Best Proximity Point for Generalized GeraghtyContractions with MT-Condition

Savita Ratheee
Department of Mathematics, Maharshi Dayanand University, Rohtak, India

Kusum Dhingra
Department of Mathematics, Maharshi Dayanand University, Rohtak, India

Abstract

A best proximity point for a non-selfmapping is that point whose distance from its image is as small as possible. In mathematical language, if X is any space, A and B are two subsets of X and $\mathrm{T}: \mathrm{A} \rightarrow \mathrm{B}$ is a mapping. We can say that x is best proximity point if $\mathrm{d}(\mathrm{x}, \mathrm{Tx})=\mathrm{d}(\mathrm{A}, \mathrm{B})$ and this best proximity point reduces to fixed point if mapping T is a selfmapping.

The main objective in this paper is to prove the best proximity point theorem for the notion of Geraghty-contractions by using MT-function β which satisfies Mizoguchi-Takahashi's condition (equation (i)) in the context of metric space and we also provide an example to support our main result.

Keywords

Best proximity point, P-property, MT-condition.

1. INTRODUCTION

The significance of fixed point theory stems from the fact that it furnishes a unified treatment and is a vital tool for solving equations of the form $\mathrm{Tx}=\mathrm{x}$ where T is a self mapping defined on some suitable space. If T is non-self mapping then it is probable that $\mathrm{Tx}=\mathrm{x}$ has no solution, in that case best approximation theorems explore the existence of an approximate solution whereas best proximity point theorems provide the existence of an optimal approximate solution. When $\mathrm{d}(\mathrm{x}, \mathrm{Tx})>0$ for all $\mathrm{x} \in \mathrm{X}$ in that case it is natural to ask the existence and uniqueness of the smallest value of $\mathrm{d}(\mathrm{x}, \mathrm{Tx})$. This is the main motivation of a best proximity point. The subject has attracted attention of number of authors [1-19].

$$
\begin{equation*}
\lim _{s \rightarrow t^{+}} \sup \beta(s)<1 \text { for all } t \in[0, \infty) \tag{i}
\end{equation*}
$$

2. PRILIMINARIES

To establish our results of this section, we consider the following definitions and notations:
Definition 2.1: Let A and B be two nonempty sets. A point x* is called best proximity point if

$$
\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx} *\right)=\mathrm{d}(\mathrm{~A}, \mathrm{~B})
$$

where $d(A, B)=\inf \{d(x, y): x \in X, y \in B\}$.
Let A and B be two non void subsets of a metric space (X, d) ; we denote A_{0} and B_{0} by the following sets:

$$
\begin{aligned}
& A_{0}=\{x \in A: d(x, y)=d(A, B) \text { for some } y \in B\} \\
& B_{0}=\{y \in B: d(x, y)=d(A, B) \text { for some } x \in A\} .
\end{aligned}
$$

If $A \cap B \neq \varnothing$, then A_{0} and B_{0} are nonempty .

Definition 2.2[19]: A function $\beta:[0, \infty) \rightarrow[0,1)$ is said to be an MT function if it satisfies Mizoguchi-Takahashi's condition (i.e. $\lim _{s \rightarrow \mathrm{t}^{+}} \sup \beta(s)<1$ for all $t \in[0, \infty)$).
Clearly, a non-increasing or a non-decreasing function β : $[0, \infty) \rightarrow[0,1)$ is MT-function. So the set of MT- function is a rich class. But taking into account that there exist some functions which are not MT -functions.
For example:
Let $\beta:[0, \infty) \rightarrow[0,1)$ be defined by

$$
\beta(\mathrm{t})=\left\{\begin{aligned}
\frac{\sin t}{t}, & \text { if } t \in[0, \infty) \\
0, & \text { otherwise. }
\end{aligned}\right.
$$

