
International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.10, October 2015

41

A Review of Web Caching Techniques and Caching

Algorithms for Effective and Improved Caching

Pranay Nanda
(Post Graduate Student)

Amity School of Engineering
and Technology

Amity University, Rajasthan

Shamsher Singh
(Astt Prof)

Department of Computer
Science

AB College, Pathankot,
Punjab, India

G.L. Saini
(Astt Prof)

Amity School of Engineering
and Technology

Amity University, Rajasthan

ABSTRACT
Internet today has become a victim of its own success. As the

internet is reaching a global community, the World Wide Web

is becoming a global-scale data dissemination system. There

has been an increase in user latency, bandwidth utilization and

server loads because of the increased number of World Wide

Web users. Web caching is a technology for overcoming such

performance bottlenecks by storing copies of popular web

objects closer to users instead of deliberately accessing them

from origin servers. Our study aims to review few caching

architectures. These architectures include proxy caching,

cooperative caching, adaptive caching, push caching and

active caching. Furthermore, as it has been repeatedly

observed, same data is transmitted over same network links

time and again to thousands of users. Such redundancies

desire the need for caching algorithms that optimally utilize

the finite cache space. Chapter 1 discusses the introduction to

the study and requirement of such solutions as we further

proceed to discuss those solutions in Chapter 2. Chapter 3

discusses about metrics and factors that influence caching

performance and Chapter 4 discusses algorithms that are used

for caching

General Terms

Web Caching Techniques

Keywords

Web Caching, Caching, Proxy Caching, Reverse Proxy

Caching.

1. INTRODUCTION
A web cache (or HTTP cache) is an information technology

for the transient storage space (caching) of web information,

such as for instance HTML pages and graphics, to minimize

bandwidth consumption, hosting server load, as well as

identified lag. As website traffic on the internet increases,

users are faced with ever-increasing hold-ups as well as

downfalls in data delivery. Web caching is one of the key

campaigns which has been investigated to further improve

overall performance.A significant problem in several caching

techniques is exactly how to determine what is cached where

at any offered time period While Web usage has increased

exponentially, the available network infrastructure has not. As

a result, the network cannot keep us with user demands, and

performance suffers. Factors leading to the increase in Web

traffic and subsequent low performance include the

increasingly multimedia nature of Web content;

 The widespread use of push technology;

 A mass migration of traditional services to Web-

based applications (for example, online banking and

investing);

 Millions of new users due to the high competition

between Internet service providers and subsequent

low-cost Internet access.

Researchers are exploring improvements to Internet

performance from several angles:

 Infrastructure, Experimental gigabit networks are

currently under construction.

 Cable modem and asymmetrical digital subscriber

loop (ADSL) technologies will enable multimegabit

access from homes.

 Protocols

 Compression

 Caching

Of the four approaches, caching promises the greatest

performance gain [1] and can be implemented with current

technologies. It is also the only approach that addresses the

physical distances between users and Web objects. Most of

the popular Web browsers implement client caches. Accessed

objects are copied on the user's hard disk, circumventing the

need for an Internet connection the next time the object is

access. By the same token, a server can cache high-demand

objects on local disks, thereby reducing the need to transfer

the objects from their home locations, which may be on the

other network drives

2. WEB CACHING TECHNIQUES
A cache is a storage area that is closer to the entity requiring it

than the authentic source. Accessing this cache is customarily

faster than being able to access the information from its

original source. A cache is typically stored in memory or on

disk. A memory cache is ordinarily more rapidly to read from

than a disk cache, but a memory cache typically does not

survive system restarts.

2.1 Proxy Caching
In proxy caching, the cache server receives the request for an

object from a client [6]. If the object is present in its cache, it

responds with the object. Else, it requests the source of object

and ensures the client has the requested item. If required, the

server may also deposit the object in its cache so as to reduce

the network congestion next time the object is requested [2].

