
International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

28

An Efficient Duplication Record Detection

Algorithm for Data Cleansing

Arfa Skandar
Lahore College for Women

University,
Jail Road, Lahore, Pakistan

Mariam Rehman
Lahore College for Women

University,
Jail Road, Lahore, Pakistan

Maria Anjum
Lahore College for Women

University,
Jail Road, Lahore, Pakistan

ABSTRACT

The purpose of this research was to review, analyze and

compare algorithms lying under the empirical technique in

order to suggest the most effective algorithm in terms of

efficiency and accuracy. The research process was initiated by

collecting the relevant research papers with the query of

“duplication record detection” from IEEE database. After that,

papers were categorized on the basis of different techniques

proposed in the literature. In this research, the focus was made

on empirical technique. The papers lying under this technique

were further analyzed in order to come up with the

algorithms. Finally, the comparison was performed in order to

come up with the best algorithm i.e. DCS++. The selected

algorithm was critically analyzed in order to improve its

working. On the basis of limitations of selected algorithm,

variation in algorithm was proposed and validated by

developed prototype.

After implementation of existing DCS++ and its proposed

variation, it was found that the proposed variation in DCS++

producing better results in term of efficiency and accuracy.

The algorithms lying under the empirical technique of

duplicate records deduction were focused. The research

material was gathered from the single digital library i.e. IEEE.

A restaurant dataset was selected and the results were

evaluated on the specified dataset which can be considered as

a limitation of the research. The existing algorithm i.e.

DCS++ and proposed variation in DCS++ were implemented

in C#. As a result, it was concluded that proposed algorithm is

performing outstanding than the existing algorithm.

General Terms

Data Quality, Data Cleansing, Dirty Data

Keywords

Duplication Records Detection Algorithm, DCS++,

Windowing, Blocking

1. INTRODUCTION
Now-a-days, the digital economy is totally dependent on the

databases. Many industries and businesses have huge amount

of data stored in different databases. In this fast world, it is

necessary that data operations on the database are carried out

smoothly and efficiently [1]. However, to access the useful

information that can help in decision making for industries

and businesses, it is necessary to integrate large dataset. When

data is integrated from different sources then it contains a

huge part of dirty data. This dirty data contain mistakes in

record values, duplication in records, spelling mistakes, null

or illegal values, disobedience referential integrity and

inconsistency in records [2].

Quality assurance of data is necessary for fast retrieval of

data, quick and smooth data processing, and right decision

making. Business organizations are paying high attention

towards data quality because dirty data can effect important

decisions in businesses. In addition, cleansed data can

improve the production because of quality decisions [3]. Data

cleansing is performed to get cleansed and quality data.

Therefore, Data cleaning is important for business industry.

The available data cleaning methods are not time and cost

effective [4]. Duplication in data is one of the most important

issues of Data cleaning. When data is gathered from different

source then due to mistakes in spells or difference or

inconsistency of format may cause presence of duplicate

records in data [5]. Extraction of knowledge from huge

databases is known as data mining [6]. Duplicate record

deduction and data redundancy control are also hot topics of

data mining and data integration [7,4]. With the increase of

Quality data demand, many logical and statistical methods

have been provided to resolve the problem[8]. In this regard,

there are three basic techniques of Duplicate records detection

which are knowledge-based techniques, probabilistic

techniques and empirical techniques[3]. Many algorithms

have been proposed under those techniques but all of them

somehow lack in one of these parameters which are time

efficiency, cost effectiveness, space consumption and

accuracy [8]. Duplication record detection is a very diverse

field so this decision was made that one of its basic technique

will be chosen and then focus will be on algorithms which lie

within that technique. It was decided to select empirical

technique and compared all the algorithms under this

category. After comparison, most effective algorithm will be

selected and improved accordingly. The objectives of this

research study are as follows:

1. To study the algorithms of duplication records

detection

2. To perform comparative analysis of duplicate

records detection algorithms lying under the

empirical technique

3. To implement the best selected algorithm after

performing comparative analysis

4. To suggest improvement in the selected algorithm

2. LITERATURE REVIEW
This section provides the necessary background material that

is required to understand this research theme.

2.1 Types of Data Sources
Data can be retrieved from single and multiple sources.

Therefore, data quality is ensured in both cases.

Single source data can have lack of integrity constraints and

poor schema design at schema level and mistakes in data

entries or duplication in data at instance level. Multi source

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

29

data faces the issue of numbering and structural conflicts at

schema level and overlapping, contradiction, inconsistency of

data at instance level[3].

