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ABSTRACT 

An intention of MapReduce Sets for External Source Input 

expressions analysis has to suggest criteria how External 

Source Input expressions in External Source Input data can be 

defined in a meaningful way and how they should be 

compared. Similitude based MapReduce Sets for External 

Source Input Expression Analysis and MapReduce Sets for 

Assignment is expected to adhere to fundamental principles of 

the scientific External Source Input process that are 

expressiveness of External Source Input models and 

reproducibility of their External Source Input inference.  

External Source Input expressions are assumed to be elements 

of a External Source Input expression space or Conjecture 

class and External Source Input data provide “information” 

which of these External Source Input expressions should be 

used to interpret the External Source Input data. An inference 

External Source Input algorithm constructs the mapping 

between External Source Input data and External Source Input 

expressions, in particular by a External Source Input cost 

minimization process. Fluctuations in the External Source 

Input data often limit the External Source Input precision, 

which we can achieve to uniquely identify a single External 

Source Input expression as interpretation of the External 

Source Input data. We advocate an information theoretic 

perspective on External Source Input expression analysis to 

resolve this dilemma where the tradeoff between External 

Source Input informativeness of statistical inference External 

Source Input and their External Source Input stability is 

mirrored in the information-theoretic External Source Input 

optimum of high External Source Input information rate and 

zero communication expression error. The inference External 

Source Input algorithm is considered as an outlier object 

External Source Input path, which naturally limits the 

resolution of the External Source Input expression space 

given the uncertainty of the External Source Input data.     

Keywords 

MapReduce, External Source Input expressions, kernel 

function.  

1. INTRODUCTION 
The field of general expression intention is to formalize the 

notion of expressions in precise mathematical terms [1]. 

Expressions are perceived as regular structures behind the 

External Source Input data sources, i.e., “the underlying deep 

regular structures are descriptions of the source, which are 

hidden via the sensing path” [3]. Expression Intention 

combines algebra, geometry and statistics to explain the 

nature of External Source Input data sources and, thereby, 

depicts a generative External Source Input modeling 

perspective on expression analysis. This philosophy argues 

for a distinct generative viewpoint to infer the probability 

distribution of the External Source Input data.In many real-

world situations the External Source Input data are 

represented or generated in a very high dimensional space and 

the information-processing task focuses on a low dimensional 

interpretation space. The analysis of visual External Source 

Input data like images or videos provides a very convincing 

example of this situation: intensity expressions that are sensed 

by a camera are mathematically represented as points in a 

space with #{intensities}#{pixels} dimensions. When 

segmenting an image in semantically distinct regions then the 

interpretation space contains #{segments}#{sites} elements 

where the number of sites is often much smaller than the 

number of pixels. The reader should note that the space of 

segmentations is still exponentially large in the number of 

sites. Consequently, we adopt a discriminative view of 

MapReduce Sets for External Source Input Expression 

assignment: the External Source Input expressions Which are 

inferred from the External Source Input data are elements of 

an interpretation space called Conjecture class and these 

External Source Input expressions are more or less closely 

related with the External Source Input data generating 

mechanism of the source. The Conjecture class often also 

reflects information about the aim of expression analysis, i.e., 

what the External Source Input expressions are used for in 

subsequent information processing. 

The inference of External Source Input expressions in 

External Source Input data is formulated as an algorithmic 

search for a stable subset of the underlying Conjecture class. 

Stability is required to guarantee that the External Source 

Input expression analysis process would yield an equivalent 

outcome for the same structure of the External Source Input 

data source but a different realization of the outlier object 

process. A second, antagonistic requirement of the External 

Source Input expression analysis process is its specificity or 

informativeness: a small subset of the Conjecture class and in 

the limit a single Conjecture should be selected which poses a 

tradeoff to the stability requirement. Both External Source 

Input principles mirror the reproducibility and specificity 

requirement of the scientific reasoning [9, 15]. 

External Source Input expression analysis algorithms often 

follow an optimization principle. Desired External Source 

Input expressions are assigned a high score or low costs and 

undesirable External Source Input expressions are discarded 

by assigning a low score or high costs. In the following, we 

adopt the terminology of cost minimization rather than score 

maximization. A kernel function defines a partial order of 

Conjecture minimal kernels distinguish where the most 

preferred Conjecture. The outlier object in the External 

Source Input data, however, may introduce fluctuations in the 

kernels and the Conjecture with minimal kernels for one 

realization of the External Source Input data may no longer 
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minimize kernels for a second realization of the External 

Source Input data. Therefore, we advocate stabilizing the set 

of kernel-minimal Conjecture by expanding it to a set of 

Conjecture with near-optimal kernels, also called 

approximation set. The size of such an approximation set is 

determined by information theoretic considerations. 

Conjecture in the approximation set is considered to be 

statistically indistinguishable. 

 

Fig 1: Research Plan: Basic Means, Stages, Main 

Outcomes 

2. RESEARCH CLARIFICATION 
External Source Input expression analysis quantifies 

structures in External Source Input data, which usually relate 

to a set of objects. To mathematically characterize this 

problem domain we have to define what we mean by 

measurements and Conjecture. Given is a set of objects O(n) = 

{O1,…,On} ⊂ O, n ∈ ℕ. Individual objects can be 

characterized by measurements either relative to an external 

reference frame, e.g., a coordinate system in a feature space, 

or by comparison to other objects. A measurement X is 

defined as a mapping of an object configuration in a 

measurement space, i.e., 

X : O 1 × ⋯ × O r → 𝕂,       (O1,…,Or) ↦ XO1,…,Or  .    (1) 

The object configurations are often specified as collections    

of objects taken from the same object set O 1 = ⋯ = O r.          