Caching server is placed close to client (at network gateway)

to lower the latency and hops. The advantages of Proxy

caching involve reduced latency and network traffic that

makes experience of the web better and higher availability of

the websites [5]. However, the disadvantages that lie with this

approach are that cache is single point of failure, the browsers

have to be configured and no such system exists that can

dynamically add more caches when required [2] [3].

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.10, October 2015

42

Figure 1. Proxy Caching

2.1.1 Reverse Proxy Caching
Instead of placing cache server close to client, the cache

server is placed close to the servers in such a version of Proxy

Caching [7]. When a server is expected to receive sumptuous

requests simultaneously, in such a scenario, reverse proxy

caching is an effective solution as it pretends as the origin

server for the requests being generated. This is advantageous

as it keeps and maintains uptime of the server substantially

high and assures high quality of service (QoS) [2] [3]. It is a

useful solution in scenarios where virtual domains have been

mapped to a single physical site [12]. Alongside forward

proxy caching, Traffic Server deals with web data requests to

beginning servers on account of the visitors asking for the

information. Reverse proxy caching (also known as server

acceleration) is distinctive simply because Traffic Server acts

as a proxy memory cache on the part of the fundamental cause

servers that preserve the information. Traffic Server is

designed to behave outwardly as source server which the

client is attempting for connecting to. In a typical scenario the

promoted hostname of the origin server eliminates to Traffic

Server, which serves client requests immediately, taking

information from the true origin server when necessary.

Figure 2. Reverse Proxy Caching

2.1.2 Transparent Caching
The problem with proxy server approach is that it requires

configuration of the web browser [2] [3]. Transparent web

caching on the other hand intercepts HTTP requests at the

gateway without being visible and redirects them to web

cache or clusters [8]. There are two ways to deploy

transparent caching [5]: switch level and router level. Router

level transparent caching uses policy based routing to direct

requests to appropriate cache or server. Switch level

transparent caching offers switch to act as a dedicated load

balancer. It is more preferable approach because switches

generally cost cheaper than routers [12]. As video streaming

and rich media downloads keep up to flood operator networks,

with no end in perceive, network operators are examining as

well as deploying transparent Internet caching inside of their

networks to address a much wider selection of Internet

content. The intent is two-fold. The first is to alleviate the

network infrastructure and data transfer usage costs associated

with over the top (OTT) content and the second is to

distinguish their consumer broadband servicing as well as

deliver better user performance. By getting rid of any

potential slows down associated with the Internet or even the

content origin, caching enables the operator to emphasize

their investment being made in the access network and deliver

more content material at top speeds.

2.2 Adaptive Web Caching
Adaptive Web caching involves replacement algorithms that

analyze requests generated by the client and deposits the most

accessed objects in the cache deposit [13]. Adaptive caching

consists of multiple, distributed caches which dynamically

join and leave cache groups based on content demand [11].

The general idea of Adaptive Caching imagines a tight mesh

of self-organizing, overlapping multicast groups of servers

that adapt when necessary to changing conditions [2]. This

mesh forms an implicit and scalable hierarchy that is used to

efficiently diffuse popular web content towards the demand

[14]. The two main components are underlying

communication paths between the neighboring caches and

flow of requests for data along paths [12].

2.3 Push Caching
Servers decide when and where the objects are cached, this

idea was inducted by push caching [12]. Servers realize which

clients require that data often and place it close to them. Data

is dynamically mirrored [15]. An assumption about push

caching is that the ability to launch caches traverses

administrative boundaries [2]. Push caching is an effective

solution for content providers [4]. Push-caching has

subsequently diminished the actual quantity of network traffic

without considerably impacting almost every primary server's

load. If only primary servers could store duplicated

documents then push-caching would be of questionable value.

The virtue of push-caching, however, is that it is very easy to

add additional servers. Proxy-servers, for example, are ideal

candidates for accepting duplicated things simply because

they're definitely running web caching software, continuously

are affixed to large disks, and are usually not hidden behind

firewalls. Push-caching can circulate the stress from

overloaded primary servers onto proxy-servers and other

servers without distinguished an unacceptible load because all

servers caching replicated objects may refuse alternative

objects at any time.

