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ABSTRACT 

The concept of        -labeling in graph come into 

existence with the solution of frequency assignment 

problem. In fact, in this problem a frequency in the form of 

nonnegative integers is to assign to each radio or TV 

transmitters located at various places such that 

communication does not interfere.  This frequency 

assignment problem can be modeled with vertex labeling 

of graphs. An       -labeling (or distance two labeling) of 

a graph   is a function   from the vertex set      to the set 

of all nonnegative integers such that                   if 

         and               if            , where  

       denotes the distance between   and   in  . The 

      -labeling number      of   is the smallest number   

such that   has an       -labeling with 

                    . In this paper, upper bound for 

the       -labeling number for the  -product of two graphs 

has been obtained in terms of the maximum degrees of the 

graphs involved and improved this bound by using a 

dramatically new approach on the analysis of the 

adjacency matrices of the graphs. By the new approach, we 

have achieved more accurate result with significant 

improvement of this bound. 
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1. INTRODUCTION 
The frequency assignment problem asks for assigning 

frequencies to transmitters in a broadcasting network with 

the aim of avoiding undesired interference. Hale [20] was 

first person who formulated this problem as a graph vertex 

coloring problem. By Roberts     , In order to avoid 

interference, any two “close” transmitters must receive 

different channels and any two “very close” transmitters 

must receive channels that are at least two channels apart. 

To translate the problem into the language of graph theory, 

the transmitters are represented by the vertices of a graph; 

two vertices are “very close” if they are adjacent and 

“close” if they are of distance two in the graph. Based on 

this problem, Griggs and Yeh      considered an       -
labeling on a simple graph. An       -labeling (or 

distance two labeling) of a graph   is a function   from the 

vertex set      to the set of all nonnegative integers such 

that               if          and       
        if            , where         denotes the 

distance between   and   in  . A         -labeling is 

an       -labeling such that no label is greater than k . 

The       -labeling number of  , denoted by     or  , is 

the smallest number k  such that   has a    

      labeling.The       -labeling has been extensively 

studied in recent past by many 

researchers                       . The common trend 

in most of the research paper is either to determine the 

value of       -labeling number or to suggest bounds for 

particular classes of graphs. 

Griggs and Yeh      provided an upper bound of      is 

      for a general graph with the maximum degree  . 

Later, Chang and Kuo   , improved the bound to     , 

while Kral and Skrekovski     reduced the bound to    
   . Furthermore, recently Gonccalves     proved the 

bound        which is the present best record. If    is 

a graph of diameter   then        . The upper bound is 

attainable for Moore graphs (diameter   graphs with 

order      ). (Such graphs exist only if          and 

possibly   ). Thus Griggs and Yeh      conjectured that 

the best bound is    for any graph    with the maximum 

degree     . (This is not true for       For example, 

        but         ). 

Graph products play an important role in connecting 

various useful networks and they also serve as natural tools 

for different concepts in many areas of research. In this 

paper, we have considered the graph formed by the  -

product of graphs     and obtained a general upper bound 

for       -labeling number in terms of the maximum 

degrees of the graphs. In the case of  -product of graphs, 

      -labeling number of graph holds Griggs and Yeh’s 

conjecture      with minor exception. 

2. A LABELING ALGORITHM 
A subset   of       is called an  -stable set (or  -

independent set) if the distance between any two vertices 

in   is greater than   . An  -stable (independent) set is a 

usual independent set. A maximal  -stable subset   of a 

set   is a  -stable subset of   such that   is not a proper 

subset of any  -stable subset of  . 

Chang and Kuo     proposed the following algorithm to 

obtain an       -labeling and the maximum value of that 

labeling on a given graph. 

Algorithm 

Input: A graph         

Output: The value   is the maximum label. 

Idea: In each step  , find a maximal  -stable set from the 

unlabeled vertices that are distance at least two away from 

those vertices labeled in the previous step. Then label all 
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the vertices in that  -stable set with the index   in the 

current stage. The label   starts from   and then increase 

by   in each step. The maximum label   is the final value 

of   . 

Initialization: Set                   

Iteration: 

1. Determine    and   . 

    = {      is unlabelled and                    }. 

     is a maximal  –stable subset of   . 

   If      then set    . 

