
International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

10

A Comprehensive View of MapReduce Aware

Scheduling Algorithms in Cloud Environments

Hadi Yazdanpanah
Computer Student,

Department of Computer,
Iaub, Bushehr, Iran

Amin Shouraki
Computer Student,

Department of Computer,
Iaub, Bushehr, Iran

Abbas Ali Abshirini
Computer Student,

Department of Computer,
Azad University, Dehdasht, Iran

ABSTRACT

Cloud computing has emerged as a model that harnesses

massive capacities of data centers to host services in a cost-

effective manner. MapReduce has been widely used as a Big

Data processing platform, proposed by Google in 2004 and

has become a popular parallel computing framework for

large-scale data processing since then. It is best suited for

embarrassingly parallel and data-intensive tasks. It is designed

to read large amount of data stored in a distributed file system

such as Google File System (GFS), process the data in

parallel, aggregate and store the results back to the distributed

file system. Scheduling is one of the most critical aspects of

MapReduce. Also three important scheduling issues in

MapReduce such as locality, synchronization and fairness

exist. This paper tries to illustrate and analyze the overview of

thirteen different aware scheduling algorithms with different

techniques and approaches for MapReduce in Hadoop and

their scheduling issues and problems. At the end, Advantages

and disadvantages of these algorithms are identified.

Keywords

Cloud Computing, MapReduce, Scheduling algorithms

1. INTRODUCTION
Nowadays data are becoming larger and larger in every field.

Cloud Computing is new style of computing which is getting

progress constantly. Also Cloud Computing includes

computational and storage services as pay you go model. To

provide proficient resources, Cloud computing is been

pioneered. Many organizations have their own private cloud,

but when there is need for extra resources they go for public

cloud where they have been outlaid for their use. In such

"pay-per-use", workflow execution cost must be considered

during scheduling based on users’ QoS constraints. As a

popular programming model in cloud-based data processing

environment, MapReduce and Hadoop [1] is Apache’s open

source implementation of the MapReduce framework, are

widely used both in industry and academic researches.

MapReduce [2] is proposed by Google in 2004 and has

become a popular parallel computing framework for large-

scale data processing since then. It is best suited for

processing parallel and data-intensive tasks. It is designed to

read large amount of data stored in a distributed file system

such as Google File System (GFS) [3], process the data in

parallel, aggregate and store the results back to the distributed

file system. In a typical MapReduce job, the master divides

the input files into multiple map tasks, and then schedules

both map tasks and reduce tasks to worker nodes in a cluster

to achieve parallel processing. The two major performance

metrics in MapReduce are job execution time and cluster

throughput.

Many cloud applications assume a homogeneous

environment. For example, Hadoop [4] assumes that all nodes

participating in the cluster have the same processing power.

A Hadoop job is consists of a number of tasks that run on

nodes concurrently. When Hadoop schedules a task of a job, it

assumes that it takes about the same time to process a task

regardless of where it runs. It considers network connectivity

by giving preference to tasks that access local data over these

access remote data, but does not consider the difference of

computing capability of nodes. Further, in a heterogeneous

environment, some tasks run faster on a particular node than

others. In addition, it is not straight forward to guarantee

fairness among multiple jobs in heterogeneous environments.

The aim of task scheduling in Hadoop is to move computation

towards data. Scheduling is one of the important factors in

MapRduce. In order to achieve good performance a

MapReduce scheduler must avoid unnecessary data

transmission. The JobTracker is the service within Hadoop

that farms out MapReduce tasks to specific nodes in the

cluster, ideally the nodes that have the data, or at least are in

the same rack. A TaskTracker is a node in the cluster that

accepts tasks Map, Reduce and Shuffle operations from

a JobTracker. In MapReduce framework, each TaskTracker

sends frequent heartbeats to the job tracker which contains the

number of free map and reduce slots on that slave node. The

JobTracker then assigns a task to the TaskTracker having free

slots according to the configured scheduling policy.