Fig1: Division of Data quality problems according to

resources [3]

2.2 Dirty Data and Data Cleaning
When data is integrated from multiple sources then it contains

a huge part of dirty data in it. This dirty data contain mistakes

in records values, duplication in records, spelling mistakes,

null or illegal values, disobedience referential integrity and

inconsistency in records. This dirty data can infuse

authentication of data. Therefore, it is necessary to clean data

[2]. Data quality management is burning issue of enterprises

because it has power to manipulate the decisions [9].

Therefore, data quality is spotted as bottleneck issue in

businesses and industries [10].

Operational databases and online analytical processing

systems cannot avoid the issue of data quality while

integrating data. These issues are caused by non-unified set of

standards in distributed databases. Data cleaning plays an

important role in providing quality data by detection and

removal of inconsistencies from data [11].

2.3 Duplicates and Types of Duplicates
Duplicates are the records that represent the same real-world

object or entries. Record matching is a state of art technique to

find these duplicates [12].

Duplicates can be of two types that are exact or mirror

duplicates and approximate or near duplicates. Exact duplicate

records contain the same content but on the other hand content

of near duplicate records vary slightly [13]. The records which

contain syntax differences or typographical errors but

represent the same real world entity are known as near

duplicates [14].

2.4 Duplication Records Detection and

Types
Duplicate record detection is one of the most important data

quality problems [15]. Detection of Duplicate plays an

important role in record linkage, near duplicate detection and

filtering queue [16]. Duplication detection is used to identify

the same real world entities which exist in different format or

representation in database [17,18]. It is very common to find

some non-identical fields or records that refer the same entity

[19]. Efficient and accurate detection of duplicates is hotspot

of the data mining and online analyzer [4]. Now-a-day,

duplication detection is the most popular topic in research [8].

Duplication detection is based on two basic Stages. The first

one is the outer stage in which record matching technique or

duplication record matching technique is applied. The second

one is the inner stage that is based on field matching

techniques.

Duplication record detection algorithms are divided in three

types i.e. knowledge-based techniques, probabilistic

techniques, and empirical techniques [3]. Empirical

algorithms consist on sorting, blocking and windowing

methods. Knowledge based algorithms demand training and

the use of that training and reasoning skills in order to

perform detection. Probabilistic algorithms are based on

statistical and probability methods that are Bayesian networks,

expectation maximization and data clustering. In this research

study, focus is on empirical algorithms.

2.5 Empirical Algorithms
The general algorithms are as follows:

2.5.1 Blocking
Assign the sorting key to each record. Sort all the Records

according to the key. Later, records are partitioned into

disjoint partitions (means no record can be present in more

than one partition) according to some blocking key (partition

predicate).

Finally, comparison will be performed between records within

the blocks. Using this technique, least comparisons will be

performed [20].

2.5.2 Windowing
First of all, Merge two provided list of records. Sort all the

records by lexicon order according to the attributes selected as

a key. A fixed size slide window will be used. Records within

the window will be compared with each other and first record

will be released to select the next record in fixed size window.

Fig2: Selection of elements for comparison in Windowing

and Blocking [20]

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

30

2.6 Comparison among Windowing and

Blocking techniques
Similarity and differences among these algorithms are

discussed below:

Both algorithms try to perform reduction in number of record

comparisons. For reducing comparisons, intelligent guesses

are made about window / block sizes. In both algorithms, first

of all data records are sorted and it is assumed that after

sorting duplicates will be close to each other.

However, the mechanism of selection of records for

comparisons is different from one another. In blocking

algorithms, records are blocked in disjoint partitions. On the

other hand, windowing algorithm works by sliding a window

over the records [20].

The use of domain specific key for sorting can reduce the

complexity of the algorithm but also cause domain

dependency [21]. It is not even necessary to keep the key

domain specific. Therefore, blocking and windowing methods

such as sorted neighborhood are domain independent [22]. In

this research, empirical algorithms are chosen due to the

nature of domain independence.

2.7 Related Work
The algorithms have been discussed in detail below:

2.7.1 Sorted Blocks

Input Parameters: Records, key (may or may not be

unique), overlapping value (o)

Records are blocked according to the partition predicate. After

that records within the partition plus the overlapping records

(Selected with the help of a fix size parameter) will be

compared with each other.

Output: Duplicate or Non-Duplicates

2.7.2 Duplicate Count Strategy++ Input

Parameters: Records, Sorting key (key), Window Size (w),

Threshold (

)

A growing window is slide over the records and records

within the window are compared with each other. If a

duplicate is found then it will be added to skipped list and will

never be selected again for comparison which will ultimately

reduce the number of comparisons.