2. Label the vertices of    (if there is any) with   . 

3.       . 

4. If     , then      , go to step  . 

5. Record the current   as   (which is the maximum 

label). Stop. 

Thus   is an upper bound on     . Let   be a vertex with 

largest label   obtained by above algorithm.Set 

               and          for some        . 

                and           for 

some        . 

                and          for all        .   

 Then Chang and Kuo showed that             
              . 

 In order to find  , it suffices to estimate             in 

term of     . We will investigate the value   with respect 

to a particular graph (  -product of two graphs). The 

notations which have been introduced in this section will 

also be used in the following sections. 

3. THE  -PRODUCT OF GRAPHS 
 The  -product     of two graphs   and   is the graph 

with vertex set          , in which the vertex       is 
adjacent to the vertex         if and only if either   is 

adjacent to    in   or   is adjacent to    in  . For example, 

we consider the Fig.1. 

By the definition of the  -product of two graphs   and  , 

if        or        then     consists of disjoint 

copies of   or  . Thus            or        
    . Therefore we assume that        and       . 

4. UPPER BOUND FOR THE       –
LABELING NUMBER IN     

In this section, general upper bound for the       –
labeling number ( -number) of  –product      in term 

of maximum degree of the graphs has been established. In 

this regard, we state and prove the following theorem. 

Theorem 4.1. Let   ,    ,     be the maximum degree of 

    ,  ,   and  ,   ,     be the number of vertices 

of     ,  ,   respectively. Then 

                                
                  

Proof: Let          be any vertex in the graph    . 

Denote             ,            ,          , 

            ,             ,           and 
         . Then by the definition of  -product we have 

the following results                  and    
              . 

Let us consider the Fig.2. For any vertex    in   with 

distance   from  , there must be a path        of length 

two between    and   in  ; but the degree of   in   is    

i.e.   has    adjacent vertices in  , by the definition of  -

product     , there must be      internally-disjoint 

paths(two paths are said to be internally-disjoint if they do 

not intersect each other) of length two between        and 
     . Hence for any vertex in   with distance   from  , 

there must be corresponding      vertices with distance 

  from          which are coincided in    ; on the 

contrary whenever there is no such vertex in   with 

distance   from   in  , the corresponding      vertices 

with distance   from the vertex          which are 
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coincided in      will never exit. In the former case 

since such       vertices with distance   from    

       coincide in      and hence they can only be 

counted once and therefore we have to deduct      
     from the value       which is best possible 

number of vertices at distance      from a vertex     

       in    . Let the number of vertices in   with 

distance   from   be   , then               . If we 

take            which is best possible number of 

vertices at distance     from a vertex   in  , then to get the 

number of vertices at distance      from            

in    , we will have to subtract at least            

from the value       . For  , we can proceed in the 

similar way to get the number of vertices at distance     

from            in      and in this case subtract 

           from the value       . Hence the number 

of vertices at distance    from           in     will 

decrease                       from the 

value         altogether. By the above analysis, the 

number                              is now 

the best possible number of vertices at distance      

from           in    . 

Moreover by the definition of  -product    , we can 

again analyse as follows: 

 Let   be the number of edges of the subgraph   induced 

by the neighbours of    .The edges of the subgraph   

induced by the neighbours of    can be divided into the 

following two cases. 

Case I: Consider the Fig.3 for this case. For each 

neighbour vertex        (where   is adjacent to   in  ) of 

         and any vertex         (where     is adjacent 

to   in   and    is any vertex of  ),         must be the 

common neighbour of        and      , then there must 

be an edge between         and        and an edge 

between         and       respectively. But there are at 

least      neighbour vertices like          of          

and there are totally    neighbour vertices 

like        of         . Hence the number of edges of 

the subgraph   induced by the neighbours of    is at least  

       i.e.         . By a symmetric analysis, the 

neighbours of          should again add at least 

          (excluding the coincided edge 

between       and       ). 
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Case II: Consider the Fig.4 for this case. If    is adjacent 

to    in   , then       must be adjacent to         and 

        where    and    are any two vertices of  , hence 

the vertices of the subgraph   induced by the neighbours 

of           should be all        where          . 