The MapReduce scheduling algorithms mainly include FIFO

(First Input First Output), LATE (Longest Approximate Time

to End), Fair Scheduler and Capacity Scheduler. FIFO [4] is

the default Hadoop scheduler. The main objective of FIFO

scheduler to schedule jobs based on their priorities in first-

come first-out of first serve order. LATE scheduler [5] try to

improve performance by reducing overhead of speculation

execution tasks. The fair scheduler [6] was developed

by Facebook. The goal of the fair scheduler is to provide fast

response times for small jobs and QoS for production jobs.

The fair scheduler has three basic concepts: 1) Jobs are

grouped into pools. 2) Each pool is assigned a guaranteed

minimum share. 3) Excess capacity is split between jobs. By

default, jobs that are uncategorized go into a default pool.

Pools have to specify the minimum number of map slots,

reduce slots, and a limit on the number of running jobs. The

capacity scheduler [7] was developed by Yahoo. The capacity

scheduler supports several features that are similar to the fair

scheduler. 1) Queues are allocated a fraction of the total

resource capacity. 2) Free resources are allocated to queues

beyond their total capacity. 3) Within a queue a job with a

high level of priority has access to the queue's resources.

The rest of the paper is organized as follows: Section 2

provides a background on Hadoop and MapReduce

Mechanisms. Sections 3 introduce the MapReduce Aware

Scheduling Algorithms. Section 4 describe analyze and

consider advantage and disadvantage in the form of table. In

Section 5 conclude the paper.

http://wiki.apache.org/hadoop/MapReduce
http://wiki.apache.org/hadoop/JobTracker
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Quality_of_service
https://en.wikipedia.org/wiki/Pool_(computer_science)
https://en.wikipedia.org/wiki/Yahoo

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

11

2. BACKGROUND
This section briefly describes how a Hadoop and MapReduce

work.

2.1 Hadoop
Hadoop is Java base open source implementation of the

MapReduce platform and distributed file system. Hadoop runs

over a distributed file system called Hadoop Distributed File

System (HDFS) which has the same architecture as Google

File System [8]. HDFS has master/slave architecture. HDFS

consists of one the master server, called NameNode and there

are a number of slaves, called DataNodes. NameNode which

controls several DataNodes, and the DataNodes store actual

data. Namenode supervises metadata such as information of

directories, access log from users, detail of data location, and

system logs. Datanode keeps data in Blocks. A Block is a

basic unit for data storing in HDFS. Figure 1 briefly describes

the Hadoop Architecture.

Fig 1. Hadoop Architecture.

2.2 MapReduce
MapReduce is a programming model designed for processing

large volumes of data in parallel by dividing the work into a

set of independent tasks. MapReduce programs are written in

a particular style influenced by functional

programming constructs, specifically idioms for processing

lists of data. As a distributed computing framework on

commercial computer, one of the MapReduce most significant

advantages is that it provides an abstraction that hides many

system level details from programmer. It processes data by

dividing the progress into two phases: Map and Reduce. Each

Map function takes a split file as its input data, which locates

in the distributed file system and contains the key/value data.

The split file can be co-location with the Map function or not.

If the split file and the Map function don't in the same node,

then the system will transfer the split file to the Map function.

The Reduce function is applied to all values that associated

with the same intermediate key and generates output

key/value pairs as the final result. The MapReduce framework

has master/slave architecture. It has a single master server

or JobTracker and several slave servers or TaskTrackers, one

per node in the cluster. The JobTracker is the point of

interaction between users and the framework. Users

submit map/reduce jobs to the JobTracker, which puts them in

a queue of pending jobs and executes them on a first-

come/first-served basis. The JobTracker manages the

assignment of map and reduce tasks to the TaskTrackers.

The TaskTrackers execute tasks upon instruction from the

JobTracker and also handle data motion between the map and

reduce phases. Figure 2 briefly describes how the MapReduce

model works.

Fig 2. MapReduce Model

3. MAPREDUCE AWARE

SCHEDULING ALGORITHMS
The Scheduling is one of the most critical aspects of

MapReduce. There are many Aware Scheduling algorithms to

address these issues with different techniques and approaches.