Since $\lim _{s \rightarrow 0^{+}} \sup \beta(s)=1, \beta$ is not an MT-function.
Definition 2.3: Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with $A_{0} \neq \emptyset$. Then the pair (A, B) is said to have the P-property if and only if for any $u, v \in A_{0}$ and $\mathrm{x}, \mathrm{y} \in \mathrm{B}_{0}$,
$\left.\begin{array}{l}d(u, x)=d(A, B) \\ d(v, y)=d(A, B)\end{array}\right\} \Rightarrow d(u, v)=\mathrm{d}(\mathrm{x}, \mathrm{y})$.
Example 2.4: Let A be a nonempty subsets of a metric space (X, d). It is clear that the pair (A, A) has the P-property. Let (A, B) be any pair of nonempty, closed, convex subsets of a real Hilbert space H. Then (A, B) has the P-property.

3. MAIN RESULT

3.1 Theorem

Let (X, d) be a complete metric space. Suppose that (A, B) is a pair of nonempty closed subsets of X and A_{0} is nonempty. Suppose also that the pair (A, B) has the P-property. If a nonself mapping T: A $\rightarrow \mathrm{B}$ satisfying
i. $\quad d(T x, T y) \leq \beta\left(M_{T}(x, y)\right)\left[M_{T}(x, y)-d(A, B)\right]$ for any $x, y \in A$, where
$M_{T}(x, y)=\max \{d(x, y), \quad d(x, \quad T \quad x), \quad d(y, \quad T y)$, $[\mathrm{d}(\mathrm{x}, \mathrm{Ty})+\mathrm{d}(\mathrm{y}, \mathrm{Tx})] / 2\}$ and β is an MT- function.
ii. $\quad \mathrm{T}\left(\mathrm{A}_{0}\right) \subseteq \mathrm{B}_{0}$.

Then there exists a unique best proximity point, that is, there exists x^{*} in A such that $\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{~T} \mathrm{x}^{*}\right)=\mathrm{d}(\mathrm{A}, \mathrm{B})$.
Proof: Let us fix an element x_{0} in A_{0}. Since $T x_{0} \in T\left(A_{0}\right) \subseteq B_{0}$, we can find $x_{1} \in A_{0}$ such that $\mathrm{d}\left(\mathrm{x}_{1}, T \mathrm{x}_{0}\right)=\mathrm{d}(\mathrm{A}, \mathrm{B})$. Further, as $\mathrm{Tx}_{1} \in \mathrm{~T}\left(\mathrm{~A}_{0}\right) \subseteq \mathrm{B}_{0}$, there is an element x_{2} in A_{0} such that $d\left(x_{2}, T x_{1}\right)=d(A, B)$. Repeatedly, we obtain a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in A_{0} such that

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{~T} \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}(\mathrm{~A}, \mathrm{~B}) \tag{3.1}
\end{equation*}
$$

for any $\mathrm{n} \in \mathrm{N}$.
Due to fact that the pair (A, B) has the P-property, we obtain that

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)=\mathrm{d}\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}}\right) \tag{3.2}
\end{equation*}
$$

for any $n \in N$.
From equation (3.1), we obtain

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}-1}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1},\right. & \left.\mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}-1}\right) \\
& =\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}(\mathrm{~A}, \mathrm{~B})
\end{aligned}
$$

On the other hand, by using equation (3.1) and (3.2), we obtain that

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}\right) & \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}}\right) \\
& =\mathrm{d}(A, B)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \\
& =\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}(A, B)
\end{aligned}
$$

We have

$$
\begin{align*}
& \mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)=\max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}\right),\right. \\
& \left.\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}-1}\right)\right] / 2\right\} \\
& \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}(\mathrm{~A}, \mathrm{~B}), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}(\mathrm{~A}, \mathrm{~B})\right. \text {, } \\
& \left.\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)+d(A, B)\right] / 2\right\} . \\
& \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}(\mathrm{~A}, \mathrm{~B}), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}(\mathrm{~A}, \mathrm{~B})\right. \text {, } \\
& \left.\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}(\mathrm{~A}, \mathrm{~B})+\mathrm{d}(\mathrm{~A}, \mathrm{~B})\right] / 2\right\} \\
& =\max \left\{d\left(x_{n-1}, \quad x_{n}\right)+d(A, B), \quad d\left(x_{n}, x_{n+1}\right)+d(A, B)\right. \text {, } \\
& \left.\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right] / 2+d(A, B)\right\} . \\
& =\max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right),\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right] / 2\right\} \\
& +\mathrm{d}(\mathrm{~A}, \mathrm{~B}) \text {. } \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}+d(A, B) \text {. } \\
& M_{T}\left(x_{n-1}, x_{n}\right) \leq \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}+d(A, B) \text {. } \tag{3.3}
\end{align*}
$$