2.4 Active Caching
 The scheme allows servers to supply cache applets to be

attached with documents, and requires proxies to invoke

cache applets upon cache hits to furnish the necessary

processing without contacting the server [10]. Cache applets

allow servers to obtain the benefit of proxy caching without

losing the capability to track user accesses and tailor the

content presentation dynamically [2] [12].

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.10, October 2015

43

2.5 Cooperative Caching-Swalla

Architecture
Most traditional cooperative caching schemes were

developed for network file systems but were not designed for

cluster-based web servers with content-based requirements/

An approach to improve web performance is in recognizing

that the bottleneck access of website is process utilize.tion

rather than network bandwidth. Swalla is a distributed and

multi-threaded web server which runs on a cluster of

workstations and shares cache information and cache data

between nodes [4].

Swalla is solution to web sites that make extensive requests

for dynamic content such as CGI requests. It cooperatively

caches the results of CGI requests [14]. The server stores the

meta-data for cached content in the cache directory. Each note

communicates with each other to exchange cached data and

meta-data [5]. Each Swalla node consists of a HTTP module

and a cache module. Other caching architectures are: Internet

Cache Protocol (ICP), Summary Cache and Cache Digest.

ICP works similar to proxy caching, is an application layer

protocol running on top of UDP and us used to coordinate

proxy web caches. Summary Cache and Cache Digest use

Bloom Filter to represent the directory of cache content [5].

Bloom Filter is a memory efficient data structure that is used

to test whether an element is member of set or not [9]. The

difference between summary cache and cache digest is that

summary cache extends ICP to update the directory whereas

Cache Digest uses HTTP to transfer directory information [2].

2.6 Performance evaluation of Caching

Architectures
Although there are many web caching techniques, no

technique is such omnipotent that performs well in all

scenarios [14]. Every technique has a different

architecturethat justifies optimal use

ofdifferentavailableresources based on its design. An effective

caching mechanism is the groundwork of any distributed-

computing architecture. The focus of this article is to

understand the importance of caching in designing effective

and efficient distributed architecture.

Table 1:Web Caching Techniques:

Web Caching

Technique
Methodology Pros Cons

Suitable

Environment

Proxy Caching
Place proxy servers

close to clients

Reduced latency and

network traffic,

bandwidth savings,

increased availability

Single Point of failure,

has to be explicitly

configured, no dynamic

method to add more

caches

Clients generating

high amount of

requests

Reverse proxy

caching

Place proxy server

close to servers

Ensures high quality of

service(QoS)

Single point of failure

and filtering against

malicious attacks

Content Providers

Transparent Proxy

Caching

Intercept HTTP

requests at gateway

and redirect them to

cache clusters

Does not have to be

explicitly configured

Violates end-to-end

statement by not

maintaining constant

connection to end point

of connection

Places where

administrative

controls over caching

is possible or

required

Adaptive Web

Caching

Learning by

example to adapt to

requests for objects

based on their

demand

Adapts to each client

individually, self-

organized

Complex

implementation,

initially requires

training

Sites that generate

dynamic content

Push Caching

Cached data is

placed close to

clients that request

them frequently

Servers curate caches for

clients

Ability to launch caches

may cross

administrative

boundaries

Content providers

Active Caching

Cache applets are

used to customize

objects that

otherwise would not

be cached

Use of cache applets to

perform personalized

caching locally instead at

originating servers

Need of coding cache

applets for objects

Sites that serve

dynamic and

personalized content

Swalla

Architecture

Distributed and

multi-threaded

architecture of

server nodes that

share cache and

cache information

among each other

Effective for dynamic

content requests such as

CGI

Complex architecture,

increased administrative

architecture at

distributed caches

Sites that generate

great dynamic

content

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.10, October 2015

44

3. PERFORMANCE METRICS AND

FACTORS
Various metrics and factors affect the decision to select apt

caching policy for an environment. To deliver maximum

efficiency, it is helpful to assess performance of various

algorithms based on the factors and metrics relevant to the

environment.