3.1 Center-of-Gravity Reduce Scheduling
In [9], the authors propose another approach named Center-

of-Gravity Reduce Scheduler (COGRS). COGRS is a locality-

aware skew-aware reduce task scheduler for saving

MapReduce network traffic. This scheduler tries to schedule

every reduce task at its center of- gravity node determined by

the network locations of that task’s feeding nodes and the

skew in the sizes of that task’s partitions. By scheduling

reducers at their center-of-gravity nodes, they argue for

reduced network traffic which can possibly allow more

MapReduce jobs to co-exist on the same system.

3.2 Context Aware Scheduling
In [10], the authors proposed a model for smarter services that

combines techniques of context awareness and adaptive job

scheduling. The proposed model works by adjusting the

priorities of the server-based jobs in response or pro-actively

to variations of the end-user local context. It aims at providing

delay-tolerant job execution required in mobile environment,

while reducing the resource wastage by properly scheduling

jobs in the Cloud. That is, by being able to adjust the priority

of incoming jobs in relation to variations of local contexts, the

system improves the overall resource utilization delivering

better performance and, consequently, better quality of service

(QoS).

Kumar et al. [11] propose a context-aware scheduler (CASH);

the proposed algorithm uses the existing heterogeneity of

most clusters and the workload mix, proposing optimizations

for jobs using the same dataset. This scheduler increases the

performance in heterogeneous Hadoop clusters. Although

still in a simulation stage, this approach seeks performance

gains by using the best of each node on the cluster. The

proposed algorithm is based on two key schemas. First, most

MapReduce jobs are run periodically and roughly have the

same characteristics regarding CPU, network, and disk

requirements. Second, the nodes in a Hadoop cluster become

heterogeneous over time due to failures, when newer nodes

replace old ones. The proposed scheduler is designed to tackle

this, taking into account job characteristics and the available

resources within cluster nodes. The scheduler uses then three

steps to accomplish its objective: classify jobs as CPU or I/O

bound; these schedulers classifies the nodes as Computational

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

12

or I/O good and map the tasks of a job with different demands

to the nodes that can fulfill the demands. By implementing

CASH, the performance of the heterogeneous cluster and the

aggregate execution times of the jobs can be improved.

3.3 Distribution Aware Scheduling
In [12], the authors propose a scheduling method to improve

the data locality of MapReduce. After receiving a request

from a node, the method selects a task from the first level

followed by the second and the third level of the node. Then,

it checks whether the task is the only one on the first level of

the node to issue a request. If so, the method skips the selected

task, and selects another task for the node issuing a request.

Otherwise, the method schedules the selected task to the node.

In [13], the authors offered a data distribution aware task

scheduling strategy for MapReduce system. Their strategy has

two main phases: In the initialization phase, statistics number

of copies of data processed by each map task. At the same

time, statistics the number of localizable tasks for each

worker; in the scheduling phase, according to the information

above, calculating the scheduling priorities for each task and

each works that requesting task, and scheduling the task to

works based on this priority. This strategy regarding the

distribution of data, schedules map tasks on the nodes that

most likely contain relevant data, and reduces network

overhead and improves the performance of system.

3.4 Energy Aware Scheduling
In [14], the authors propose a greedy algorithm, called

Energy-aware MapReduce Scheduling Algorithm (EMRSA),

this model is a framework for improving the energy efficiency

of MapReduce applications, while satisfying the service level

agreement (SLA). It can finds the assignments of map and

reduce tasks to the Machine slots for minimizing the energy

consumption when executing the application and that

schedules the individual tasks of a MapReduce application for

energy efficiency while meeting the application deadline.

Tasks can be run in parallel, but no reduce task can be started

until all map tasks for the application are completed.

Important issue in MapReduce Scheduling Algorithms is that

the user only specifies the deadline for the job without

specifying a deadline for the map phase. However, since the

reduce tasks are dependent on the map tasks, the data center

has to determine a reasonable deadline for the map tasks with

respect to the availability of the map slots in the data center in

order to utilize its resources efficiently. The proposed

algorithm finds the assignments of map tasks to the map slots

satisfying the determined map deadline. Finally, EMRSA can

finds the assignments of reduce tasks to the reduce slots

satisfying the deadline, where all the reduce tasks start after

the map deadline. Chen et al. [15] proposed a method for

MapReduce jobs without relying on replication by divides the

jobs into time sensitive and less time-sensitive jobs, where the

former are assigned to a small pool of dedicated nodes, and

the latter can run on the rest of the cluster. Also it is abled

reduce the energy consumption. Land and Patel [16] proposed

a method in MapReduce clusters for energy management by

powering down all nodes in the cluster during a low

Utilization period. EMRSA is able to find job schedules

consuming 40% less energy on average than the schedules

obtained by a common practice scheduler that minimizes the

makespan.