Output: Duplicate or Non-Duplicates

2.7.3 Decision making algorithm

Input Parameters: Databases, Databases priorities values,

Initial field priorities values, Initial threshold, Final threshold

Match the field count of each record and assign each field of

first database to the field of other database. Set the priorities

of fields and sort them accordingly. Select a specific number

of fields of all records and compare them if any two records

cross a specific threshold then these records will be compared

further.

Output: Exact Similar, Approximate Similar, Less Similar

and Non Similar

2.7.4 Nested Blocking

Input Parameters: Data source, standardization rules,

blocking fields and Threshold

Records are divided into partitions then partitions are further

divided into sub-partitions. Afterwards, comparison will be

performed within sub-partitions.

Output: Duplicate, Possible Duplicate or Non-Duplicates

2.7.5 PC-Filter+

Input Parameters: Database, blocking key value, Size of

partition (s), threshold ()

Records are blocked in equal size partitions. Records within

the blocks will be compared. PCG (partition comparison

graph) will be constructed for inter comparison. If number of

blocks will be less than defined ratio then all blocks will be

compared with each other. Otherwise, a defined number of

neighboring blocks will be compared.

Output: Duplicate or Non-Duplicates

3. RESEARCH METHODOLOGY
The steps of research methodology adopted in this research

study are shown in Fig 3 and their description is given below:

3.1 Set Aims and Objectives of Research
The main purpose of this research was to review different

algorithms which have been proposed in the literature to

suggest the most effective one in terms of efficiency and

accuracy.

3.2 Preparation of Proposal
Some research articles were selected randomly from ACM

and IEEE digital libraries. Based on these articles, proposal

was written to defend and propose research topic.

3.3 Collection of Research Papers in the

relevant domain i.e. duplicates records

detection
Afterwards, it was decided that systematic review of literature

will be followed. In order to perform the systematic review,

different digital libraries were searched out for the research

articles under duplication records detection keyword.

3.4 Search of research papers
While searching articles, it was found that IEEE digital library

contains most relevant research articles. With the keyword of

“duplicate records detection” total 61 articles were found.

3.5 Selection of relevant Research Papers

and Division of Research Paper
Selected research articles were divided into four major

categories. From these categories, there were three different

techniques of duplication record detection and the articles

which did not lie under these techniques were categorized as

‘Others’.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

31

Figure 3: Research methodology

3.6 Literature Writing
Literature review was performed based on the selected articles

and the main focus remained on empirical techniques and

other techniques were ignored for the sake of this research.

3.7 Comparative Study of Algorithms

under Empirical Technique
Comparative study of algorithms under the heading of

empirical technique was performed in order to come up with

comparative analysis. .

Critical analysis of most effective algorithm

Critical analysis of DCS++ was performed and suggestions

were given for improvement of the algorithm.

3.8 Implementation of Solution
Solution is implemented for the existing DCS++ Algorithm

and the proposed Algorithm.

3.9 Results and Discussions
The evaluation of algorithm was performed and the results

have been discussed in detail below.

4. CRITICAL ANALYSIS DCS++
Windowing algorithm provides more accuracy instead of

blocking. Therefore, DCS++ is selected because it is the most

efficient windowing algorithm among all variants which are

included in this study.

4.1 DCS++ Algorithm
Sort all the records according to the sorting key. Afterwards,

put the w records in current window (win) sequentially. Now,

select a record from all records sequentially and check

whether the record is in skip records list (SkipRecords) or not.

Compare the selected record with all the records within win

and increase count of number of comparisons (c) by 1. If a

record is found as a duplicate of Selected record then mark it

as duplicate by adding it in to the SkipRecords, increase count

of current duplicated record (d) by1and add the record in win

sequentially till win.lenght < duplicate record count + w-1

and win.lenght with increase < records. When all the records

within the win are compared, remove the first record of win. If

remaining records in win < w then add one record at the end

Otherwise, remove records from the end till win. Length = w

and move back to the step of selecting a record sequentially

from all records. Continue the process till end of records [23].

4.2 Critical Point
Records are sorted according to single or composite key but

not by all fields of the records. Therefore, it is possible that

duplicate records lie in the same window but not

consecutively. In Fig 4, full advantage of transitive property

with DCS++ algorithm cannot be taken. It is clearly reflected

by the Fig. 5, with any size of window, that record numbers 3,

4, 5, 6 even if add to the skip list in first window but will be

compared again with record 2 in second window.

In such case, DCS++ will perform unnecessary comparisons.