For binary External Source Input data, the first and the second 

object set can differ O 1 ≠O 2. The most often used 

measurement types are feature vectors X : O → ℝd denoted as 

Xo ∈ ℝd. Relational External Source Input data arise often in 

informatics applications and in network analysis problems. 

They are defined as X : O  ×O  → ℝ, where Xo1,o2 denotes a 

proximity/Similitude value between object O1 and O2. More 

complicated External Source Input data structures than 

vectors or relations, e.g., three-way External Source Input 

data or (hyper) graphs, are employed in various applications. 

In the following, we use the generic notation X(n) ∈ X  (n) for a 

set of measurements to characterize these n objects O(n) . X  (n) 

denotes the corresponding measurement space of n objects. 

To simplify notation we omit the index(n) whenever the 

dependence on problem size is clear. 

A Conjecture c (.) of a MapReduce Sets for External Source 

Input Expression assignment problem is a function that 

assigns a set of objects or a set of object configurations to a 

External Source Input expression out of a External Source 

Input expression space P, i.e., 

c : O 1 × ⋯ × O r → P,        (O1,…,Or) ↦ c(O1,…,Or) .    (2) 

The intention of Conjecture does not depend on the 

measurements XO1,…,Or but potential External Source Input 

expressions that are denoted by Conjecture are defined prior 

to any measurements. The reader should note that the notion 

of a “feasible solution” in applied mathematics and 

optimization often depends on constraints that are determined 

by measurements contrary to the intention in (2). Such 

situations can be modeled by unconstraint solution spaces 

with infinite kernels for those solutions that violate the 

constraints. 

The Conjecture class for a MapReduce Sets for External 

Source Input Expression assignment problem is defined as the 

set of functions assigning an object or an object configuration 

(In the following, we restrict Conjecture to map an object to a 

External Source Input expression. The more general situation 

of object configurations can be analyzed in an analogous way 

but involves a more complex notation) to an element of the 

External Source Input expression space, i.e., 

C (O) = {c (O) : O ∈O }.                           (3) 

A well-known example of a Conjecture class is the space      

of partitions or classification functions c: O  → {1,…,k}       

which we use in classification or clustering. When clustering 

n objects into k clusters, then we restrict the space of all 

possible partition functions to P  (n) = {1,…,k}n  for the object 

set O
(n). The corresponding Conjecture class is denoted by     

C  (n) = C (O(n)). For parameter estimation problems the 

External Source Input expressions are possible values of the 

matrices and the External Source Input expression space is a 

subset of the d-dimensional Euclidean rotations. 

The Conjecture class is a set of functions that map objects or 

object configurations to expressions. External Source Input 

expression analysis requires assessing the quality of 

Conjecture c ∈C. We adopt a kernel function viewpoint in 

this paper, which attributes a non-negative kernel value 

R : C  (n) × X  (n) → ℝ+,        (c, X(n)) ↦ R(c, X(n))       (4) 

to each Conjecture given the measurements (ℝ+ := [0, ∞)).   

The non-negativity assumption does not restrict the         

choice of kernel functions since we can always replace                      

𝑅 (c, X
(n)) := R(c, X

(n)) – infcϵC R(c, X
(n)) for effectively 

computable minimal kernels. 

The classical intention of statistical Inference [2] advocates to 

use the posteriori minimize as the solution of the inference 

problem. The best posteriori External Source Input expression 

denoted by 𝑐⊥(X(n)) minimizes the posteriori loss function of 

the External Source Input expression analysis problem given 

the measurements X(n), i.e., 

𝑐⊥(X(n)) ∈ arg  mincϵC(n)  R(c, X(n)) .                  (5) 

Although Conjecture map objects into a External Source Input 

expression space, the posteriori loss function minimizer 

𝑐⊥(X(n)) depends on measurements. 

The intention requires for inferability of classifications that 

the Conjecture class is not “too complex” (i.e., finite 

computing) and, as a consequence, the solution 𝑐⊥(X(n)) 

converges to the optimal solution which minimizes the 

expected loss function. A corresponding criterion has been 

derived for regression [4]. 

This classical inference intention is not applicable when the 

size of the Conjecture class grows with the number of objects 
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like in clustering or other optimization problems of 

combinatorial nature. Without strong regularization we cannot 

hope to identify a single solution, which globally minimizes 

the expected loss function in the asymptotic limit n →, ∞. 

Conjecture class of combinatorial problems often have an 

infinite computing and, therefore, are not inferable in the 

classical computing sense. Therefore, we replace the concept 

of a unique function as the solution of an inference problem 

with a weighted set of kernel functions. The challenge of 

inference then amounts to determine a weight measure, which 

is concentrated on few solutions to achieve precision. The 

weights w are defined as functions which map triplets of a 

Conjecture, measurements and a resolution parameter to the 

unit interval, i.e., 

w:C  (n) × X  (n) × ℝ+ → [0,1],   (c, X(n), 𝛽) ↦ 𝑤𝛽 (c, X(n)) .   (6) 

The set of weights is denoted as 

Wβ (X
(n)) = {𝑤𝛽 (c, X(n)) : c ∈C (n)} . 

How should we choose the weights 𝑤𝛽 (c, X
(n)) that large 

weights are only assigned to kernel functions with low 

kernels? The partial ordering constraint 

R(c, X(n))  ≤  R(𝑐 , X(n)) ⟺ 𝑤𝛽 (c, X(n))  ≥  𝑤𝛽 (𝑐 , X(n)) ,     (7) 

ensures that kernel functions with minimal kernels R(𝑐⊥, X(n))   

assume the maximal weight value. Weights are normalized to 

one i.e., 0 ≤ 𝑤𝛽 (c, X(n)) ≤ 1. The non-negativity constraint of 

weights allows us to write the weights  as 𝑤𝛽 (c, X(n)) = exp ( 

–β f (R(c, X
(n))) ) with the monotonic kernel function f(x). 