3.5 Job Aware Scheduling
Nanduri et al. [17], propose a job-aware scheduling algorithm

for reduce the jobs execution time in MapReduce. From the

list of available pending tasks, the scheduler selects the one

that is most compatible with the tasks already running on that

node. In this model, This scheduler employs an event

capturing mechanism on the TaskTrackers [18] which listens

to events related to memory intensive, CPU intensive, disk

intensive, and network intensive to monitor resource usage

characteristics of that particular task. In [19], the authors

propose a novel job aware scheduling algorithm that

overcomes limitations such as limited utilization of computing

resources, limited applicability towards heterogeneous cluster,

random scheduling of non-local map tasks, and negligence of

small jobs in scheduling. The proposed algorithm schedules

jobs based on one of the following three criteria: job

execution time, earliest deadline first, and workload of the

job. Minimum execution time is selected. Hence, the average

waiting time of jobs decreases considerably. The earliest

deadline first criterion is appropriate when jobs have a strict

deadline. The scheduling of non-local map tasks of jobs based

on job execution time and earliest deadline first reduces the

average waiting time. The scheduling of non-local map tasks

of jobs considering workload of the job increases the

resources utilization of the cluster. The proposed algorithm

increases the resource utilization and reduces the average

waiting time compared to existing Matchmaking scheduling

algorithm [20].

3.6 Load Aware Scheduling
In [21], the authors offered load aware scheduler for

MapReduce framework in heterogeneous cloud environments,

and abbreviated it as LA scheduler. This scheduler improves

the overall performance of Hadoop clusters and be able to

reduce up to 20% in average response time by avoiding

unnecessary speculative tasks.

3.7 Locality Aware Scheduling
In [22], the authors propose locality-aware scheduling

algorithm (LaSA) to enhance data locality assignment in

Hadoop scheduler and increases performance of data-

intensive computing application in Hadoop MapReduce

architecture. The aim of LaSA is to achieve locality-aware

resource assignment in order to reduce the bottleneck of

network transmission by following the weight of data

interference. LaSA algorithm introduces a concept of weight

of data interference in MapReduce framework and locality-

aware scheduler in JobTracker. LaSA can calculate each

node’s weight of data interference and pick up a node with

smallest weight and data locality to execute the task. LaSA

include data nodes, the weight of data, the replica number of

input data and the number of map slots on each node. The

resource assignment depends on the weight of data

interference on each node. LaSA algorithm focuses on the

"rare" resource assignment. Rare resource is the data node

with some data which is relative scarce. Because, the most

part of data nodes which has requirement data is occupied by

high priority task. If a node contains rare resource, the node’s

weight of data interference becomes large to keep the node

from task assignment. LaSA algorithm is implemented in

JobTracker. JobTracker before the task assignment, calculate

the weight of data interference on each node with free slots.

JobTracker picks up a node with the smallest weight of data

interference and assigns the task to one’s TaskTracker. LaSA

calculate the weight of data interference to avoid rare resource

to allocate in an easy way and introduce the concept of weight

of data interference to enhance the data locality in MapReduce

framework. LaSA, consider all factors that affect the data

locality of a JobTracker. The job scheduler improves the data

locality challenges in original MapReduce framework. The

LaSA is using weight of data interference concept to arrange

the resource assignment to avoid required data missing.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

13

3.8 Network Aware Scheduling
In [23], the authors propose the method to make Hadoop

scheduler aware of network topology is to extend the rack

aware feature of the existing Hadoop scheduler to provide one

more level of caching. An administrator controlled script will

hold the information about which cluster the TaskTracker is

associated with. When head of the queue task doesn't find a

compute node with data then scheduling of the task is delayed

for a specified duration of time. If any of the compute nodes

become free with a data split corresponding the job being

processed then scheduler assigns a map task to requesting

TaskTracker. Duration for which a head of the queue map

task is to be delayed is based on the average length of the map

tasks for a job hence requires careful tuning. One JobTracker

will manage the scheduling over all the clusters. TaskTrackers

from different clusters request for map tasks as and when they

get map slots freed. JobTracker uses the cluster awareness to

schedule tasks on these TaskTrackers thereby improving the

data locality. By increasing bandwidth between the clusters

overall execution time decreases.