As shown in Fig 4. The problem can be resolved by increasing

a single check in the algorithm. After that, algorithm will

avoid those unnecessary comparisons.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

32

Fig4: Working of DCS

4.3 Proposed Algorithm
Sort all the records according to the sorting key. Afterwards,

put the w records in current window (win) sequentially. Now,

select a record from all records sequentially and check

whether the record is in skip records list (SkipRecords) or not.

Compare the selected record with all the records within win

that are not in SkipRecords and increase count of number of

comparisons (c) by 1 with each comparison. If a record is

found as a duplicate of Selected record then mark it as

duplicate by adding it in to the SkipRecords, increase count of

current duplicated record (d) by1and add the record in win

sequentially till win.lenght < duplicate record count + w-1

and win.lenght with increase < records. When all the records

within the win are compared, remove the first record of win.

If remaining records in win < w then add one record at the

end. Otherwise, remove records from the end till win. Length

= w and move back to step of selecting a record sequentially

from all records. Continue the process till end of records.

Now, the prototype of proposed algorithm is developed to find

that whether with the improvement in DCS++ have retained

its accuracy. Secondly, an attempt is being made to see

whether with a good String matching algorithm, is there any

potential to have higher precision value.

5. EVALUATION METHODOLOGY
The evaluation of algorithm is performed to compute the

accuracy and efficiency of the algorithms. The accuracy refers

to the number of duplicate detected and the efficiency refers

to the number of comparisons performed to detect those

duplicates.

5.1 Evaluation Parameters
The correct detection of duplicate is true positive (TP). When

a record is not duplicate but detected as duplicate then it will

be called false positive (FP). False negatives (FN) are the

records that are duplicate but not detected as duplicate.

Moreover, numbers of comparisons have been performed

under a single run of algorithm in order to see the complexity

of algorithm.

Existing algorithm of DCS++ and the proposed algorithm are

evaluated for accuracy on the basis of formulas defined in

Table 1.

Table 1. Quality Measures [3]

Quality Measure Formula

Precision TP/(TP+FP)

Recall TP/(TP+FN)

F-Score 2*(Precision * Recall)/(

Precision + Recall)

The efficiency is measured on the basis of number of

comparisons performed during the record comparisons.

5.2 Dataset
Dataset selection for evaluation is an important task. To

evaluate algorithms, it was decided to use benchmarked data.

5.3 Restaurant Database
A database of a Restaurant is selected for the purpose of

evaluation [3]. The attributes of database are Name, Address

and City. There are 865 records in the database.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

33

5.4 Detection of Duplicates for Evaluation
For the purpose of evaluation, duplicates are marked in

dataset manually. After detection, 202 matching pairs were

found but 12 out of these require knowledge base. These 12

records are matched by Name and address but in City field if

one record contain the city name then the other record contain

district or the closest famous city. Therefore, these records are

excluded from set of duplicates in order to perform

evaluation. So, there are 190 records left which means 95

duplicates. During the detection of duplicates, order remained

as City, Address, and Name respectively. In the original

source, numbers of duplicates mentioned are 112 but in this

research, they are 95. The error percentage is ((Numbers of

duplicates actually exist - Numbers of duplicates

detected)/Number of total records in dataset)*100.

Error Percentage = ((112-95)/865)*100=1.9675%

The error percentage is extremely low. Therefore, it is

negligible.

6. EVALUATION OF ALGORITHMS
In this section, algorithms are evaluated with respect to the

parameters defined above.

6.1 DCS++ with Exact Matching
After conducting experimental evaluation of DCS++

algorithm, with naïve matching algorithm at field level, results

are described in Table 2. The window size is set to be 6 for

evaluation.

Table 2. Evaluation of DCS++ with Modified Naïve String

Matching Algorithm

Quality Measures Resulted Values

True Positives 69

False Positives 0

False Negatives 26

Precisions 100%

Recall 72.63%

F-Score 84.14%

Number of Comparisons 3244

Table 2 shows that the results of DCS++ with Naïve Exact

String Matching algorithm are not bad. The numbers of false

positive are 0 but numbers of True Positives and recall values

are extremely low.

6.2 Proposed Algorithm with Exact String

Matching
After conducting experimental evaluation of proposed

algorithm, with naïve matching at field level, results are

described in Table 3. The selected window size for evaluation

is 6.

Table 3.Evaluation of Proposed Algorithm with Modified

Naïve String Matching Algorithm

Quality Measures Resulted Values

True Positives 69

False Positives 0

False Negatives 26

Precisions 100%

Recall 72.63%

F-Score 84.14%

Number of Comparisons 3244

Table 3 shows that the results of proposed algorithm with

Naïve Exact String Matching algorithm are same as DCS++ ,

but there is no improvement in number of comparisons. On

the other hand, there is no negative effect on the results with

the change in algorithm.