Let us suppose that if there exists $\mathrm{n}_{0} \in \square$ such that $\mathrm{d}\left(x_{n_{0}}, x_{n_{0}+1}\right)=0$, then by using equation (3.2),
$0=\mathrm{d}\left(x_{n_{0}}, x_{n_{0}+1}\right)=\mathrm{d}\left(T x_{n_{0}-1}, T x_{n_{0}}\right)$
which provides that
$\mathrm{d}(\mathrm{A}, \mathrm{B})=\mathrm{d}\left(x_{n_{0}}, T x_{n_{0-1}}\right)=\mathrm{d}\left(x_{n_{0}}, T x_{n_{0}}\right)$.
Then proof is completed.
For the other case, i.e., when $d\left(x_{n}, x_{n+1}\right)>0$ for any $\mathrm{n} \in \square$.

Considering the fact that T satisfies

$$
\mathrm{d}(\mathrm{Tx}, \mathrm{Ty}) \leq \beta\left(\mathrm{M}_{\mathrm{T}}(\mathrm{x}, \mathrm{y})\right)\left[\mathrm{M}_{\mathrm{T}}(\mathrm{x}, \mathrm{y})-\mathrm{d}(\mathrm{~A}, \mathrm{~B})\right] \text { for any }
$$

$x, y \in A$.
Then by using (3.2), $d\left(x_{n}, x_{n+1}\right)=d\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}}\right)$

$$
\begin{align*}
& \leq \beta\left(\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)\right)\left[\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)-\mathrm{d}(\mathrm{~A}, \mathrm{~B})\right] \\
& <\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)-\mathrm{d}(\mathrm{~A}, \mathrm{~B}) \tag{3.6}
\end{align*}
$$

Then by using inequalities (3.3) and (3.6), we get

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) & <\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)-\mathrm{d}(\mathrm{~A}, \mathrm{~B}) \\
& \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right\} .
\end{aligned}
$$

We know there is two possible values of $\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}$. Suppose if

$$
\max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right\}=\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)
$$

Then $d\left(x_{n}, x_{n+1}\right)<d\left(x_{n}, x_{n+1}\right)$ which is contradiction.
By above discussion, we conclude that

$$
\max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right\}=\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)
$$

and hence

$$
\begin{align*}
\mathrm{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) & \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right\}+\mathrm{d}(\mathrm{~A}, \mathrm{~B}) \\
& =\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}(A, B) \tag{3.7}
\end{align*}
$$

We get

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) & =\mathrm{d}\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}}\right) \\
& \leq \beta\left(\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \\
& <\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)
\end{aligned}
$$

This implies

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)<\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \text { for all } \mathrm{n} \in \square \tag{3.8}
\end{equation*}
$$

As a result, we find that $\left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right\}$ is a non increasing sequence and bounded below. Thus, there exists $L \geq 0$ such that $\lim _{n \rightarrow \infty}\left(\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right)=\mathrm{L}$. Now we shall show that $\mathrm{L}=0$. Suppose on the contrary that $\mathrm{L}>0$, then by the equation (3.8), we have

$$
\frac{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)}{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)} \leq \beta\left(\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)\right)
$$

which implies that when $\mathrm{n} \rightarrow \infty$ then $\beta\left(\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)\right) \geq 1$ which contradicts that β is an MT- function and hence

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \infty \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)=0 \tag{3.9}
\end{equation*}
$$