Network awareness is applied to nonlocal map tasks which

require fetching data from some other data nodes. Network

aware Hadoop minimizes the data movement from one cluster

to another while executing map task by adding cluster level

locality. Delay scheduling [8] can optimize the data locality

and ensures that before the task is scheduled on a TaskTracker

which does not have the data to process will be skipped for

configured amount of time. If any of the TaskTracker

becomes free in that duration which as the data to process

then, task is scheduled on the second TaskTracker. For data

intensive applications, data split movement takes more time

than processing of the data split. Network awareness coupled

with delay scheduling could be used to minimize the transfer

of the data between the clouds and to improve Performance

MapReduce.

3.9 Power Aware Scheduling
In [24], the authors proposed a power aware scheduling

algorithm for MapReduce jobs in heterogeneous cloud

resources in order to energy saving. This scheduler considers

users’ SLAs (Service Level Agreements). The proposed

framework uses information about intermediate key

distribution to select appropriate processors for map and

reduce tasks. The slack times of map and reduce tasks are

used in power reduction of CPUs. And, it can reduce power

consumption of disk storage by decreasing disk access speed

not to miss the required time. Since MapReduce framework is

generally for data-intensive cloud computing, they considered

energy saving both in processing elements and in disk

storages.

3.10 Replica Aware Scheduling

In [25], the authors propose a method namely, Replica-aware

Scheduling (Maestro) for map task scheduling mechanism to

improve issue of huge amount of network traffic caused by

map tasks execution on remote data in Hadoop. Furthermore,

Maestro keeps track of the chunks and replica locations, along

with the number of other chunks hosted by each node. This

way, Maestro can schedule Map tasks with low impact on

other nodes’ local Map tasks execution by calculating the

probabilities of executing all the hosted chunks locally [26].

Maestro keeps track of the chunks locations along with their

replicas locations and the number of other chunks hosted by

each node. So that it can efficiently schedule the map task on

a data local node which causes minimal impacts on other

nodes local map tasks executions. Maestro schedules the map

tasks considering chunk locality and node availability. The

scheduling of Maestro is in two waves: first wave scheduler

and run time scheduler. The first wave scheduler is

responsible for filling the empty slots of each data node based

on the number of hosted map tasks and on the replication

scheme for their input data. Runtime scheduling takes into

account the probability of scheduling a map task on a given

machine depending on the replicas of the task’s input data.

These two waves lead to a higher locality in the execution of

map tasks and to a more balanced intermediate data

distribution for the shuffling phase. Maestro shows 95%

improvement in speculative execution of data local map tasks

and 34% improvement in execution time.

3.11 Resource Aware Scheduling
In [27], the authors offer a novel resource management and

job scheduling method for MapReduce namely, Resource-

aware Adaptive Scheduler (RAS). The aims of this method

maximize the utilization of system resources and to meet the

users' job completion time. RAS for achieving better

utilization of resources and improves application

performance, it extends task slot to job slot and leverages

resource profiling information. RAS seeks to meet soft-

deadlines via a utility-based approach and adapts to changes

in resource demand by dynamically allocating resources to

jobs. The scheduler tries to differentiate between map and

reduce tasks when making resource-aware scheduling

decisions. In [28], the authors proposed two resource-aware

scheduling mechanisms to minimize competition on machines

resources: Dynamic free slot advertisement mechanism and

Free slot priorities/filtering mechanism. In Free slot

priorities/filtering mechanism, cluster administrators retain the

fixed maximum number of compute slots per node at

configuration time. As TaskTracker slots become free, they

are buffered for some small time period and advertised in a

block. TaskTracker slots with higher resource availability are

presented first for scheduling tasks on. Instead of scheduling a

task onto the next available free slot, job response time would

improve by scheduling it onto a resource-rich machine, even

if such a node takes a longer time to become available.