Since f(x) amounts to a monotone rescaling of the kernels R(c, 

X
(n)) we resort to the common choice of Statistical weights 

with the inverse computational value β, i.e., 

𝑤𝛽 (c, X(n)) = exp ( –β R(c, X(n)) ) .                (8)  

It is worth mentioning that standard approximation sets as 

introduced in the intention of approximation algorithms 

would correspond to binary weights 

𝑤𝛽
𝑏𝑖𝑛 (c, X(n)) =  

1  
0 

  
if  𝑅 𝑐 ,𝐗(𝑛 )  ≤  𝑅 𝑐⊥ ,𝐗(𝑛 ) + 1/𝛽   

otherwise
      (9) 

The weight 𝑤𝛽 (c, X(n)) of a given Conjecture c is a random 

variable of the measurements X(n). We consider the quantity 

𝑍𝛽 (X(n)) :=  ΣcϵC(n)  𝑤𝛽 (c, X(n)),                     (10) 

which measures the total weight of Conjecture with low 

kernels. The weight sum is also known as the partition 

function in statistically when we use Statistical weights. In 

case of binary weights 𝑍𝛽 (X(n)) denotes the number of 

solutions that are 1/β close to the optimum. 

To determine the optimal regularization of a MapReduce Sets 

for External Source Input Expression assignment method we 

have to define and estimate the generalization performance of 

Conjecture. We adopt the two instance scenario with training 

and test External Source Input data described by respective 

object sets O', O'' and corresponding measurements X', X'' 

∼ ℙ(X). Both sets of measurements are drawn Independent 

and identically distributed from the same probability 

distribution ℙ(X). The training and test External Source Input 

data X', X'' define two optimization problems R(.,X'), R(.,X''). 

The two instance scenario or two sample set scenario is 

widely used in statistics and statistical Inference intention [5], 

i.e., to bound the deviation of posteriori loss function from 

expected loss function, but also for two-terminal systems in 

information intention [6, 13].Statistical expression analysis 

requires that inferred External Source Input expressions have 

to generalize from training External Source Input data to test 

External Source Input data since outlier object in the External 

Source Input data might render the solution 𝑐⊥(X') ≠ 𝑐⊥(X'') 

unstable. How can we evaluate the generalization properties 

of solutions to a MapReduce Sets for External Source Input 

Expression assignment problem? Before we can compute the 

kernels R(.,X'') on test External Source Input data of 

approximate solutions c(O') ∈C (O') on training External 

Source Input data we have to identify a External Source Input 

expression c(O'') ∈C (O'')  which corresponds to c(O'). A 

priori, it is not clear how to compare External Source Input 

expressions c(O')  for objects O'  with External Source Input 

expressions c(O'') for objects O''. Therefore, we define a 

bijective mapping 

ψ : O ' → O '',          O' ⟼ ψ ∘ O' .                   (11) 

The mapping ψ allows us to identify a External Source Input     

expression Conjecture for training set of objects c' ∈C (O') 

with a External Source Input expression Conjecture for a test 

set of objects c'' ∈C (ψ ∘ O'). The reader should note that such 

a mapping ψ might change the object indices. In cases when 

the objects O', O'' are elements of an underlying metric space, 

then a natural choice for ψ is the nearest neighbor 

mapping.The mapping ψ enables us to evaluate External 

Source Input expression kernels on test External Source Input 

data X'' for External Source Input expressions c(O') selected 

on the basis of training External Source Input data X'. 

Consequently, we can determine how many training External 

Source Input expressions with large weights share also large 

weights on test External Source Input data, i.e., 

∆𝑍𝛽 (X', X'') :=  ΣcϵC(O'')   𝑤𝛽 (c, ψ ∘ X') 𝑤𝛽 (c, X'') .      (12)                      

A large subset of Conjecture with jointly large weights 

indicates that low kernel Conjecture on training External 

Source Input data X' also perform with low kernels on test 

External Source Input data. The tradeoff between stability and 

informativeness for Statistical weights on (8) is controlled by 

maximizing β for given loss function R(.,X) under the 

constraint of large weight overlap        ∆𝑍𝛽 (X', X'') / 𝑍𝛽 (X'') 

≈  

1. A quantitative statement how close this ratio should 

approach unity requires a statistical decision intention as 

provided by information transmission. 

A natural question in statistical inference arises from 

asymptotic considerations in the large n-limit. What is the 

asymptotic behavior of the log weight sum log𝑍𝛽 (X(n))  

dependent on the problem/instance size n? As remarked above 

the measurements X
(n) of a particular MapReduce Sets for 

External Source Input Expression assignment instance depend 

on the value n. In analogy to information intention [7, 14] we 

assume that the log weight sums converge according to an 

asymptotic equipartition property, i.e., 

F   '  := lim n→∞  – 
 log𝑍𝛽 (X' (n)) 

,                  (13) 
log |C (O' (n))|   

 

F   ''   := lim n→∞  – 

 log𝑍𝛽 (X'' (n)) 

,                  (14) log |C (O'' 

(n))|   
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∆F      := lim n→∞  – 
 log∆𝑍𝛽 (X' (n),X'' (n)) 

.        (15) 
      log |C (O'' (n))|   

 

These assumptions (13, 14, 15) requires that the log weight 

sums normalized by the size of the Conjecture class converge 

towards deterministic limits. The quantities F  ', F  '' are 

known as the key values (up to a factor β–1) for the instances 

R(.,X'), R(.,X'') in statistically. The factor log |C (n)| denotes 

the problem size of the optimization problem, i.e., it is O(n) 

for clustering problems with maximally kn
 different partitions 

and O(nlogn) for sorting problems with log |C (n)| = log(n!). 