Since $d\left(x_{n}, T x_{n-1}\right)=(A, B)$ holds for all $n \in \square$ and the pair (A, B) satisfy P- property, then for all $m, n \in \square$, we can write

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{Tx}_{\mathrm{m}-1}, \mathrm{Tx}_{\mathrm{n}-1}\right)
$$

We also have

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}(\mathrm{~A}, \mathrm{~B}) \text { for all } \mathrm{n} \in \square
$$

It follows that

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right)=\max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{Tx} \mathrm{x}_{\mathrm{m}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}\right),\right. \\
& \left.\quad\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{Tx}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{m}}\right)\right] / 2\right\} \\
& \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{m}+1}\right)+\mathrm{d}(A, B), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}(A, B),\right. \\
& \left.\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, T \mathrm{Tx}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{Tx}_{\mathrm{m}}\right)\right] / 2\right\} \\
& =\max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{m}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{d}\left(\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right)+\right.\right. \\
& \left.\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{m}+1}\right)\right] / 2+\mathrm{d}(A, B)\right\} .
\end{aligned}
$$

By using equation (3.9) and taking limits $\mathrm{m}, \mathrm{n} \rightarrow \infty$,

$$
\begin{equation*}
\lim _{\mathrm{m}, \mathrm{n} \rightarrow \infty} \mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right) \leq \lim _{\mathrm{m}, \mathrm{n} \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}(\mathrm{~A}, \mathrm{~B}) \tag{3.10}
\end{equation*}
$$

Now, we shall show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Suppose on the contrary, we have

$$
\begin{equation*}
\varepsilon=\lim _{\mathrm{m}, \mathrm{n} \rightarrow \infty} \sup \left(\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)\right)>0 \tag{3.11}
\end{equation*}
$$

Due to triangular inequality, we have $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{m}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{m}+1}, \mathrm{x}_{\mathrm{m}}\right)$
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{m}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{m}+1}, \mathrm{x}_{\mathrm{m}}\right)$

$$
\begin{gather*}
\leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\beta\left(\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)\right)\left[\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)-\mathrm{d}(\mathrm{~A}, \mathrm{~B})\right]+ \\
\mathrm{d}\left(\mathrm{x}_{\mathrm{m}+1}, \mathrm{x}_{\mathrm{m}}\right) \tag{3.13}
\end{gather*}
$$

Taking (3.9), (3.10) and (3.13) into account, we derive that

$$
\begin{aligned}
\lim _{m, n \rightarrow \infty} d\left(x_{n}, x_{m}\right) & \leq \beta\left(M_{T}\left(x_{n}, x_{m}\right)\right)\left[M_{T}\left(x_{n}, x_{m}\right)-d(A, B)\right] \\
& \leq \beta\left(M_{T}\left(x_{n}, x_{m}\right)\right) \lim _{m, n \rightarrow \infty} d\left(x_{n}, x_{m}\right)
\end{aligned}
$$

This implies

$$
\begin{gathered}
\frac{\lim _{m, n \rightarrow \infty} d\left(x_{n}, x_{m}\right)}{\lim _{m, n \rightarrow \infty} d\left(x_{m}, x_{n}\right)} \leq \lim _{m, n \rightarrow \infty} \beta\left(\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)\right) \\
1 \leq \lim _{m, n \rightarrow \infty} \beta\left(\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)\right)
\end{gathered}
$$

which is contradiction.
Hence, we conclude that the sequence $\left\{x_{n}\right\}$ is Cauchy. Since A is a closed subset of the complete metric space (X, d) and $\left\{\mathrm{x}_{\mathrm{n}}\right\} \subset \mathrm{A}$ and we can find $\mathrm{x}^{*} \in \mathrm{~A}$ such that $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{X}^{*}$ as $\mathrm{n} \rightarrow \infty$. We have to prove that $\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx}^{*}\right)=\mathrm{d}(\mathrm{A}, \mathrm{B})$. Suppose on the contrary that $\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx}^{*}\right)>\mathrm{d}(\mathrm{A}, \mathrm{B})$.

