into training/validation set 

Activation function in Hidden layer Hyperbolic Tangent 

Activation function in Output layer Hyperbolic Tangent 
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4.3 ANN Model type 3 
The ANN model type 3 fit on the basis of four inputs such as 

rainfall of June, rainfall of July, August, and rainfall 

September at time t to predict the monsoon rainfall at time

 1t  . The network components are presented in Table 5.  

Table 5. Basic network Components of the ANN model 

Type 3 

Network Architecture 

Number of inputs 4 Number of output 1 

Number of Hidden layer 2 
Size in Hidden 

layer 2  
2 

Size in Hidden layer 1  3 
Initial weight 

range 
±0.5 

Learning parameter 0.2 Momentum 0.75 

Total rows in data 45 
No. of training 

cycles 
160 

Save training weights 
With least 

training error 
Training mode 

On-

line 

Training/Validation set Partition data into training/validation set 

Activation function in Hidden layer Hyperbolic Tangent 

Activation function in Output layer Identity 

4.4 ANN Model type 4 
In the ANN model type 4 the inputs of the rainfall of June, 

July, August and September and used Levenberg-Marquardt 

Algorithm (trainlm) as training function.  

 

Table 6. Basic network Components of the ANN model 

Type 4 

Network Architecture 

Number of inputs 4 
Number of 

output 
1 

Number of Hidden layer 1 
Hidden layer 

size 
8 

Learning parameter 0.2 
Initial weight 

range 
±0.5 

Momentum 0.8 Training option  

Total rows in data 45 
No. of training 

cycles 
228 

Save training weights 
With least 

training error 

Training 

function 
trainlm 

Training/Validation set Partition data into training/validation set 

Activation function in Hidden layer Tan-Sigmoid 

Activation function in Output layer Linear 

4.5 ANN model type 5 
In the ANN model type 5 the inputs are the monsoon rainfall 

of previous year, sea surface temperature, temperature, wind 

speed, rainfall and sea level pressure at time t and the 

monsoon rainfall at time (t+1) is the target and used 

Levenberg-Marquardt Algorithm as training function.  

 

Table 7. Basic network Components of the ANN model 

Type 5 

Network Architecture 

Number of inputs 6 
Number of 

output 
1 

Number of Hidden layer 1 
Hidden layer 

size 
5 

Learning parameter 0.2 
Initial weight 

range 
±0.5 

Momentum 0.85 Training option  

Total rows in data 45 No. of training 371 

cycles 

Save training weights 
With least 

training error 

Training 

function 
trainlm 

Training/Validation set Partition data into training/validation set 

Activation function in Hidden layer Tan-Sigmoid 

Activation function in Output layer Linear 

 

5. FITTED PRDICTIVE MODELS 
The following statistical models are fitted like the neural net 

works model, first 75 percent data are used for training, and 

the last 25 percent data are used for testing. Finally the 

equations take the forms 

Multiple Linear Regression Model  

  1 2 3

4 5 6

ˆMLR 30743 0.33 +11.41 10.78

0.44 47.43 29.99

1 : y x x x

x x x

  

  
                

  2 3 4

5 6

ˆMLR 29402.1 7.4 7.1 0.12

64.57 27.3

2 :y x x x

x x

   

 

  7 8 9 10
ˆMLR 514.4 0.213 0.05 0.02 0.03  3 : y x x x x                                                   

Polynomial Curve Fitting Model  

9 8 7 6

5 4 3 2

ˆ ( ) 2.464  4.24 32.34  +41.55  

              87.83 132.9 49.92 139.6  

 13.19  385.1

,  is normalized by mean 1979 and std 9.958

y f x x x x x

x x x x

x

where x

    

   

 
      

ARMA (1, 1) Model 

-1 -1
ˆ   380.57  0.07091 0.26249t t ty y y e                                                                      

Fourier series Model 

ˆ ( )   405.7 -8.939 cos( )  10.69 sin( )  

  7.264 cos(2 ) 11.73 sin(2 ) 10.59cos(3 ) 

 5.814 sin(3 )  0.5913cos(4 )  18.28sin(4 ) 

   18.33cos(5 )  10.62sin(5 ) 5.715cos(6 )   

 8.07

y f t t t

t t t

t t t

t t t
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Figure 1(a): Artificial Neural Network model type 1.
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Figure 1(b): Artificial Neural Network model type 2. 
 

Figure 1(c): Artificial Neural Network model type 3. 

 

Figure 1(d): Artificial Neural Network model type 4. 

 

Figure 1(e): Artificial Neural Network model type 5. 

 

Figure 1: Actual versus predicted average monsoon rainfall in training cases and test cases 

 

6. PERFORMANCE EVALUATION AND 

ACCURACY MEASUREMENTS FOR 

DIFFERENT MODEL FOR PREDICTED 

VALUES IN TRAINING AND TEST 

CASES 
In this section, calculate the different forecasting accuracy  

measure. There are several types of measure to measure the 

accuracy as: mean absolute deviation (MAD), mean square 

error (MSE), root mean square error (RMS), mean absolute 

percentage error (MAPE), correlation, similarity,  and 

prediction error (PE) are widely used statistics in forecasting. 

These measures are the powerful diagnostic tools in 

forecasting.     