3.12 TaskTracker Aware Scheduling
In [29], TaskTracker aware scheduling is propose for users to

configure a maximum load per TaskTracker in the Job

Configuration itself. The algorithm will not allow a task to run

and fail if the load of the TaskTracker reaches its threshold for

the job. Also this scheduler allows the users to select the

TaskTracker's per Job in the Job configuration. The proposed

scheduler schedules the jobs according to the current status of

the TaskTrackers. So the scheduler is named accordingly. The

proposed system divided into two components, the core

scheduler module which will handle the actual scheduling part

and a preprocessing module. When a Heartbeat is received

from a TaskTracker, the TaskTracker information and List of

scheduled Jobs should hand over to the preprocessor. The

preprocessing module first compare the hostname of the

TaskTracker against the list of TaskTrackers specified for the

Job. If this check succeeds then it will compute the number of

tasks currently running for the Job in the TaskTracker. If the

number of currently running tasks is less than the number

specified in the Job Configuration, then the Job object and

TaskTracker information is hand over to the Core Scheduler

module. The Core scheduler is a modified Fair Scheduler with

a priority enhanced algorithm.

3.13 Usage Aware Scheduling
Traditional MapReduce schedulers usually didn't detect slow

tasks. To solve this problem, inspiration from the ideas of

both the Fair scheduler and LATE scheduler, in [30] the

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

14

authors presents a usage aware MapReduce scheduler to deal

with the system heterogeneity by including task execution

time in scheduling. The usage aware scheduler is able to

reduce the overall completion time of MapReduce

applications and being able to improve the overall

performance of Hadoop clusters. The authors assume that the

cluster consists of fast node, normal node and slow node. The

proposed scheduler can reduce the overall execution time in

heterogeneous environments and able each task's execution to

determine the node capability. This algorithm uses a more

accurate method to speculate straggler tasks and allocate the

tasks to the node with better performance to reduce the overall

system response time. A general principle is to let fast nodes

accomplish more tasks. The execution of a reduce task can be

divided into three phases as the follows.

 The copy phase, where the task fetches the outputs

from map tasks.

 The sort phase, where outputs from map are sorted

by key.

 The reduce phase, where a user-defined function is

applied to the list derived from the sort phase.

Nodes communicate to synchronize with each other in copy

phase and sort phase, while map tasks are executed

independently. The proposed algorithm basically focuses on

task assignment; it can be easily incorporated into the Fair

scheduler as in the job selection phase. By using the usage-

aware scheduler, 10% to 30% of execution time reduction can

be expected in heterogeneous environment.

4. COMPARISON

Advantages and disadvantages of MapReduce scheduling

methods are expressed in Tables 1. In a heterogeneous

environment where each node has different computing power

the heuristic method is not well suited. Sweet spot of a

program is the spot at which early shuffle is triggered and

provides the best performance for the program. But in

COGRS, the sweet spot is determined statically, which is the

disadvantage of these schedulers. In the disadvantage column,

some of these algorithms have null value. Because, they can

achieved to their proposed and due to result of many articles

we believe they don’t have any disadvantage that able to

reduce their abilities and performances. All of these

algorithms proposed to have some advantages and

disadvantages.

Table 1. Comparison of different algorithms.

Algorithm Advantages Disadvantages

Center-of-

Gravity
Reduce

Decreased network traffic.

Reduce job runtime.

Static sweet Spot

determination.

Context

Aware

Optimizations for jobs using

the same dataset.

Performance of the

heterogeneous cluster and the

aggregate execution times of
the jobs can be improved.

-

Distribution
Aware

Reduce network overhead.

Improve system efficiency.
-

Energy Aware

Minimize the energy
consumption.

Minimizing the makespan.

-

Job Aware Reduce runtime.

Maximize the utilization of

nodes resources.

Ability to plug into FAIR

and Capacity schedulers.

Ability to implement in any
distributed environment.

Load Aware

Reduce response

Time.

Increase of cluster
Utilization.

Ignore data

locality for

launching backup

tasks.

Locality

Aware

Reduce network traffic.

Increase of performance.

Avoid data missing.