Intention 1. The set Aε
(n)

 of jointly typical instances w.r.t. 

p(X' (n),X'' (n)) is the set of instance pairs                       

(X'(n),X''(n)) ∈ X(n)×X(n) with posteriori log partition 

functions close to the respective key values 

    Aε
(n) = {(X'(n),X''(n)) ∈ X  (n)×X  (n) : 

– 
 log𝑍𝛽 (X' (n)) 

– F   ' < 𝜀 ,                (16) 
log |C (O' (n))|   

 

– 
 log𝑍𝛽 (X'' (n)) – F   

'' 
< 𝜀 ,              (17) 

log |C (O''(n))|     
 

– 
log∆𝑍𝛽 (X' (n), X'' (n)) 

– ∆F    < 𝜀}.    (18) 
    log |C (O''(n))|     

 

The reader should note that the weak law of large numbers 

guarantees convergence of posteriori entropies towards their 

expectation values in information intention. Due to the 

dependence of the weights 𝑤𝛽 (c, X(n)) on the kernel function 

R(.,X(n))  convergence has to be required for a kernel function. 

We also conjecture that kernel functions that violate this 

convergence behavior cannot be used to define predictive 

External Source Input models. 

 

Fig 2: Generation of a set of M instruction problems by 

e.g. permuting the object indices. 
 

3. DESCRIPTIVE STUDY I  
In the following, we describe an information theoretic 

framework to determine which Conjecture are statistically 

indistinguishable due to outlier object in the measurements 

and how much we have to coarsen the Conjecture class.  

Random instruction concept suggests a External Source Input 

model intention to determine the maximal number of 

distinguishable n-key value strings in the Group of 

Hamiltonian space when the key value strings are exposed to 

outlier object in a communication path. We develop a 

generalization of this idea for solution spaces of optimization 

problems. The weight distribution 𝑤𝛽 (c, X(n)), c ∈C over the 

Conjecture class C corresponds to the subsets of key value 

strings assigned to a specific instruction vector in information 

intention. Outlier object perturbs the measurements and 

therefore, the weight distribution fluctuates. An algorithm to 

approximately minimize a kernel function and the 

measurements as input to this algorithm defines an outlier 

object path in an asymptotical communication scenario with a 

mapper 𝑀, a reducer 𝑅 and a key generator 𝐾𝐺[12, 18]. The 

key generator connects the mapper with the reducer by posing 

an optimization problem given a kernel function or an 

algorithm. Communication takes place by approximately 

optimizing a given kernel function, i.e., by calculating weight 

sets 𝑍𝛽 (X'), 𝑍𝛽 (X''). This instruction concept will be referred 

to as approximation set instruction (ASI) since the weights are 

concentrated on approximate minimizers of the optimization 

problem. The outlier object path is characterized by a External 

Source Input expression kernel function R(c, X) that 

determines the path capacity of the ASI scenario. Selection 

and validation of MapReduce Sets for External Source Input 

Expression assignment models are then achieved by 

maximizing the path capacity over a set of kernel functions Rθ 

(.,X), θ ∈ Θ where θ indexes the various kernel functions or 

MapReduce Sets for External Source Input Expression 

assignment objectives. In a more general setting an arbitrary 

algorithm which does not necessarily minimize a kernel 

function can be considered to define a weight distribution and 

thereby, to play the role of a outlier object path [8,16] due to 

fluctuations in the input or in the execution path. 

 

Fig 3: Communication process: (1) the mapper selects 

transformation τs, (2) the key generator draws  X'' ~ ℙ(X) 

and applies 𝜏 s = ψ ∘ τs ∘ ψ–1
 to it, and the reducer estimates 

𝜏  based on 𝐗  = 𝜏 s ∘ X''.   

Before we describe the communication protocol we have to 

define the instruction for communication. We introduce 

random instruction intention to demonstrate the limits of 

asymptotically error free communication over an outlier 

object path. Random instruction refers to the fact that 

messages in random instruction External Source Input model 

are selected as a set of key value strings {𝜉(j) = (𝜉1
(j),…,𝜉n

(j)), 

1 ≤ j ≤ M} with  length n = |logC (O(n))| that are drawn 

Independent and identically distributed according to a 

probability distribution p(𝜉). For sufficiently large n, the 

instructions all have mutual variations which are highly 

concentrated around the expected variation 2np(1 – p) with 

the probability p = ℙ(𝜉(1) = 1). In the asymptotic limit n → ∞ 

for p = 1/2, the random instructions uniformly partition the 

Group of Hamiltonian space of n-key value sequences into 

subsets of key value strings which can be reverse instruction 

without errors. In an analogous way, we cover the Conjecture 

class by weight distributions [10, 17]. To generate a uniform 

cover of the Conjecture class, we introduce a transformation 

τ : O  →O ,    O ⟼ τ ∘ O.                            (19) 

The set of all possible transformations is denoted as 𝕋. 

Transformations that are restricted to object sets O
(n)

 of n 

objects are denoted by τ(n) ∈ 𝕋(n). A random cover of              

the Conjecture class is then generated by selecting a set          

of transformations T   = {τj
(n) ∈ 𝕋(n) : 1 ≤ j ≤ M, τj

(n) ~ P(τ(n))}   

with a rate 𝜌 := logM / log| 𝕋(n)|. A natural choice of the 

probability distribution for transformations is the uniform 

distribution P(τ(n)) = 1/| 𝕋(n)|. The intuition behind the 
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transformations is the following: When a transformation is 

applied to an object set O then the respective Conjecture c(O) 

and the measurements XO are transformed accordingly. 