Consider

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx}^{*}\right) & \leq \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{Tx}^{*}\right) \\
& \leq \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{Tx}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{Tx}^{*}\right) \\
& =\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}(\mathrm{~A}, \mathrm{~B})+\mathrm{d}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{Tx}^{*}\right)
\end{aligned}
$$

Taking $\mathrm{n} \rightarrow \infty$, we conclude that

$$
\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx} *\right)-\mathrm{d}(\mathrm{~A}, \mathrm{~B}) \leq \lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{Tx} *\right)
$$

On the other hand, we have
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{Tx}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}(\mathrm{A}, \mathrm{B})$.
Taking limit as $\mathrm{n} \rightarrow \infty$ in above inequality, we have

$$
\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{~T} \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{d}(\mathrm{~A}, \mathrm{~B})
$$

So we deduce that $\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=d(A, B)$. As a result, we derive
$\lim _{n \rightarrow \infty} M_{T}\left(x_{n}, x^{*}\right)=\max \left\{\lim _{n \rightarrow \infty} d\left(x_{n}, x^{*}\right), \lim _{n \rightarrow \infty} d\left(x_{n}, \mathrm{Tx}_{n}\right)\right.$, $\left.\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx}^{*}\right), \lim _{n \rightarrow \infty}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx} *\right)+\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx}_{\mathrm{n}}\right)\right] / 2\right\}$.
$\leq \max \left\{\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}^{*}\right), \lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx} *\right)\right.$,
$\left.\lim _{n \rightarrow \infty}\left[d\left(x_{n}, x^{*}\right)+d\left(x^{*}, T x^{*}\right)+d\left(x^{*}, x_{n}\right)+d\left(x_{n}, T x_{n}\right)\right] / 2\right\}$.
$=\max \left\{\mathrm{d}(\mathrm{A}, \mathrm{B}), \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx} *\right),\left[\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx}^{*}\right)+\mathrm{d}(\mathrm{A}, \mathrm{B})\right] / 2\right\}$.
$=\max \left\{\mathrm{d}(\mathrm{A}, \mathrm{B}), \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx}^{*}\right)\right\}$
$=\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx}^{*}\right)$.
$\left[\right.$ because $\left.\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx}^{*}\right)>\mathrm{d}(\mathrm{A}, \mathrm{B})\right]$.
And hence
$\lim _{n \rightarrow \infty} \mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{X}^{*}\right)-\mathrm{d}(\mathrm{A}, \mathrm{B})=\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx} *\right)-\mathrm{d}(\mathrm{A}, \mathrm{B})$
Also $d\left(x^{*}, T x^{*}\right)-d(A, B) \leq \lim _{n \rightarrow \infty} d\left(\operatorname{Tx}_{n}, T x^{*}\right)$
$\leq \lim \beta\left(M_{T}\left(x_{n}, x^{*}\right)\right)\left[M_{T}\left(x_{n}, x^{*}\right)-d(A, B)\right]$

Since $d\left(x^{*}, T x^{*}\right)-d(A, B)>0$, we get $1 \leq \lim _{n \rightarrow \infty} \beta\left(\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}^{*}\right)\right)$, we get a contradiction.

So $d\left(x^{*}, T x^{*}\right)-d(A, \quad B) \leq 0$ and hence $\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx}^{*}\right)-\mathrm{d}(\mathrm{A}, \mathrm{B})=0$.

This implies $d\left(x^{*}, T x^{*}\right)=d(A, B)$.
x^{*} is a best proximity point of T. Hence, we conclude that T has a best proximity point.
Now we claim that best proximity point of T is unique. Suppose on the contrary, x^{*} and y^{*} are two distinct best proximity point of T. Thus, we have
$d\left(x^{*}, T x^{*}\right)=d(A, B)=d\left(y^{*}, T y^{*}\right)$
By using P-property, we have

$$
\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)=\mathrm{d}(\mathrm{Tx} *, \mathrm{Ty*})
$$