-

Network

Aware

Decrease execution time in

FIFO and FAIR schedulers.
-

Power Aware
Save energy consumption.

Consider Users' SLA.
-

Replica Aware

Reduce network traffic.

Reduce runtime

Provide a higher locality in
the execution of map tasks.

-

Resource
Aware

Reduce contention for CPU

resources and I/O on the
worker machines.

Increase the performance of

Cluster.

-

TaskTracker

Aware

More control to the users for

Job execution.

Improve performance.

-

Usage Aware
Be able to reduce the overall
completion time.

-

5. CONCLUSION
This paper attempted to comparison and analyzed thirteen

different MapReduce Aware scheduling algorithms. Hadoop

default scheduler takes care of only homogeneous clusters.

Resource aware scheduling considers three resource

capacities: CPU, memory and I/O. It can be extended easily to

incorporate network infrastructure bandwidth and storage

capacity of the TaskTrackers. Distribution aware scheduling

can be used for Reduce network overhead and Improve

system efficiency. For minimize the energy consumption can

used Energy Aware scheduling. Scheduling algorithms above

be able and try to increase and improve performance and

utilization. Also For improvement data Locality and

decreasing network traffic, Locality Aware scheduling is the

good case.

6. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, "A View

of Cloud Computing ", Comm. Of the ACM, Vol. 53,

No. 4, April 2010, pp. 50-58.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplied Data

Processing on Large Clusters”, In Proc. of 5th

Symposium on Operating Systems Design and

Implementation, 2008, pp. 137-150.

[3] S. Ghemawat, H. Gobioff, and S. T. Leung, "The Google

File System", In ACM Symposium on Operating

Systems Principles (SOSP), 2003.

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.6, October 2015

15

[4] Hadoop, “Hadoop home page.”

http://hadoop.apache.org/.

[5] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz and I.

Stoica, "Improving MapReduce performance in

heterogeneous environments", In: OSDI 2008: 8th

USENIX Symposium on Operating Systems Design and

Implementation, 2008.

[6] Hadoop’s Fair Scheduler.

https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.

[7] J. Chen, D. Wang and W. Zhao, "A Task Scheduling

Algorithm for Hadoop Platform", JOURNAL OF

COMPUTERS, VOL. 8, NO. 4, APRIL 2013, pp. 929-

936.

[8] M. Zaharia, D. Borthakur, J.S. Sarma, K. Elmeleegy, S.

Shenker and I. Stoica, “ Delay scheduling: a simple

technique for achieving locality and fairness in cluster

scheduling”, In: Proceedings of the fifth European

conference on computer systems, New York, NY, USA:

ACM, 2010, pp. 265–278.

[9] M. Hammoud, M. Rehman and M. Sakr, “Center-of-

Gravity reduce task scheduling to lower MapReduce

network traffic”, International conference on cloud

computing. IEEE, 2012, pp. 49-58.

[10] M. D. Assuncao, M. A. S. Netto, F. Koch and S.

Bianchi, "Context-aware Job Scheduling for Cloud

Computing Environments", IEEE/ACM Fifth

International Conference on Utility and Cloud

Computing, 2012, pp. 255-262.

[11] K. A. Kumar, V. K. Konishetty, K. Voruganti and G.

Rao, "CASH: context aware scheduler for Hadoop", In:

Proceedings of the international conference on advances

in computing, communications and informatics, New

York, NY, USA: ACM, 2012, pp. 52–61.

[12] X. Zhang and Y. Ding, "A Distribution Aware

Scheduling Method in MapReduce", IEEE Symposium

on Electrical & Electronics Engineering (EEESYM),

2012, pp. 128-131.

[13] L. Guo, H. Sun et al., "A Data Distribution Aware Task

Scheduling Strategy for MapReduce System", Cloud

Computing, 2009, pp. 694-699.

[14] L. Mashayekhy, M. Movahed Nejad, D. Grosu, D. Lu

and W. Shi, "Energy-aware Scheduling of MapReduce

Jobs", IEEE International Congress on Big Data, 2014,

pp. 32-39.

[15] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz,

"Energy efficiency for large-scale MapReduce workloads

with significant interactive analysis", in Proc. of the 7th

ACM European Conf. on Computer Systems, 2012, pp.