Furthermore, the weights 𝑤𝛽 (c, X) are transformed by 

applying τ to c and X, i.e., τ ∘ 𝑤𝛽 (c, X) :=  𝑤𝛽 (τ ∘ c, τ ∘ X).  

Analogous to random instruction strategy, we generate the 

transformations τ(n) ~ P(τ(n)) in a random way. The probability 

distribution P(τ(n)) is defined over the set of possible 

transformations 𝕋(n). An asymptotic equipartition property 

depends on the entropy density of the transformation set 

H   (τ) :=  lim n→∞  – 
log 𝑃(τ(n ))

 log  | 𝕋(n )|  
  .                    (20) 

For instruction, we choose 𝜀-typical transformations τ(n) ∈ 𝕋ε
(n)

 

with the typical set 𝕋ε
(n)

  being defined in the following way: 

Intention 2. The set Tε
(n)

 of typical transformations w.r.t. 

P(τ(n)) is the set of transformations τ(n) ∈ 𝕋(n)
 with the property 

Tε
(n) = { τ(n) ∈ 𝕋(n)

 :  −
log 𝑃(τ(n ))

 log  | 𝕋(n )|  
 − H    (𝜏) < 𝜀} .        (21) 

Special cases of such transformations 𝜏 (n)
 are random 

permutations when optimizing combinatorial optimization 

kernel functions like clustering External Source Input models 

or graph cut problems. In parametric statistics, the 

transformations are parameter grids of e.g. rotations when 

estimating the orthogonal transformations of PCA or SVD. 

Mapper 𝔖 and reducer ℜ agree on a kernel function for 

MapReduce Sets for External Source Input Expression 

assignment R(c, X') and on a mapping function ψ. The 

following procedure is then employed to generate the 

instruction for the communication process: 

1. Mapper 𝔖 and reducer ℜ obtain External Source Input data 

X' from the key generator 𝔓𝔊. 

2. 𝔖 and ℜ calculate the weight set Wβ (X'). 

3. 𝔖 generates a set of (random) transformations                     

T  := {τ1,…,τ2nρ}. The transformations define a set of 

optimization problems R(c, τj ∘ X'), 1 ≤ j ≤ 2nρ to determine 

weight sets Wβ (τj ∘ X'), 1 ≤ j ≤ 2nρ. 

4. 𝔖 sends the set of transformations T  to ℜ who determines 

the set of weight sets {Wβ (τj ∘ X')}2𝑛𝜌
𝑗 =1

. 

 

The reason behind this procedure is the following: Given the 

measurements X' the mapper has randomly  covered the 

Conjecture class C (O') by respective weight sets                  

{Wβ (τj ∘ X') : 1 ≤ j ≤ 2nρ}. Communication can take place if 

the weight sets are stable under the stochastic fluctuations of 

the measurements. The criterion for reliable communication is 

defined by the ability of the reducer to identify the 

transformation which has been selected by the mapper. After 

this setup procedure, both mapper and reducer have a list of 

weight sets available. 

 

How is the communication between mapper and reducer 

organized? During communication, the following steps take 

place as depicted in fig. 3: 

 

1. The mapper 𝔖 selects a transformation τs as message and 

sends it to the key generator 𝔓𝔊.   

2. 𝔓𝔊 generates a new External Source Input data set X'' and 

establishes correspondence ψ between X' and X''. 𝔓𝔊 then 

applies the selected transformation τs, yielding 𝐗  = ψ ∘ τs ∘ ψ–1 

∘ X''. 

3. 𝔓𝔊 sends 𝐗  to the reducer ℜ without revealing τs. 

4. ℜ calculates the weight set Wβ (𝐗 ). 

5. ℜ estimates the selected transformation τs, by using reverse 

instruction rule 

𝜏  = arg maxτϵT     ΣcϵC (O'')  𝑤𝛽 (c, ψ ∘ τ ∘ X') 𝑤𝛽 (c, 𝐗 ) .      (22) 

In the case of discrete Conjecture class, then the 

communication path is bounded from above by the cardinality 

of C (X)  if two conditions hold: (i) the path is outlier object 

free X' ≡ X''; (ii) the transformation set is sufficiently rich 

that every Conjecture can be selected as a global minimizer of 

the kernel function. 

4. PRESCRIPTIVE STUDY I 
To determine the optimal approximation precision for an 

optimization problem R(.,X) we have to derive necessary and 

sufficient conditions which have to hold in order to reliably 

identify the transformations τs ∈ T  . The parameter β, which 

controls the concentration of weights and thereby the 

resolution of the Conjecture class, has to be adapted to the 

size of the transformation set |T     |. Therefore, we analyze the 

error probability of the reverse instruction rule (22) which is 

associated with a particular kernel function R(.,X) a rate ρ. 

The maximal value of β under the condition of zero error 

communication is defined as approximation capacity since it 

determines the approximation precision of the instruction 

scheme. 

A communication error occurs if the mapper selects τs and the 

reducer reverse instructions 𝜏  = τj, j ≠ s. To estimate the 

probability of this event, we introduce the weight overlaps 

∆𝑍𝛽
j := ΣcϵC (O'')  𝑤𝛽 (c, ψ ∘ τj ∘ X') 𝑤𝛽 (c, 𝐗 ), τj ∈ T    .        (23) 

 

The quantity ∆𝑍𝛽
j measures the number of Conjecture, which 

have jointly low kernels R(c, ψ ∘ τj ∘ X') and R(c, 𝐗 ). 