Because         and there are totally    neighbour 

vertices    of  , then the number of edges of the subgraph 

  induced by the neighbours of          should be 

greater than     . Hence, at least      should be added to 

the number of edges of the subgraph   induced by the 

neighbours of         . By a symmetric analysis, the 

number of edges of the subgraph   induced by the 

neighbours of           must be increased by the 

number      at least. 

 By the analysis of the above two cases, we have    
                         . 

Whenever there is an edge in   , the number of vertices 

with distance   from     will decrease by   , hence the 

number of vertices with distance   from          in  

    will still need at least a decrease           
                  from the value         
                     . (The number        
                       is now the best possible 

for the number of vertices with distance      from     

       in    ). 

Hence for any vertex    , the number of vertices with 

distance   from     is no greater than  . The number of 

vertices with distance   from     is no greater than  

                                    
                  . 

 Hence                                   
                                    . 

 Then                             
                                     
                                   
                               
                . 

 Define                               
                                 
            . 

 Then         has the absolute maximum at          
on              . 

                   

                        
                       

                     

       

                                               
                    
                  

              
              
           
                  

The                           
                          .  

5. IMPROVED BOUND FOR THE 

      –LABELING NUMBER IN 

    
 In this section, we shall improve the upper bound obtained 

in theorem 4.1 of the       -labeling number on the  -

product      of two graphs   and   on the analysis of 

the adjacency matrices of the graph involved.  

Suppose    and    are the adjacency matrices of   and   

respectively. Then the adjacency matrix of  -product   
   of the graphs   and   with (mod  ) can be written as  

                          where    is the 

square matrix of order    with all entries   and    is the 

square matrix of order    with all entries  . These matrices 

involve the Kronecker product   of matrices,         is 

the Kronecker product   of matrices    and   .Similarly 
        and         are Kronecker product of matrices 

involved in it. Note that the rules of algebra of Kronecker 

product   of matrices can be found in [5]. 

In order to find  , it suffices to estimate             in 

term of      (using labeling algorithm). Before 

eliminating the upper bound   , we introduce a notation 

first. Let   be a matrix with   rows. For      ,       
denote the number of nonzero entries in the     row of   

excluding the diagonal entry.  

 Let   be the adjacency matrix of   with respect to a list of 

vertices               . Then it is well known that the 

        entry of    is the number of different         

walks in   of length  , for    . 

Thus                ,     
   is the number of vertices 

joining by a walk of length    from     excluding    itself 

and     
     is the number of vertices of distance   

or   from   . So that  

u
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            (      )                                        (1) 

    
                                                            (2) 

For convenience, the notations which have been 

introduced in this section will also be used in the following 

section. 

6. MAIN RESULT 
Theorem 5.1: Let   ,    be the maximum degree of  ,   

and   ,     be the number of vertices of  ,   respectively. 

Then        

          
   

    
      

            
  

        
                . 

Proof: From the above discussion in section 5, we get that 

the adjacency matrix of     is            
               . Then 

                              
 

                         

                                 
    

      
    

      
    

  

                          
    

     
               

                 

                                  
    

           
   

                                       
                   

                                           
       

        
                                                         . 

Note that the rules of algebra of Kronecker product   of 

matrices can be found in [5]. 

Since all entries of the involved matrices are nonnegative, 

then the number of non-zero entries in the           entry 

of      
          

                         
   

         
                        is the same as 

that of     
                    

           
   

               
     . 

 Let   be the maximum label obtained by the algorithm (in 

section 2). Let                     be the vertex with 

the label   . We look at the           row of the 

matrix     . We have 

        
               

   
    

  

         
    

         

         
       

      

         
        

      
       

        
                       

  

                                            

                                     

                 . 

 Note that the last equality is obtained by applying 

equation (1) and (2). 

Thus, the number of non-zero entries in the           

entry of         excluding the diagonal entry is at 

most                              

                                  

                   Also we have known that       

                     .  

Thus                                   
                                      
    . 

Hence             
   

    
      

    
        

          
                . 

This completes the proof. 

7.  CONCLUSION 
In theorem 4.1, we have proved that            
                                     , 

where the maximum degree of     is           
    . Since                           
                    

   
    

      
    

        
          

                  
           

          
          

  
                           . We have thus 

reduced the bound by            
          

  
        

                             . 
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