and

$$
\begin{gathered}
\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)=\max \left\{\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right), \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{~T} \mathrm{x}^{*}\right), \mathrm{d}\left(\mathrm{y}^{*}, \mathrm{Ty}\right),\right. \\
\left.\left[\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Ty} \mathrm{y}^{*}\right)+\mathrm{d}\left(\mathrm{y}^{*}, \mathrm{Tx} *\right)\right] / 2\right\} \\
\leq \max \left\{\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right), \mathrm{d}(\mathrm{~A}, \mathrm{~B}), \mathrm{d}(\mathrm{~A}, \mathrm{~B}), \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)+\mathrm{d}(\mathrm{~A}, \mathrm{~B})\right\} \\
\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right) \leq \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)+\mathrm{d}(\mathrm{~A}, \mathrm{~B}) \\
\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)-\mathrm{d}(\mathrm{~A}, \mathrm{~B}) \leq \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right) .
\end{gathered}
$$

Now by using given condition $d\left(x^{*}, y^{*}\right)=d\left(T x *, T y^{*}\right)$

$$
\begin{aligned}
& \leq \beta\left(\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)\right)\left[\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)-\mathrm{d}(\mathrm{~A}, \mathrm{~B})\right] \\
& =\beta\left(\mathrm{M}_{\mathrm{T}}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)\right) \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right) \\
& \leq \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)
\end{aligned}
$$

a contradiction. This completes the proof.

3.2 Example

We present the following example to support our main result.
Example: Let $\mathrm{X}=\mathrm{R}^{2}$ with the metric

$$
\mathrm{d}((\mathrm{x}, \mathrm{y}),(\mathrm{u}, \mathrm{v}))=\max \{|x-u|,|y-v|\}
$$

and consider the closed subsets

$$
\begin{aligned}
& A=\{(x, 0): 0 \leq x \leq 1\} \\
& B=\{(x, 0):-1 \leq x \leq 0\}
\end{aligned}
$$

And let $\mathrm{T}: \mathrm{A} \rightarrow \mathrm{B}$ be the following mapping defined by

$$
\mathrm{T}((\mathrm{x}, 0))=((-x) /(1+x), 0)
$$

It is clear that $d(A, B)=0$, then pair (A, B) has the P-property.
We have to notice that $\mathrm{A}_{0}=(0,0)$ and $\mathrm{B}_{0}=(0,0)$ and $\mathrm{T}\left(\mathrm{A}_{0}\right) \subseteq \mathrm{B}_{0}$.
Also
$\mathrm{d}(\mathrm{T}(\mathrm{x}, 0), \mathrm{T}(\mathrm{u}, 0))=\mathrm{d}(((-x) /(1+x), 0),((-u) /(1+u), 0))$

$$
=\frac{|u-x|}{(1+x)(1+u)}=\frac{|u-x|}{(1+x)(1+u)}
$$

and as $(1+\mathrm{x})(1+\mathrm{u}) \geq 1+|u-x|$, we have
$\mathrm{d}(\mathrm{T}(\mathrm{x}, \quad 0), \mathrm{T}(\mathrm{u}, \quad 0))=\frac{|u-x|}{(1+x)(1+u)} \leq \frac{|u-x|}{1+|x-u|}$
$=\beta(|x-u|)=\beta(\mathrm{d}((\mathrm{x}, 0),(\mathrm{u}, 0)))$ where $\beta:[0, \infty) \rightarrow[0,1)$ is defined as $\beta(\mathrm{t})=\frac{t}{1+t}$.