The probability of a communication error is given by a 

substantial overlap ∆𝑍𝛽
j
 induced by τj ∈ T   \{τs}, 1 ≤ j ≤ M,      

j ≠ s, i.e., 

       ℙ(𝜏  ≠ τs | τs) =  ℙ(max1 ≤ j ≤ M, j ≠ s  ∆𝑍𝛽
j ≥ ∆𝑍𝛽

s
 | τs ) 

        (a) ≤       Σ1 ≤ j ≤ M, j ≠ s ℙ( ∆𝑍𝛽
j ≥ ∆𝑍𝛽

s
 | τs ) 

  (b) ≤ Σ1 ≤ j ≤ M, j ≠ s 𝔼X', X'' 𝔼 T   \{τs}     [  
∆𝑍𝛽

j 
τs] 

∆𝑍𝛽
s 

 

(c) = (M–1)𝔼X', X'' [  
𝔼 τj: j ≠ s [∆𝑍𝛽

j| X', X''] 
τs]      (24) 

∆𝑍𝛽
s 

The expectation 𝔼T  \{τs} is calculated w.r.t., the set of random 

transformations τj, 1 ≤ j ≤ M, j≠s where we have    

conditioned on the mapper selected transformation τs.           

The joint probability distribution of all transformations                       

ℙ(T  ) =  ℙ𝑀
𝑗 =1 (τj) decomposes into product form since all 

transformations are randomly drawn from the set of all 

possible transformations {τj}. It corresponds to the random 

instruction External Source Input in information intention. 

The inequality (a) results from the union bound and (b) is due 
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to Markov’s inequality. The identity (c) exploits the fact that 

the transformations τ ∈ T   are Independent and identically 

distributed drawn according to the  measure ℙ(T    ). 

The expected overlap 𝔼 τj ∆𝑍𝛽
j, j ≠ s with any other message 

τj, j ≠ s for given training External Source Input data X' and 

test External Source Input data X'' conditioned on τs is defined 

by 

𝔼 τj: j ≠ s [∆𝑍𝛽
j| X', X''] = Σ τjϵT P(τj) 

                         ΣcϵC (O'')  𝑤𝛽 (c, ψ ∘ τj ∘ X') 𝑤𝛽 (c, 𝐗 ) 

                      (d) ≤    ΣcϵC (O'')  𝑤𝛽 (c, 𝐗 ) exp(–log|𝕋|(H   (τ) – 𝜀)) 

                         Σ τjεT  𝑤𝛽 (τj
-1 ∘ ψ-1 ∘ c, X') 

 

                                                               ≤ 𝑍𝛽 (X')        

(e) ≤   exp(–log|𝕋|(H   (τ) – 𝜀)) 𝑍𝛽 (X'') 𝑍𝛽 (X')       (25) 

The inequality (d) results from the typically of P(τj). The last 

inequality (e) holds since the set {τj
-1 ∘ ψ-1 ∘ c : c ϵC (O''),      

τj ∈ 𝕋} ⊂C (O'), and extending the sum Σ τjϵT to ΣcϵC (O'') only 

adds positive terms. Effectively, the sum over a random 

transformation τj decouples the two sums and yields a  of 

weight sums. Inserting result (25) into equation (24) yields 

ℙ(𝜏  ≠ τs | τs) ≤ (M–1) exp(–log |𝕋|(H   (τ) – 𝜀)) 

                      𝔼X', X''   𝑍𝛽 (X'') 𝑍𝛽 (X') / ∆𝑍𝛽
s           (26) 

    (f) ≤ exp(logM–log|𝕋|(H   (τ) – 𝜀) – (F   ' – 𝜀) log |C (O')| 

– (F   '' – 𝜀) log |C (O'')|+(∆F    + 𝜀) log |C (O'')|) 

     = exp(log|𝕋| ρ – log|𝕋|H   (τ) – log |C '| F   ' – log |C ''| 

(F   ''–∆F    ) + 𝜀 (log|𝕋| + log |C '| + 2log |C ''|)) ,       (27) 

where we have introduced the rate intention ρ = logM/log|𝕋|. 

The term proportional to 𝜀 can be neglected since it becomes 

arbitrarily small in the limit limn→∞ due to the assumed 

asymptotic equipartition property (13, 14, 15). Often, the 

assumption |C (O')| = |C (O'')| = |𝕋| is justified and the bound 

(26) simplifies to 

ℙ(𝜏  ≠ τs | τs) ≤ exp(– log |C | (I –ρ – 4𝜀))               (28) 

with Iβ := H   (τ) + F   ' + F   '' – ∆F                               (29) 

The quantity Iβ plays the role of the mutual information in 

communication. Error free communication requires ρ < Iβ, 

i.e., the rate ρ should not exceed H  (τ) + F   ' + F   '' – ∆F  . 

How can this upper bound (28) with quantity Iβ be 

interpreted? A close look at equation (26) reveals that the 

bound depends on the term 

   𝔼X', X''   
𝑍𝛽 (𝐗′′ ) 𝑍𝛽 (𝐗′ )

|𝕋|∆𝑍𝛽
𝑠   =  𝔼X', X''   exp(– log |𝕋|/Z'β  

         – log |C ''|/Z''β  + log |C ''|/Z''β )                       (30) 

 with the abbreviation Z'β = 𝑍𝛽 (X'), Z''β = 𝑍𝛽 (X'') . The term 

log(|𝕋|/Z'β) counts the number of ways you can form 

statistically distinguishable subset of the complete 

transformation class 𝕋, the second term log(|C ''|/Z''β) 

measure the same property on the reducer side and the last 

term       log(|C ''|/Z''β) accounts for double counting of the 

overlap. The three terms together define mutual information 

between the selected message τs and the reconstructed 

message 𝜏 . 