3.1 Performance metrics

3.1.1 Hit ratio
Hit ratio is generally the ratio of objects obtained through

caching policy versus the number of requests made [2].

Higher hit ratio indicates better caching policy. However, it

may only be relevant if the objects are homogenous in size.

3.1.2 Byte hit ratio
Byte hit ratio is the ratio of bytes accessed from the cache to

the total bytes accessed [2]. In case of objects being of

heterogeneous sizes, Byte hit ratio is better metric for

measurement.

3.1.3 Bandwidth utilization
It is an important count where an algorithm that reduces

consumption of bandwidth is better [2].

3.1.4 User response time
It is the amount of time a user waits for the system to retrieve

the requested object [2]. It is also known as latency.

3.1.5 Cache server CPU and I/O utilization
The fraction of total available CPU cycles or disk and object

retrieval latency [2].Latency is inversely proportional to

object hit ratio because a cache hit can be catered more swiftly

than a request to origin server. However, optimizing one

metric does not imply that it will optimize other too. For

example, increasing hit rate does not essentially minimize

latency [2].

3.2 Performance factors

3.2.1 User access patterns
If a user accesses objects small in size more frequently, then

the objects that are small in size stand obvious candidates for

caching. User access patterns are not static and therefore a

good caching algorithm should not be static either [2] [11].

Cache replacement algorithms decide what objects to be

discarded when the cache is full.

3.2.2 Cache removal period
Cache removal period dictates that documents will be

removed when there is no space in the cache [14]. Continuous

cache removal period implies that cache has no space to hold

the object currently being accessed. Fixed cache removal

period means that objects will be removed only at the

beginning of removal period [2].

3.2.3 Cache size
Larger cache size implies that the cache can store more

objects which means increased the hit ratio. Cache size is

however expensive in terms of processing cost and

complexity [3]. Therefore cache size is therefore a trade-off

between cache cost and cache performance. In a small cache,

a caching mechanism may either store many small sized

objects or few large size objects. Maximum cacheable object

size is a user defined factor that puts a limit on the size of

objects that can be stored in the cache [2].

3.2.4 Cooperation
Coordination between user requests and many proxy caches in

a hierarchal proxy cache environment.

3.2.5 Consistency
Consistency indicates maintaining updated replicas of objects

in the cache.Other factors like protection copyright increase

complexity. Also, non-cacheable objects are a subject of

concern [2].

4. WEB CACHING ALGORITHMS
Three main important components have profound impact on

caching management: cache algorithm, cache replacement and

cache consistency. Cache replacement is however the heart of

web caching. The design of efficient cache replacement

algorithms is required to achieve highly sophisticated caching

mechanism [11]. As cache size is limited, a cache replacement

policy will determine which object is to be evicted to allow

new objects and maximum utilization of the cache space

efficiently. An efficient cache replacement algorithm is used

to eliminate „cache pollution‟. Cache pollution means that the

cache contains objects that are not frequently used in the near

future which eventually lead to inefficient use of cache space.

There are two kinds of cache pollutions. The term “cold cache

pollution” refers to unpopular objects that remain in the cache

for a long time whereas “hot cache pollution” refers to objects

that stay in cache for long those were once but are no longer

popular. Some of the caching algorithms are:

 LRU: Least recently used objects are eliminated

first from the cache. LRU is simple to implement

and is efficient in case of CPU memory where

objects are uniform. However, LRU does not

consider size of download latency of documents

[14]. LRU suffers from cold cache pollution.

 LFU: Least frequently used objects are removed

first from the cache. LFU is advantageous as it is

simple to apply [3]. LFU does not however consider

the size or download latency of objects and may

keep obsolete objects indefinitely in the cache. LFU

suffers from hot cache pollution.

 SIZE: Large objects are removed first from the

cache. SIZE removes large objects from the cache

and keeps a number of small ones and therefore has

high hit rate. SIZE has a disadvantage as it may

keep small documents indefinitely in the cache even

if they have been not accessed by user in recent past

[3]. It also has low byte hit rate.