Therefore, $\mathrm{d}(\mathrm{T}(\mathrm{x}, 0), \mathrm{T}(\mathrm{u}, 0)) \leq \beta(\mathrm{d}((\mathrm{x}, 0),(\mathrm{u}, 0)))$

$$
\begin{gathered}
\leq \beta\left(\mathrm{M}_{\mathrm{T}}((\mathrm{x}, 0),(\mathrm{u}, 0))\right) \\
\leq \beta\left(\mathrm{M}_{\mathrm{T}}((\mathrm{x}, 0),(\mathrm{u}, 0))\right)\left[\mathrm{M}_{\mathrm{T}}((\mathrm{x}, 0),(\mathrm{u}, 0))-\mathrm{d}(\mathrm{~A}, \mathrm{~B})\right]
\end{gathered}
$$

Therefore all the assumption of theorem 3.1 are satisfied, so there exists a unique $\left(\mathrm{x}^{*}, 0\right) \in \mathrm{A}$ such that

$$
\mathrm{d}\left(\left(\mathrm{x}^{*}, 0\right), \mathrm{T}\left(\mathrm{x}^{*}, 0\right)\right)=0=\mathrm{d}(\mathrm{~A}, \mathrm{~B}) .
$$

Here the point $\left(x^{*}, 0\right) \in A$ is $(0,0) \in A$.

4. AUTHORS' CONTRIBUTIONS

Both authors contributed equally and significantly in writing this paper.

5. REFERENCES

[1] Al-Thagafi, M.A. and Shahzad, N: Convergence and existence results for best proximity points, Nonlinear Anal. 70(10), 3665-3671(2009).
[2] Bilgili, N., Karapinar,E. and Sadarangani K.: A generalization for the best proximity point of Geraghty-contractions,2013,1-9(2013).
[3] Anuradha, J. and Veeramani, P.: Proximal pointwise contraction, Topo. Appl., 156, 2942-2948(2009).
[4] Basha, SS. And Veeramani, P.: Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory, 103, 119-129(2000).
[5] Caballero, J., Harjani, J. and Sadarangani, K.: A best proximity point theorem for Geraghty contractions, Fixed Point Theory and Application, 2012, 231(2012).
[6] Eldred, AA. and Veeramani, P.: Existence and convergence of best proximity points, J. Math. Anal. Appl., 323, 1001-1006(2006) .
[7] Geraghty, M.: On contractive mappings, Proc. Am. Math. Soc., 40, 604-608(1973).
[8] Jleli, M. and Samet, B.: Best proximity points for $\alpha-\psi$ proximal contractive type mappings and applications, Bull. Sci. Math.,2013. Doi:10.1016/j.bulsci.2013.02.003.
[9] Karapinar, E.: Best proximity points of cyclic mappings, Appl. Math. lett., 25(11),

1761-1766(2012).
[10] Karapinar, E. and Erhan, YM.:Best proximity point on different type contractions, Appl. Math. Inf. Sci.,3(3), 342-353(2011).
[11] Karapinar, E.: Best proximity points of Kannan Type cyclic weak φ - contractions in ordered metric spaces, An. Stiint. Univ. Ovidius Constanta,20(3), 51-64(2012).
[12] Kirk, WA., Reich, S. and Veeramani, P.: Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim.,24, 851-862(2003).
[13] Markin, J. and Shahzad, N.: Best approximation theorems for nonexpansive and condensing mappings in hyperconvex spaces, Nonlinear Anal.,70, 24352441(2009).
[14] Mongkolkeha, C. and Kumam, P.: Best proximity point theorems for generalized cyclic contractions in ordered metric spaces, J. Optim. Theory Appl., 155, 215226(2012).
[15] Mongkolkeha, C. and Kumam, P.:Some common best proximity points for proximity commuting mappings, Optim. Lett.,2012.Doi:10.1007/s11590-012-0525-1.
[16] Mongkolkeha, C., Cho, YJ. and Kumam, P.:Best proximity points for generalized proximal Ccontraction mappings in metric spaces with partial orders, J. Inequal. Appl, 2013,94(2013).
[17] Raj, VS. and Veeramani, P.: Best proximity pair theorems for relatively nonexpansive mappings, Appl. Gen. Topol.,10, 21-28(2009).
[18] Raj, VS: A best proximity theorems for weakly contractive non-self mappings, Nonlinear Anal., 74,4804-4808(2011).
[19] Lin, I.J., Lakzian, H., Chou, Y.: On best proximity point theorems for new cyclic map, International Mathematic Forum, 7(2012), 1839-1849.