5.  PRESCRIPTIVE STUDY II:  
The analysis of the error probability suggests the following 

inference principle for controlling the appropriate strengths 

which implements a form of External Source Input model 

selection: the approximation precision is controlled by β 

which has to be maximized to derive more precise solutions 

or External Source Input expressions. For small β the rate ρ 

will be low since we resolve the space of solutions only in a 

coarse grained fashion. For too large β the error probability 

does not vanish which indicates confusions between τj, j ≠ s 

and τs. The optimal β-value is given by the largest β or, 

equivalently the highest approximation precision 

β* = arg  maxβϵ [0,∞)  Iβ (τs, 𝜏 ) .                        (31) 

Another choice to be made in modeling is to select a     

suitable kernel function R(.,X) for the MapReduce Sets for  

External Source Input Expression assignment problems at 

hand. Let us assume that a number of kernel functions {Rθ 

(.,X), θ ∈ Θ} are considered as candidates.     The 

approximation capacity Iβ (τs, 𝜏 ) depends on the kernel 

function through the weights. Therefore, we can rank the 

different External Source Input models according to their Iβ 

(τs, 𝜏 ) values. Robust and informative kernel functions yield a 

higher approximation capacity than simpler or more brittle 

External Source Input models. A quantifiable choice is to 

select the kernel function 

R* (c, X) = arg  maxθ ϵ Θ  Iβ (τs, 𝜏 |Rθ) .                  (32)                        

Where both the random variables τs and 𝜏  depend on              

Rθ (c, X), θ ∈ Θ. The selection rule (32) prefers the External 

Source Input model which is “expressive” enough to exhibit 

high information content (e.g., many clusters in clustering) 

and, at the same time robustly resists to outlier object in the 

External Source Input data set. The key values, which are 

measured in the communication setting, are context sensitive 

since they refer to a Conjecture class C (X), i.e., how finely or 

coarsely functions can be resolved in C. 

6. DESCRIPTIVE STUDY II  
To demonstrate the approach to regularized optimization we 

will apply it to an almost trivial optimization problem, i.e., 

minimizing the Group of Hamiltonian variation to a reference 

key value string 𝜉' = (𝜉'1, 𝜉'2,…, 𝜉'n) ∈ {–1, 1}n of n key 

values. This optimization problem describes the reverse 

instruction step in classical communication intention. The 

kernel function for communication measures the difference 

between a key value string s ∈ {–1, 1}n
 and a reference 

instruction  𝜉', i.e., 

R(s, 𝜉') =  𝕀𝑛
𝑖=1 {si ≠ 𝜉'1} = 

1

2
 (n –  𝑠𝑛

𝑖=1 i 𝜉'i) .            (33) 

The variable s has to be optimized and the posteriori 

minimum is s = 𝜉'. However, 𝜉' is exposed to path outlier 

object and, in the spirit of approximation set instruction, we 

should only approximate it. The weights of approximate 

solutions are defined by 

Wβ (𝜉') = { 𝑤𝛽 (s, 𝜉') = exp(– 
𝛽

2
 (n – Σ1≤i≤n  si 𝜉'i) ) } .       (34) 

The mapper uses this measurement 𝜉' and permutes the key 

values according to one of the randomly selected 

transformations   T    := {τ1,…, τ2M}. Permutations which leave 

𝜉' invariant are excluded. This set of randomly selected 

transformations generates a instruction with instruction 
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vectors {τ1 ∘ 𝜉',…, τ2M  ∘ 𝜉'}. 

During communication, a second key value string 𝜉'' is 

generated by the key generator. The reducer then receives the 

message 𝜉  = τs ∘ 𝜉'' when the mapper decides to communicate 

with transformation τs. This process defines the 

approximation problem R(s, 𝜉 ) = 
1

2
 (n – s ∙ 𝜉 ) on the reducer 

side. Based on the External Source Input data 𝜉  reducer has to 

estimate the transformation τs which has been communicated 

by the mapper. 

Let us assume that the probability 𝛿:= ℙ(𝜉'i ≠ 𝜉''i) 

characterizes the communication path. Therefore, a fraction 𝛿  
n key values are different between the first key value 

sequence 𝜉' and the second key value sequence 𝜉''i, i.e., 𝛿  = 
1

𝑛
 

| {i : 𝜉'i ≠ 𝜉''i }|. 

The weight sums 𝑍𝛽 (𝜉), 𝜉 ∈ {𝜉', 𝜉''} are given by 

             𝑍𝛽 (𝜉) = ΣsϵC(ξ) exp (– 
𝛽

2
 (n – Σi≤n  si 𝜉i) )  

                       =  exp (– β 
𝑛

2
) Πi≤n  Σ si ϵ {–1,1} exp( 

𝛽

2  si 𝜉i)  

    = exp(– 
𝑛𝛽

2
) 2n (cosh

𝛽

2
)n .                              (35) 

The number of jointly approximating key value strings is 

determined by 

 ∆𝑍𝛽  = ΣsϵC(ξ'') exp (–β(n – 
1

2
 Σi≤n  si ( 𝜉'i + 𝜉''i )) ) 

         =  exp (– βn) Πi≤n (exp( 
𝛽

2
(𝜉' + 𝜉'') + exp(– 

𝛽

2  (𝜉' + 𝜉''))  

         = exp(– βn) 2n (cosh 𝛽)n(1-δ^) .                                     