6.3 Approximate String Match
It is not enough to check the algorithm with exact string

matching only. In order to see the effect of change in

algorithm with approximate string matching algorithm and to

find that proposed string matching algorithm is helping in

order to improve results of DCS++ or not.

6.3.1 DCS++ with Basic String Matching
DCS++ with modified Basic String Matching Algorithm is

used for approximate string matching. The evaluation is

performed by ranging the threshold value from 0.45 to 0.65

with the gap of 0.05. The results are shown in Table 4.

Table 4. Evaluation of DCS++ with Modified Basic String

Matching Algorithm

DCS++ Algorithm

with

Basic String Matching Algorithm (Modified)

S

.

N

O

Thre

shold

T

P

FP FN Precisi

ons

(%)

Recall

(%)

F-

Score

(%)

NC

1 0.45 86 17 9 83.50 90.53 86.87 3166

2 0.5 86 13 9 86.87 90.53 88.66 3168

3 0.55 80 3 15 96.39 84.21 89.89 3204

4 0.6 78 3 17 96.30 82.11 88.64 3210

5 0.65 76 2 19 97.44 80.00 87.86 3219

Fig 5: Execution Results of DCS++ with Modified Basic

String Matching Algorithm

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

120.00%

0.4 0.45 0.5 0.55 0.6 0.65 0.7

A
xi

s
P

re
ci

si
o

n
, R

e
ca

ll
an

d
 F

-S
co

re

Threshold (Ranging from 0.45 to 0.65)

Execution Results of DCS++ with Basic String
Matching Algorithm

Precisions

Recall

F-Score

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

34

Fig 5 is representing the relationship between F-Score,

Precision and Recall. It shows that there is a reverse

relationship between Precision and Recall values for DCS++

with Basic String Matching Algorithm. On the other hand, F-

Score has a positive relationship with both Precision and

Recall.

6.3.2 Proposed Algorithm with Basic String

Matching
The proposed with modified Basic String Matching Algorithm

is used for approximate string matching. The evaluation is

performed by ranging the threshold from 0.45 to 0.65 with the

gap of 0.05. The results are shown in Table 5.

Table 5. Evaluation of Proposed Algorithm with Modified

Basic String Matching Algorithm

Proposed Algorithm

with

Basic String Matching Algorithm (Modified)

S.

N

O

Thre

shol

d

T

P

FP FN Preci

sions

(%)

Recal

l

(%)

F-

Score

(%)

NC

1 0.45 86 17 7 83.50 92.47 87.76 3144

2 0.5 86 13 9 86.87 90.53 88.66 3154

3 0.55 80 3 15 96.39 84.21 89.89 3202

4 0.6 78 3 17 96.30 82.11 88.64 3208

5 0.65 76 2 19 97.44 80.00 87.86 3217

Fig 6: Execution Results of Proposed with Modified Basic

String Matching Algorithm

Fig 6 describes that if the value of precision is increasing then

the value of Recall is decreasing. Therefore, it is an inverse

relationship. On the other hand, F-Score have closer values

which show the positive relationship of F-Score with both

recall and precision.

Fig 7: Number of Comparisons performed by DCS++ and

Proposed Algorithm with Modified Basic String Matching

Algorithm

Fig 7 shows that the numbers of comparisons required in

Proposed Algorithm with Basic String Matching Algorithm

are less than of the DCS++ Algorithm.

6.3.3 DCS++ with Recursive String Matching
DCS++ with modified Recursive String Matching Algorithm

is used for approximate string matching. The evaluation is

performed by ranging the threshold value from 0.45 to 0.65

with the gap of 0.05. While running DCS++, the most

accurate results were gained at 0.65. After that, with higher

threshold value than 0.65, the recall decreases. The results are

described in Table 6.

Table 6. Evaluation of DCS++ with Modified Recursive

String Matching Algorithm

DCS++

with

Recursive String Matching Algorithm (Modified)

S.

NO

Thres

hold

TP FP FN Prec

isions

(%)

Recall

(%)

F-

Score

(%)

NC

1 0.45 91 46 4 66.42 95.79 78.45 3094

2 0.5 92 45 3 67.15 96.84 79.31 3094

3 0.55 91 4 4 95.79 95.79 95.79 3169

4 0.6 91 4 4 95.79 95.79 95.79 3169

5 0.65 91 4 2 95.79 97.85 96.81 3174

The use of modified form of Recursive String Matching

Algorithm with DCS++ takes the precision to 95.79%, Recall

to 97.85% and the F-Score to 96.81%. The higher level of

accuracy is achieved with the threshold value of 0.65. With

the threshold values which are greater than 0.65, the values of

Recall, Precision, and F-Score decreases.