43–56.

[16] W. Lang and J. M. Patel, "Energy management for

MapReduce Clusters", Proc. of the VLDB Endowment,

vol. 3, no. 1-2, 2010, pp. 129–139.

[17] R. Nanduri, N. Maheshwari, R. Raja and V. Varma , "Job

Aware Scheduling Algorithm for MapReduce

Framework", 3rd IEEE International Conference on

Cloud Computing Technology and Science, 2011, pp.

724-729.

[18] JobTracker Architecture, Available:

http://hadoop.apache.org/common/docs/current/mapred_t

utorial.html.

[19] S. Pati and M. A. Mehta, "Job Aware Scheduling in

Hadoop for Heterogeneous Cluster", IEEE International

Advance Computing Conference (IACC), 2015, pp. 778-

783.

[20] C. He, Y. Lu, and D. Swanson, "Matchmaking: A new

MapReduce scheduling technique", IEEE Third

International Conference on Cloud Computing

Technology and Science (CloudCom), December 2011,

pp. 40-47.

[21] H. H. You, C. C. Yang et al., "A load-aware scheduler

for MapReduce framework in heterogeneous cloud

environments", Proceedings of the 2011 ACM

Symposium on Applied Computing, 2011, pp. 127-132.

[22] T. Yi Chen, H. Wen Wei, M. Feng Wei, Y. Jie Chen, T.

sheng Hsu and W. Kuan Shih, "LaSA: A Locality-aware

Scheduling Algorithm for Hadoop-MapReduce Resource

Assignment", International Conference on Collaboration

Technologies and Systems (CTS), 2013, pp. 342-346.

[23] P. Kondikoppa , C. H. Chiu, C. Cui, L. Xue and S. J.

Park, "Network-Aware Scheduling of MapReduce

Framework on Distributed Clusters over High Speed

Networks", Workshop on Cloud Services, Federation,

and the 8th Open Cirrus Summit, San Jose, CA, USA,

September 21, 2012.

[24] Y. Li, H. Zhang et al., "A Power-Aware Scheduling of

MapReduce Applications in the Cloud", Dependable,

Autonomic and Secure Computing (DASC), 2011 IEEE

Ninth International Conference, 2011, pp. 613-620.

[25] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu and S. Wu,

"Maestro: replica-aware map scheduling for

MapReduce”, In: The 12th international symposium on

cluster, cloud and grid computing. IEEE/ACM, 2012, pp.

435– 477.

[26] I. Polato, R. Ré, A. Goldman and F. Kon, “A

comprehensive view of Hadoop research—A systematic

literature review”, Journal of Network and Computer

Applications (2014), Volume 46, November 2014, pp. 1-

25.

[27] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley,

M. Steinder, J. Torres and E. Ayguad, "Resource-aware

adaptive scheduling for mapreduce clusters", Middleware

2011, 2011, pp. 187-207.

[28] M. Yong, N. Garegrat and S. Mohan: “Towards a

Resource Aware Scheduler in Hadoop”, in Proc. ICWS,

2009, pp. 102-109.

[29] J. S Manjaly and V. S Chooralil, "TaskTracker Aware

Scheduling for Hadoop MapReduce", Third International

Conference on Advances in Computing and

Communications, 2013, pp. 278-281.

[30] J. H. Hsiao and S. J. Kao, "A Usage-Aware Scheduler

for Improving MapReduce Performance in

Heterogeneous Environments", International Conference

on Information Science, Electronics and Electrical

Engineering (ISEEE), Vol.3, 2014, pp. 1648- 1652.

IJCATM : www.ijcaonline.org

http://hadoop.apache.org/
https://hadoop.apache.org/docs/r1.2.1/fair_scheduler
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6558543
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6558543
http://www.sciencedirect.com/science/article/pii/S1084804514001635
http://www.sciencedirect.com/science/article/pii/S1084804514001635
http://www.sciencedirect.com/science/article/pii/S1084804514001635
http://www.sciencedirect.com/science/article/pii/S1084804514001635
http://www.sciencedirect.com/science/journal/10848045/46/supp/C
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6917613
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6917613