 GD-SIZE: Greedy-Dual-Size (GDS) is an

extension of SIZE policy. The algorithm combines

several factors and assigns a key value for each

object stored in cache. When cache space becomes

saturated and new object is required to be stored in

cache, the object with lowest key value is removed

[14]. GDS removes objects which are no longer

requested by users and therefore overcomes the

drawbacks of SIZE policy. GDS does not take

previous frequency of access for web objects in

account [4].

 GDSF: Greedy-Dual-Size-Frequency (GDSF)

extends GDS by containing the access frequency

aspect in assigning key value. However, GDSF does

not predict future accesses [4].

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.10, October 2015

45

5. CONCLUSION
Web caching is the most suitable and most sustainable

solution to reduce internet traffic and bandwidth consumption.

Also, it is a low cost technique for minimizing web latency.

Proxy caches are regularly used to reduce bandwidth globally.

Various caching techniques cater various needs around the

globe and improve experience of the web by minimizing

latency. Various algorithms are employed with these

techniques that cache objects and implement a replacement

policy for optimum utilization of cached space. In this paper,

we survey various caching techniques and algorithms while

discussing their pros and cons that may help to reduce the

bottleneck in data transmission through web.Due to

heterogeneous nature of the web, the algorithms suited for

CPU cache (Such as LRU, LFU) are not conditioned to favour

web objects. Algorithms for CPU caches are more

accustomed to static and uniform objects. However, the web

has an ever-changing dynamic and complex structure and

more dynamic algorithms are required. Future work may

comprise of adaptive web caching systems need to be built

that use machine learning to adapt to the important changes in

usage patterns and store appropriate objects in cache while

utilizing the cache space effectively.

6. REFERENCES
[1] Achuthsankar S. Nair, J.S. Jayasudha, “Improving

Performance by World Wide Web by Adaptive Web

Traffic Reduction”, Proceedings of World Academy of

Science, Engineering and Technology, Volume 17,

December 2006

[2] Athena Vakali, George Pallis, “A study on web caching

architectures and performance”

[3] Dhawaleswar Rao. CH, “Study of the web caching

Algorithms for Performance Improvement of the

response speed”, Indian Journal of Computer Science

and Engineering”, Volume 3 – No. 2, April-March, 2012

[4] Farhan Mohamed, Abdul Samad Ismail, Siti Mariyam

Shamsuddin, “Web caching and prefetching: Techniques

and analysis in World Wide Web”, Proceedings of the

Postgraduate Annual Research Seminar, 2005

[5] Hossam Hassanein, Zhengang Liang and Patrick Martin,

“Performance comparison of Alternative Web Caching

Techniques”, Proceedings of the Seventh International

Symposium on Computers and Communications, 2002

[6] https://docs.trafficserver.apache.org/en/5.3.x/admin/http-

proxy-caching.en.html

[7] https://docs.trafficserver.apache.org/en/5.3.x/admin/rever

se-proxy-http-redirects.en.html

[8] https://docs.trafficserver.apache.org/en/5.3.x/admin/trans

parent-proxy.en.html

[9] https://en.wikipedia.org/wiki/Bloom_filter

[10] http://pages.cs.wisc.edu/~zj/active-cache/

[11] Lixia Zhang, Sally Floyd and Van Jacobson, “Adaptive

Web Caching”, April 25, 1997

[12] Mukesh Dawar, Charanjit Singh, “A review of web

caching techniques”, International Journal of Advanced

Research in Computer Science and Engineering, Volume

4, Issue 3, March 2014

[13] Scott Michel, Lixia Zhang, Sally Floyd, “Adaptive web

caching: Towards a new global caching architecture”,

Computer Networks and ISDN Networks, November

1998

[14] Waleed Ali, Siti Mariyam, Shamsuddin, Abdul Samad

Ismail, “A Survey of Web caching and Prefetching”,

International Journal of Advanced Soft Computing

Applications, Volume 3- No. 1, March 2011

[15] http://www.eecs.harvard.edu/vino/web/push.cache/node2

.html

IJCATM:www.ijcaonline.org