(36) 

The mutual information (30) for the special case of 

minimizing Group of Hamiltonian variations is determined by 

           Iβ = H   (τ) + F   ' + F   '' – ∆F     

= ln2 – limn→∞ 
1

𝑛
 (ln𝑍𝛽 (𝜉′) + (ln𝑍𝛽 (𝜉′′) – ln∆𝑍𝛽  

            = (1– δ) lncosh 𝛽 – 2lncosh
𝛽

2
  

= ln2 + (1– δ) lncosh 𝛽 – ln(cosh 𝛽 + 1) .              (37) 

where we have estimated the size of the set of possible 

random transformations as |𝕋| = 2n. In the case of a biased 

sequence with 𝜋 := ℙ(𝜉'i = 1) ≠ ½ the cardinality of the 

transformation set is |𝕋| = 2H (ᴨ) with the binary entropy          

H   (𝜋) = – 𝜋 log2 𝜋 – (1– 𝜋) log2(1– 𝜋). 

The optimal value for β determined by the maximum of Iβ, 

i.e., 

𝑑𝐼𝛽

𝑑𝛽
 = (1– δ) 

sinh 𝛽

cosh 𝛽
 – 

sinh 𝛽

cosh 𝛽+1
 = 0 .                    (38) 

⇒      cosh 𝛽 = 
1– 𝛿

𝛿
,    cosh 𝛽 + 1 = δ–1 .         (39) 

Inserting these values into equation (37) yields 

Iβ = ln2 + (1– δ) ln 
1– 𝛿

𝛿
 – ln 

1– 𝛿

𝛿
 – ln 

1

𝛿
 

= ln2 + (1– δ) ln (1– δ) – δ ln δ 

= ln2 – H   (δ) .                                             (40) 

Equation (40) shows that optimally approximating the Group 

of Hamiltonian variation of key value strings by 

approximation set instruction yields the path capacity of the 

binary symmetric path with key value error probability δ. 

7. CONCLUSION 
MapReduce Sets for External Source Input expression 

analysis explores the questions how similar different External 

Source Input expressions are and how we should compare 

them. The underlying topology and metric of a Conjecture 

class are often chosen ad hoc in applications and usually do 

not derive from properties of the External Source Input data 

source. Approximation set instruction as a External Source 

Input model validation principle establishes a notion of 

External Source Input expression equivalence by considering 

them as statistically indistinguishable when the External 

Source Input expression differences cannot be exploited for 

instruction. External Source Input expressions with the same 

or similar weights are considered to be equally acceptable 

solutions and these weights directly depend on the objective 

or kernel function. To justify a natural topology and metric, 

we have to validate the underlying kernel function for the 

External Source Input expression analysis problem. The 

reader should realize that the assumption of a kernel function 

assumes a lot of information about the Conjecture class; it 

essentially establishes a partial order of Conjecture. 

External Source Input model selection and validation requires 

estimating the generalization ability of External Source Input 

models from training to test External Source Input data. 

“Good” External Source Input models show a high 

expressiveness and they are robust w.r.t., outlier object in the 

External Source Input data. This tradeoff between 

informativeness and robustness ranks different External 

Source Input models when they are tested on new External 

Source Input data and it quantitatively describes the 

underfitting/overfitting dilemma. In this paper we have 

explored the idea to use approximation sets of clustering 

solutions as a communication instruction. The approximation 

capacity of a kernel function provides a selection criterion, 

which renders various External Source Input models 

comparable in terms of their respective key value rates. The 

number of reliably extractable key values of a External 

Source Input expression analysis kernel function R(.,X)  

defines a “task sensitive information measure” since it only 

accounts for the fluctuations in the External Source Input data 

X which actually have an influence on identifying an 

individual External Source Input expression or a set of 

External Source Input expressions. 

The maximum entropy inference principle suggests that we 

should average over the statistically indistinguishable 

solutions in the optimal approximation set. Such a External 

Source Input model averaging strategy replaces the original 

kernel function with the value and, thereby, it defines a 

continuation method with maximal robustness. 

Algorithmically, maximum entropy inference can be 

implemented by annealing methods. The entropy naturally 

answers the question in many External Source Input data 

analysis applications, which regularization term should be 

used without introducing an unwanted bias. The second 

question, how the regularization parameter should be selected, 

is also answered by: Choose the parameter value that 

maximizes the approximation capacity! The link to robust 

optimization is analyzed from a theoretical computer science 

viewpoint. 

For External Source Input model selection can be applied to 

all combinatorial or continuous optimization problems, which 

depend on outlier object External Source Input data. The 
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outlier object level is characterized by two sample sets X', X''. 

It has been posteriorly explored by External Source Input 

model validation problems for External Source Input model 

based clustering of high dimensional Gaussian distributed 

External Source Input data and of Boolean External Source 

Input data. The well-known spin glass phase of maximum 

likelihood estimations for Gaussian sources is identified as 

structure with zero information content for instruction. IT can 

also be used to select External Source Input models for 

spectral clustering. Furthermore, denoising of Boolean 

matrices guided by the generalization capacity of SVD 

suggests a cutoff rank for the SVD spectrum [11]. 

The reader should realize that we only require an objective or 

kernel R(.,X) to define a weight distribution. Any other 

mechanism to arrive at such a concept of approximate 

solutions will serve the same purpose. In principle, this 

concept of measuring the generalization performance of 

algorithms can be applied to algorithm evaluation and also to 

robust algorithm External Source Input. It endows the space 

of algorithm with a topology since two algorithms are 

neighbors if their approximation sets for the same input 

distributions share a high overlap. Such methods to measure 

the robustness of algorithms to errors in the computation or in 

the input will be in high demand to program novel hardware 

that trades consumption against precision of computation. So 

far we are completely lacking External Source Input 

principles for algorithm engineering, which consider this 

tradeoff between usage and correctness. We are also 

convinced that the information theoretic analysis of 

algorithms will shed new light on the relation between 

computational complexity and statistical complexity – the two 

faces of complexity science whose relation is far from being 

understood. 
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