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

120.00%

0.4 0.45 0.5 0.55 0.6 0.65 0.7

A
xi

s
P

re
ci

si
o

n
, R

e
ca

ll
an

d
 F

-S
co

re

Threshold (Ranging from 0.45 to 0.65)

Evaluation Chart for Proposed Algorithm
with Basic String Matching Algorithm

Precisions

Recall

F-Score

3140

3150

3160

3170

3180

3190

3200

3210

3220

3230

0.4 0.45 0.5 0.55 0.6 0.65 0.7

N
u

m
b

e
r

o
f

co
m

p
ar

is
o

n
s

Threshold (Ranging from 0.45 to 0.65)

Number of Comparisons with Basic String
Matching Algorithm

Number of Comparisons
in Proposed Algothim

Number of comparisons
in DCS++

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

35

Fig 8: Execution Results of DCS++ with Modified

Recursive String Matching Algorithm

Fig 8 shows that with lower threshold value precision is very

low, but with efficient choice of threshold value, high

precision and recall is achieved.

6.3.4 Proposed Algorithm with Recursive String

matching
Proposed Algorithm with modified Recursive String Matching

Algorithm is used for approximate string matching. The

evaluation is performed by ranging the threshold value from

0.45 to 0.65 with the gap of 0.05. While running DCS++, the

most accurate results were gained at 0.65. After that, with

higher threshold value, the recall decreases. The results are

described in Table 7.

Table 7. Evaluation of Proposed Algorithm with Modified

Basic String Matching Algorithm

Proposed Algorithm

with

Recursive String Matching Algorithm (Modified)

S

.

N

O

Thre

shol

d

TP F

P

F

N

Precis

ions

(%)

Reca

ll

(%)

F-

Score

(%)

NC

1 0.45 92 41 3 69.17 96.84 80.70 3033

2 0.5 93 40 2 69.92 97.89 81.58 3033

3 0.55 91 4 4 95.79 95.79 95.79 3166

4 0.6 91 4 4 95.79 95.79 95.79 3166

5 0.65 91 4 2 95.79 97.85 96.81 3172

The use of Proposed Algorithm with modified form of

Recursive String Matching Algorithm takes the precision to

95.79%, recall to 97.85% and the F-Score to 96.81%. The

higher level of accuracy is achieved with the threshold value

of 0.65.

Fig9: Execution Results of Proposed with Modified

Recursive String Matching Algorithm

Fig 9 shows that with the right choice of threshold value,

proposed Algorithm with Recursive String Matching

algorithm can achieve higher precision, recall and F-Score

values.

Fig 10: Number of Comparisons performed by DCS++

and Proposed Algorithm with Modified Recursive String

Matching Algorithm

Fig 10 shows that the numbers of comparisons in Proposed

Algorithm with Recursive String Matching Algorithm are less

with lower threshold value than of the DCS++ Algorithm.

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

120.00%

0.4 0.45 0.5 0.55 0.6 0.65 0.7

 P
re

ci
si

o
n

, R
e

ca
ll

an
d

 F
-S

co
re

Threshold (Ranging from 0.45 to 0.65)

Evaluation Chart for DCS++ with Recursive
String Matching Algorithm

Precisions

Recall

F-Score

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

120.00%

0.4 0.45 0.5 0.55 0.6 0.65 0.7

 P
re

ci
si

o
n

, R
e

ca
ll

an
d

 F
-S

co
re

Threshold (Ranging from 0.45 to 0.65)

Evaluation Chart for Proposed Algorithm
with Recursive String Matching Algorithm

Precisions

Recall

F-Score

3020

3040

3060

3080

3100

3120

3140

3160

3180

3200

0.4 0.45 0.5 0.55 0.6 0.65 0.7

N
u

m
b

e
rs

 o
f

C
o

m
p

ar
is

o
n

s

Threshold (Ranging from 0.45 to 0.65)

Number of Comparisons with Recursive
Algorithm

Number of Comparisons
Proposed Algorithm

Number of Comparisons
DCS++

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

36

7. RESULTS AND DISCUSSIONS
It is concluded by Table 2 and Table 3 that with the use of

exact string matching algorithm, the accuracy of proposed

algorithm is same as accuracy of DCS++ algorithm and there

is no improvement in number of comparisons. The results are

not bad as 100% Precision and 70.63% Recall is achieved.

The most noticeable thing is that, there is not a single false

detection of duplicate with naïve string matching algorithm.

Overall, results with naïve algorithm are satisfactory.