 

Table 9: Goodness of Fit Test Results for Different Model(s) 

Model MAD MSE RMS Correlation MAPE Similarity Prediction Error 

ANN_1 33.71 473.15 21.75 0.68 8.209 0.944 0.107 

ANN_2 35.98 480.14 21.91 0.62 8.387 0.951 0.101 

ANN_3 31.90 529.46 23.02 0.69 7.984 0.944 0.100 

ANN_4 9.47 175.07 13.23 0.97 2.387 0.999 0.023 

ANN_5 7.15 157.09 12.53 0.97 1.762 0.999 0.018 

Polynomial 41.08 2403.39 49.02 0.25 10.54 0.936 0.199 

Fourier Series 42.06 2455.28 49.55 0.19 10.73 0.925 0.194 

MLR-1 37.84 2127.23 46.12 0.41 9.557 0.937 0.186 

MLR-2 39.21 2278.65 47.74 0.32 9.923 0.935 0.186 

MLR-3 38.30 2231.78 47.24 0.35 9.696 0.947 0.189 

ARMA (1,1) 40.34 2419.36 49.19 0.23 10.27 0.926 0.201 
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Figure 2: Comparision of  the Prediction Errors of 

Different Competative Models 

 

Figure 3: Complete Linkage Dendrogram for Manhattan 

Distances between Actual Rainfall and Predicted Rainfall 

from Different Models. 

 
Figure 4: Comparison of Observed Average Monsoon Rainfall and Predicted Average Monsoon Rainfall with Artificial Neural 

Networks Models (ANN4 and ANN5) 

7. RESULT AND DISCUSSION 
The correlation between average monsoon rainfall 

(predictand) and sea surface temperature, wind speed, sea 

level pressure, temperature, rainfall (predictors) are estimated. 

The correlation between targeted average monsoon rainfall 

and sea surface temperature, temperature, rainfall, wind speed, 

sea level pressure are -0.133, -0.329, 0.131, 0.004, 0.034 

respectively. All the correlation values are too small, 

indicating that the relationships are highly nonlinear. The 

prediction error for ANN model type 1, ANN model type 2, 

and ANN model type 3, ANN model type 4, and ANN model 

type 5 are 0.107, 0.101, and 0.100, 0.023, and 0.018 

respectively. For multiple linear regression, polynomial curve 

fitting, Fourier series, ARMA model the prediction errors are 

greater than 0.186. Also the similarity measure according to 

Jaccard is found to be almost 0.99 for ANN model type 4, 

ANN model type 5. The value of RMS for ANN model(s) is 

less than the other model. The above results indicate that the 

artificial neural network models are better than the other 

statistical models. Also to fit two models ANN model type 4 

and ANN model type 5 uses the tan sigmoid function in input 

layer and the linear function in hidden layer as activation or 

transfer function. In both the case the “Levenberg Marquardt” 

algorithm used as Back propagation algorithm which is 

known as training function. For ANN model type 4 the RMS, 

correlation, similarity, prediction error are 13.23, 0.97, 0.999, 

0.023, and for ANN model type 5 are 12.53, 0.97, 0.999, and 

0.018 respectively. The maximum epoch for ANN model type 

4 and ANN model type 5 are 228 and 371 respectively. From 

the above result it is evident that the ANN model type 4 and 

ANN model type 5 are better than the other model. The 

performance and accuracy measurement for different models 

for predicted values in training and test cases evident that the 

value of mean absolute deviation, root mean square, mean 

absolute percentage error, prediction error for ANN model 

type 4 are 9.47, 13.23, 2.387,0.023 and for ANN model type 5 

are 7.15, 12.53, 1.762,0.018 respectively. These criteria are 

lower than other statistical and ANN models. Also the 

correlation and similarities are relatively higher than the other 

models.  The Figure 3 represents the complete linkage 

Dendrogram using Manhattan distance which shows that 

actual monsoon rainfall and predicted average monsoon 

rainfall by ANN model type 4 and ANN model type 5 falls in 

one cluster. Thus it can be said that Artificial Neural Network 

model(s) are the best prediction model.  

8. CONCLUSSION 
The monsoon rainfall prediction based on Artificial Neural 

Network was found to be superior to that based on Polynomial 

curve fitting, multiple linear regression, ARMA model and 

Fourier series. From cluster analysis between actual monsoon 

rainfall and predicted monsoon rainfall by different ANN and 

other Statistical models it is evident that the actual monsoon 
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rainfall and predicted rainfall by ANN fall in one cluster. 

Thus, the ANN model gives more accurate prediction 

compared to other models. Performance of the model is 

evaluated through computation of overall Prediction Error 

(PE), Sum Square Error (SSE), Mean Square Error (MSE), 

Root Mean Square Error (RMS), Correlation, Mean 

Percentage Error (MPE), Mean Absolute Percentage Error 

(MAPE), Mean Absolute Deviation (MAD) and different 

Similarity Measure as Dice, Jaccard, and Cosine are minimum 

for ANN prediction model, which are less than other models. 

And it also found that the correlation and different similarities 

measure are relatively high for ANN(s). In addition to this, the 

actual average monsoon rainfall and predicted average 

monsoon rainfall by ANN fall in one cluster. Therefore, 

Artificial Neural Network is found to be adroit in the 

prediction of average monsoon rainfall over Bangladesh. 

Finally, wish to close by mentioning some related areas of 

further research. In the prediction process the Artificial Neural 

Network models fitted on the basis of less or equal to six 

inputs. Further study might focus on fit an ANN model to 

predict monsoon rainfall on the basis of all variables or 

weather parameter of all stations and the model accuracy can 

be improved by Bayesian perspective. 
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