The Proposed Algorithm with Basic String Matching

Algorithm requires reduced number of comparisons instead of

DCS++ with Basic String Matching Algorithm. On the other

hand, both algorithms have same accuracy. By Table 2, 3, 4

and 5, it can be concluded that the Recall value of both

algorithms i.e. DCS++ and Proposed Algorithm with Basic

String match algorithm by using the right threshold value is

more than of naïve algorithm, but this gain requires the little

compromise on the Precision value.

Table 6 and 7 shows that the Proposed Algorithm that is

implemented with the modified Recursive Algorithm is

performing more accurately and efficiently than of DCS++

with Recursive Algorithm with lower threshold values but

with higher threshold values they have same performance.

Another important aspect is the gain of 96.81% F-Score value.

It can be concluded by taking look at Table 4, 5, 6 and 7 that

DCS++ and Proposed Algorithm with Recursive Algorithm is

performing much better than of Basic String matching

algorithm, but the error percentage of DCS++ and Proposed

algorithm with best F-Score is ((Numbers of duplicates

actually exist - Numbers of duplicates detected)/Number of

total records in dataset)*100= ((112-91)/865)*100=2.43%.

This error percentage is extremely low so it is negligible.

With the help of above discussion, it can be concluded that the

proposed algorithm which is implemented with the help of

Modified Recursive Algorithm outperforms than of all other

algorithms in term of accuracy and efficiency.

8. CONCLUSION
The most challenging task of this research study was to prove

that after making changes in the basic algorithm of the

DCS++, there is no loss of efficiency or accuracy instead of

proving the improvement. Prototype of both original DCS++

algorithm and the new proposed algorithm is implemented.

With the results of evaluation, it is concluded that with Exact

String or Field match both algorithms work almost in similar

manner. On the other hand, with Approximate String or Field

match number of comparisons are reduced by the proposed

algorithm.

Moreover, accuracy in terms of recall, precision and F-Score

is almost similar for both algorithms, but in case where

Proposed Algorithm is used with modified recursive

algorithm with minimum threshold value, it produces more

accurate results than of original DCS++.

It is also proved that it is mostly not possible in case of real

data that all duplicates are detected with the use of exact

string matching algorithm, even if the precision reached to

100% but the F-Score is lower. The reason of using two

different approximate algorithms was to show that there is a

room to gain higher rate of duplicate detection with the same

record detection algorithm by using more efficient string

matching algorithm. The recursive algorithm is used by

calling twice for a single string match to gain high accuracy

with a non-symmetrical algorithm. It increases the complexity

but outperforms with the efficient choice of the threshold

value.

The proposed algorithm is the best choice for the task of

duplication record detection. It is domain independent but

input dependency is there. The algorithm provides almost

similar results than of DCS++ in terms of accuracy excluding

some cases where accuracy of proposed algorithm is higher.

On the other hand, efficiency of proposed algorithm is equal

or higher in some cases.

9. RECOMMENDATIONS AND

FUTURE WORK
The research is scoped to the empirical techniques only.

However, other techniques can be explored with the same

directions. For the approximate string matching, basic and

recursive algorithms are improved and applied to see their

effects. There are many other algorithms which exist for

approximate string matching and yet 100% precision and

recall with the approximate match is not achieved yet so other

techniques can also be applied to produce better results.

Moreover, Window can be slide on field along with records

instead of sliding window only on the records. This means

that instead of selecting only number of records in a window,

the number of fields can also be reduced with respect to its

important.

In this research, it was found that there exist some records

which require knowledge base to detect duplicates correctly.

For example, Arfa Sikander, Street number 5 iqbal roads,

Daska and Arfa Sikander, Street number 5 iqbal road, Sialkot

are the same records but in the first case nearby famous city

name is mentioned. Moreover, there are also few other cases

which are not being handled by the recursive algorithm. For

example, 7th or seventh, these both cases cannot be handled

without knowledge base.

10. REFERENCES
[1] Ahmed K. Elmagarmid, P., G. Ipeirotis, and Vassilios S.

Verykios, "Duplicate Record Detection: A Survey,"

IEEE Trans. on Knowl. and Data Eng., vol. 19, pp. 1-16,

2007.

[2] P. Ying, X. Jungang, C. Zhiwang, and S. Jian, "IKMC:

An Improved K-Medoids Clustering Method for Near-

Duplicated Records Detection," in Computational

Intelligence and Software Engineering, 2009. CiSE 2009.

International Conference on, Wuhan, 2009, pp. 1 - 4.

[3] M. Rehman and V. Esichaikul, "DUPLICATE RECORD

DETECTION FOR DATABASE CLEANSING," in

Machine Vision, 2009. ICMV '09. Second International

Conference on , Dubai, 2009 , pp. 333 - 338.

[4] X. Mansheng, L. Yoush, and Z. Xiaoqi, "A PROPERTY

OPTIMIZATION METHOD in SUPPORT of

APPROXIMATELY DUPLICATED RECORDS

DETECTING," in Intelligent Computing and Intelligent

Systems, 2009. ICIS 2009. IEEE International

Conference on, 2009.

[5] Q. Hua, M. Xiang, and F. Sun, "An Optimal Feature

Selection Method for Approximately Duplicate

Records," in Information Management and Engineering

(ICIME), 2010 The 2nd IEEE International Conference

on, Chengdu, 2010.

[6] D. Bhalodiya, M., K. Patel, and C. Patel, "An Efficient

way to Find Frequent Pattern with," in Nirma University

International Conference on Engineering, 2013.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

37

[7] L. Huang, P. Yuan, and F. Chu, "Duplicate Records

Cleansing with Length Filtering and Dynamic

Weighting," in Semantics, Knowledge and Grid, 2008.

SKG '08. Fourth International Conference on, Beijing,

2008, pp. 95 - 102.

[8] M. Gollapalli, X. Li, I. Wood, and G. Governatori,

"Approximate Record Matching Using Hash Grams," in

11th IEEE International Conference on Data Mining

Workshops, 2011.

[9] Z. Wei, W. Feng, and L. Peipei, "Research on Cleaning

Inaccurate Data in Production," in Service Systems and

Service Management (ICSSSM), 2012 9th International

Conference on, Shanghai, 2012.

[10] L. Zhe and Z. Zhi-gang, "An Algorithm of Detection

Duplicate Information Based on Segment," in

International Conference on Computational Aspects of

Social Networks, 2010.

[11] H., H. Shahri and Z., A., A. Barforush, "Data Mining for

Removing Fuzzy Duplicates Using Fuzzy Inference," in

Processing NAFIPS '04. IEEE Annual Meeting of the

(Volume:1), 2004.

[12] W. Su, J. Wang, and H., F. Lochovsky, "Record

Matching over Query Results from Multiple Web

Databases," in IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, 2010.

[13] R. Naseem, S. Anees, M., and S. Farook, "Near

Duplicate Web Page Detection With Analytic Feature

Weighting," in Third International Conference on

Advances in Computing and Communications, 2013.

[14] L., Wan Zhao and Wah, C. N., "Scale-Rotation Invariant

Pattern Entropy for Keypoint-Based Near-Duplicate

Detection," in IEEE TRANSACTIONS ON IMAGE

PROCESSING, 2009.

[15] G. Beskales, A., M. Soliman, F., I. Ilyas, S.i Ben-David,

and Y. Kim, "ProbClean: A Probabilistic Duplicate

Detection," in Data Engineering (ICDE), 2010 IEEE 26th

International Conference on, 2010.

[16] J. Kim and H. Lee, "Efficient Exact Similarity Searches

using Multiple," in IEEE 28th International Conference

on Data Engineering, 2012.

[17] M. Ektefa, F. Sidi, H. Ibrahim, and M.,A. Jabar, "A

Threshold-based Similarity Measure for Duplicate

Detection," in Open Systems (ICOS), 2011 IEEE

Conference on, Langkawi, 2011, pp. 37 - 41.

[18] M. Herschel, F. Naumann, S. Szott, and M. Taubert,

"Scalable Iterative Graph Duplicate Detection," in IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, 2012.

[19] Q. Kan, Y. Yang, S. Zhen, and W. Liu, "A Unified

Record Linkage Strategy for Web Service," in Third

International Conference on Knowledge Discovery and

Data Mining, 2010.

[20] U. Draisbach and F. Naumann, "A Generalization of

Blocking and Windowing Algorithms for Duplicate

Detection," in Data and Knowledge Engineering

(ICDKE), 2011 International Conference on , Milan,

2011, pp. 18 - 24.

[21] A. Bilke and F. Naumann, "Schema Matching using

Duplicates," in Proceedings of the 21st International

Conference on Data Engineering, 2005.

[22] Q. kan, Yan, Y. g, W. Liu, and X. Liu, "An Integrated

Approach for Detecting Approximate Duplicate

Records," in Second Asia-Pacific Conference on

Computational Intelligence and Industrial Applications,

2009.

[23] U. Draisbach, F. Naumann, S. Szott, and O. Wonneberg,

"Adaptive Windows for Duplicate Detection," in 28th

International Conference on Data Engineering, 2012.

IJCATM : www.ijcaonline.org

